The Impact of Ketogenic Capacity on Lipid Profile in Individuals with Prediabetes or Newly Diagnosed Type 2 Diabetes
Abstract
1. Introduction
2. Results
2.1. Clinical and Laboratory Characteristics of Participants
2.2. Mean LDL Particle Size Is Positively Correlated with Serum βHB Levels
2.3. Ketogenic Capacity Is Associated with Mean LDL Particle Size
3. Discussion
4. Materials and Methods
4.1. Study Design and Population
4.2. Clinical Measurement and Laboratory Assessment
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGarry, J.D.; Foster, D.W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu. Rev. Biochem. 1980, 49, 395–420. [Google Scholar] [CrossRef]
- Yoo, B.M.; Kim, S.R.; Lee, B.W. Ketone body induction: Insights into metabolic disease management. Biomedicines 2025, 13, 1484. [Google Scholar] [CrossRef]
- Lee, M.; Cho, Y.; Lee, Y.H.; Kang, E.S.; Cha, B.S.; Lee, B.W. Β-hydroxybutyrate as a biomarker of β-cell function in new-onset type 2 diabetes and its association with treatment response at 6 months. Diabetes Metab. 2023, 49, 101427. [Google Scholar] [CrossRef]
- Astrup, A.; Meinert Larsen, T.; Harper, A. Atkins and other low-carbohydrate diets: Hoax or an effective tool for weight loss? Lancet 2004, 364, 897–899. [Google Scholar] [CrossRef]
- Ferrannini, E.; Mark, M.; Mayoux, E. Cv protection in the empa-reg outcome trial: A “thrifty substrate” hypothesis. Diabetes Care 2016, 39, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Prattichizzo, F.; De Nigris, V.; Micheloni, S.; La Sala, L.; Ceriello, A. Increases in circulating levels of ketone bodies and cardiovascular protection with sglt2 inhibitors: Is low-grade inflammation the neglected component? Diabetes Obes. Metab. 2018, 20, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Lee, S.G.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Ferrannini, E.; Lee, Y.H.; Cho, N.H. Spontaneous ketonuria and risk of incident diabetes: A 12 year prospective study. Diabetologia 2019, 62, 779–788. [Google Scholar] [CrossRef]
- Lee, S.; Bae, J.; Kim, S.U.; Lee, M.; Lee, Y.H.; Kang, E.S.; Cha, B.S.; Lee, B.W. Intact ketogenesis predicted reduced risk of moderate-severe metabolic-associated fatty liver disease assessed by liver transient elastography in newly diagnosed type 2 diabetes. Front. Endocrinol. 2023, 14, 1306134. [Google Scholar] [CrossRef]
- Lee, S.; Bae, J.; Jo, D.R.; Lee, M.; Lee, Y.H.; Kang, E.S.; Cha, B.S.; Lee, B.W. Impaired ketogenesis is associated with metabolic-associated fatty liver disease in subjects with type 2 diabetes. Front. Endocrinol. 2023, 14, 1124576. [Google Scholar] [CrossRef] [PubMed]
- Norwitz, N.G.; Soto-Mota, A.; Feldman, D.; Parpos, S.; Budoff, M. Case report: Hypercholesterolemia “lean mass hyper-responder” phenotype presents in the context of a low saturated fat carbohydrate-restricted diet. Front. Endocrinol. 2022, 13, 830325. [Google Scholar] [CrossRef]
- Norwitz, N.G.; Feldman, D.; Soto-Mota, A.; Kalayjian, T.; Ludwig, D.S. Elevated ldl cholesterol with a carbohydrate-restricted diet: Evidence for a “lean mass hyper-responder” phenotype. Curr. Dev. Nutr. 2022, 6, nzab144. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.; Manubolu, V.S.; Kinninger, A.; Norwitz, N.G.; Feldman, D.; Wood, T.R.; Fialkow, J.; Cury, R.; Feldman, T.; Nasir, K. Carbohydrate restriction-induced elevations in ldl-cholesterol and atherosclerosis: The keto trial. JACC Adv. 2024, 3, 101109. [Google Scholar] [CrossRef]
- Galeano, N.F.; Al-Haideri, M.; Keyserman, F.; Rumsey, S.C.; Deckelbaum, R.J. Small dense low density lipoprotein has increased affinity for ldl receptor-independent cell surface binding sites: A potential mechanism for increased atherogenicity. J. Lipid Res. 1998, 39, 1263–1273. [Google Scholar] [CrossRef]
- Vekic, J.; Zeljkovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V.; Bogavac-Stanojevic, N.; Memon, L.; Spasic, S. Small, dense ldl cholesterol and apolipoprotein b: Relationship with serum lipids and ldl size. Atherosclerosis 2009, 207, 496–501. [Google Scholar] [CrossRef]
- Rehberger Likozar, A.; Zavrtanik, M.; Šebeštjen, M. Lipoprotein(a) in atherosclerosis: From pathophysiology to clinical relevance and treatment options. Ann. Med. 2020, 52, 162–177. [Google Scholar] [CrossRef]
- Afshar, M.; Rong, J.; Zhan, Y.; Chen, H.Y.; Engert, J.C.; Sniderman, A.D.; Larson, M.G.; Vasan, R.S.; Thanassoulis, G. Risks of incident cardiovascular disease associated with concomitant elevations in lipoprotein(a) and low-density lipoprotein cholesterol-the framingham heart study. J. Am. Heart Assoc. 2020, 9, e014711. [Google Scholar] [CrossRef] [PubMed]
- Toshima, S.; Hasegawa, A.; Kurabayashi, M.; Itabe, H.; Takano, T.; Sugano, J.; Shimamura, K.; Kimura, J.; Michishita, I.; Suzuki, T.; et al. Circulating oxidized low density lipoprotein levels. A biochemical risk marker for coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2243–2247. [Google Scholar] [CrossRef]
- Malekmohammad, K.; Bezsonov, E.E.; Rafieian-Kopaei, M. Role of lipid accumulation and inflammation in atherosclerosis: Focus on molecular and cellular mechanisms. Front. Cardiovasc. Med. 2021, 8, 707529. [Google Scholar] [CrossRef]
- Xu, L.; Yan, X.; Tang, Z.; Feng, B. Association between circulating oxidized oxldl/ldl-c ratio and the severity of coronary atherosclerosis, along with other emerging biomarkers of cardiovascular disease in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2022, 191, 110040. [Google Scholar] [CrossRef]
- Ko, D.T.; Alter, D.A.; Guo, H.; Koh, M.; Lau, G.; Austin, P.C.; Booth, G.L.; Hogg, W.; Jackevicius, C.A.; Lee, D.S.; et al. High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: The canheart study. J. Am. Coll. Cardiol. 2016, 68, 2073–2083. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dhindsa, D.; Almuwaqqat, Z.; Ko, Y.A.; Mehta, A.; Alkhoder, A.A.; Alras, Z.; Desai, S.R.; Patel, K.J.; Hooda, A.; et al. Association between high-density lipoprotein cholesterol levels and adverse cardiovascular outcomes in high-risk populations. JAMA Cardiol. 2022, 7, 672–680. [Google Scholar] [CrossRef]
- Gordon, T.; Castelli, W.P.; Hjortland, M.C.; Kannel, W.B.; Dawber, T.R. High density lipoprotein as a protective factor against coronary heart disease. The framingham study. Am. J. Med. 1977, 62, 707–714. [Google Scholar] [CrossRef]
- Mooradian, A.D. Dyslipidemia in type 2 diabetes mellitus. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Koba, S.; Ito, Y.; Hirano, T. Method for estimating high sdldl-c by measuring triglyceride and apolipoprotein b levels. Lipids Health Dis. 2017, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chang, Y.; Kwon, M.J.; Hong, Y.S.; Kim, M.K.; Sohn, W.; Cho, Y.K.; Shin, H.; Wild, S.H.; Byrne, C.D.; et al. Fasting ketonuria and the risk of incident nonalcoholic fatty liver disease with and without liver fibrosis in nondiabetic adults. Am. J. Gastroenterol. 2021, 116, 2270–2278. [Google Scholar] [CrossRef]
- Lim, K.; Kang, M.; Park, J. Association between fasting ketonuria and advanced liver fibrosis in non-alcoholic fatty liver disease patients without prediabetes and diabetes mellitus. Nutrients 2021, 13, 3400. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.A.; Deja, S.; Satapati, S.; Fu, X.; Burgess, S.C.; Browning, J.D. Impaired ketogenesis and increased acetyl-coa oxidation promote hyperglycemia in human fatty liver. JCI Insight 2019, 5, e127737. [Google Scholar] [CrossRef]
- Mason, T.M. The role of factors that regulate the synthesis and secretion of very-low-density lipoprotein by hepatocytes. Crit. Rev. Clin. Lab. Sci. 1998, 35, 461–487. [Google Scholar] [CrossRef]
- Lewis, G.F. Fatty acid regulation of very low density lipoprotein production. Curr. Opin. Lipidol. 1997, 8, 146–153. [Google Scholar] [CrossRef]
- Moon, J.S.; Kang, S.; Choi, J.H.; Lee, K.A.; Moon, J.H.; Chon, S.; Kim, D.J.; Kim, H.J.; Seo, J.A.; Kim, M.K.; et al. 2023 clinical practice guidelines for diabetes management in Korea: Full version recommendation of the Korean diabetes association. Diabetes Metab. J. 2024, 48, 546–708. [Google Scholar] [CrossRef]
- Yang, Y.S.; Kim, H.L.; Kim, S.H.; Moon, M.K. Lipid management in Korean people with type 2 diabetes mellitus: Korean diabetes association and Korean society of lipid and atherosclerosis consensus statement. Diabetes Metab. J. 2023, 47, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Lee, J.H.; Kim, M. Identification of a tmem182 rs141764639 polymorphism associated with central obesity by regulating tumor necrosis factor-α in a Korean population. J. Diabetes Complicat. 2020, 34, 107732. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, Z.Y.; Guo, X.L.; Tu, M. Monocyte to high-density lipoprotein and apolipoprotein a1 ratios: Novel indicators for metabolic syndrome in Chinese newly diagnosed type 2 diabetes. Front. Endocrinol. 2022, 13, 935776. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of homa modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
Variables | Enhanced Ketogenesis (N = 27) | Non-Enhanced Ketogenesis (N = 27) | p-Value |
---|---|---|---|
Age (years) | 48.2 ± 15.0 | 50.6 ± 12.2 | 0.515 |
Sex [Male, n (%)] | 11 (40.7) | 20 (74.1) | 0.027 |
BMI (kg/m2) | 26.4 ± 4.7 | 28.6 ± 5.1 | 0.103 |
Hypertension [n (%)] | 3 (11.1) | 24 (88.9) | 0.003 |
Type 2 diabetes [n (%)] | 16 (59.3) | 11 (40.7) | 0.248 |
βHB (mmol/L) | 0.20 ± 0.2 | 0.03 ± 0.02 | <0.001 |
Acetoacetate (mmol/L) | 0.04 ± 0.04 | 0.01 ± 0.009 | <0.001 |
Fasting glucose (mg/dL) | 134.3 ± 62.2 | 129.4 ± 38.6 | 0.730 |
Postprandial glucose (mg/dL) | 178.1 ± 85.6 | 179.0 ± 58.8 | 0.963 |
HbA1c (%) | 7.5 ± 2.1 | 7.0 ± 1.2 | 0.229 |
Fasting insulin (μIU/mL) | 9.6 ± 6.5 | 18.0 ± 15.3 | 0.013 |
Fasting c-peptide (μIU/mL) | 2.2 ± 1.0 | 3.6 ± 1.4 | <0.001 |
Postprandial insulin (μIU/mL) | 47.1 ± 32.2 | 73.1 ± 47.9 | 0.027 |
Postprandial c-peptide (μIU/mL) | 5.7 ± 2.5 | 7.2 ± 2.3 | 0.024 |
HOMA-IR | 3.4 ± 2.9 | 6.0 ± 5.2 | 0.031 |
HOMA-β | 62.4 ± 43.2 | 118.8 ± 133.0 | 0.052 |
AST (IU/L) | 35.4 ±35.3 | 42.6 ±32.9 | 0.442 |
ALT (IU/L) | 44.4 ± 37.7 | 58.2 ± 46.3 | 0.236 |
Total bilirubin (mg/dL) | 0.9 ± 0.4 | 0.8 ± 0.2 | 0.158 |
eGFR (ml/min/1.73 m2) | 95.6 ± 18.8 | 94.3 ± 16.6 | 0.781 |
Total cholesterol (mg/dL) | 210.0 ± 32.2 | 195.6 ± 34.4 | 0.117 |
TG (mg/dL) | 110.1 ± 33.1 | 244.4 ± 73.6 | <0.001 |
HDL-C (mg/dL) | 58.5 ± 14.5 | 49.4 ± 14.6 | 0.025 |
LDL-C (mg/dL) | 133.1 ± 38.1 | 107.6 ± 30.8 | 0.009 |
Mean LDL particle size (nm) | 26.8 ± 0.3 | 25.9 ± 0.6 | <0.001 |
LDL1,2 (%) | 37.0 ± 4.5 | 24.3 ± 6.4 | <0.001 |
LDL3~7 (%) | 3.8 ± 3.0 | 11.3 ± 5.6 | <0.001 |
Apolipoprotein A1 (mg/dL) | 161.0 ± 34.2 | 156.0 ± 37.9 | 0.616 |
Apolipoprotein B (mg/dL) | 116.0 ± 21.7 | 114.3 ± 24.5 | 0.791 |
Lipoprotein (a) (mg/dL) | 16.1 ± 14.8 | 14.4 ± 16.6 | 0.690 |
Oxidized LDL (U/L) | 48.2 ± 15.0 | 47.2 ± 9.0 | 0.762 |
Oxidized LDL to LDL ratio | 0.3 ± 0.1 | 0.6 ± 0.6 | 0.039 |
Variables | r | p-Value |
---|---|---|
Age (years) | 0.054 | 0.696 |
Sex (female vs. male) | 0.437 | <0.001 |
BMI (kg/m2) | −0.324 | 0.017 |
Hypertension (yes vs. no) | −0.323 | 0.017 |
Type 2 diabetes (vs. prediabetes) | −0.296 | 0.030 |
βHB (mmol/L) | 0.595 | <0.001 |
HOMA-IR (mg/dL × μIU/mL) | −0.325 | 0.020 |
HOMA- β (%) | −0.131 | 0.359 |
TG (mg/dL) | −0.810 | <0.001 |
HDL-C (mg/dL) | 0.582 | <0.001 |
LDL-C (mg/dL) | 0.495 | <0.001 |
HbA1c (%) | −0.082 | 0.557 |
R2 | Standardized Coefficient β | p-Value | |
---|---|---|---|
Unadjusted | 0.512 | ||
Enhanced ketogenesis (βHB ≥ 0.1 mmol/L vs. <0.1 mmol/L) | 0.715 | <0.001 | |
Model 1 | 0.545 | ||
Age (years) | 0.039 | 0.713 | |
Sex (female vs. male) | 0.172 | 0.110 | |
BMI (kg/m2) | −0.022 | 0.840 | |
Enhanced ketogenesis (βHB ≥ 0.1 mmol/L vs. <0.1 mmol/L) | 0.656 | <0.001 | |
Model 2 | 0.571 | ||
Age (years) | 0.023 | 0.836 | |
Sex (female vs. male) | 0.172 | 0.108 | |
BMI (kg/m2) | 0.007 | 0.949 | |
Hypertension (yes vs. no) | −0.004 | 0.969 | |
Type 2 diabetes (vs. prediabetes) | −0.168 | 0.112 | |
Enhanced ketogenesis (βHB ≥ 0.1 mmol/L vs. <0.1 mmol/L) | 0.633 | <0.001 | |
Model 3 | 0.655 | ||
Age (years) | 0.045 | 0.647 | |
Sex (female vs. male) | 0.156 | 0.093 | |
BMI (kg/m2) | 0.023 | 0.824 | |
HOMA-IR (mg/dL × μIU/mL) | 0.027 | 0.807 | |
TG (mg/dL) | −0.514 | <0.001 | |
Enhanced ketogenesis (βHB ≥ 0.1 mmol/L vs. <0.1 mmol/L) | 0.316 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.; Lee, M.; Lee, Y.-h.; Lee, S.-G.; Lee, B.-W. The Impact of Ketogenic Capacity on Lipid Profile in Individuals with Prediabetes or Newly Diagnosed Type 2 Diabetes. Int. J. Mol. Sci. 2025, 26, 8566. https://doi.org/10.3390/ijms26178566
Bae J, Lee M, Lee Y-h, Lee S-G, Lee B-W. The Impact of Ketogenic Capacity on Lipid Profile in Individuals with Prediabetes or Newly Diagnosed Type 2 Diabetes. International Journal of Molecular Sciences. 2025; 26(17):8566. https://doi.org/10.3390/ijms26178566
Chicago/Turabian StyleBae, Jaehyun, Minyoung Lee, Yong-ho Lee, Sang-Guk Lee, and Byung-Wan Lee. 2025. "The Impact of Ketogenic Capacity on Lipid Profile in Individuals with Prediabetes or Newly Diagnosed Type 2 Diabetes" International Journal of Molecular Sciences 26, no. 17: 8566. https://doi.org/10.3390/ijms26178566
APA StyleBae, J., Lee, M., Lee, Y.-h., Lee, S.-G., & Lee, B.-W. (2025). The Impact of Ketogenic Capacity on Lipid Profile in Individuals with Prediabetes or Newly Diagnosed Type 2 Diabetes. International Journal of Molecular Sciences, 26(17), 8566. https://doi.org/10.3390/ijms26178566