Vertebrate and Invertebrate Animal Models for the Study of Down Syndrome
Abstract
1. Introduction
2. Introduction to Animal Models for DS
2.1. Invertebrate and Lower-Order Animal Models for Trisomy 21
2.1.1. Drosophila Models of Trisomy
2.1.2. C. elegans Models for Trisomy 21
2.1.3. Zebrafish Models for DS
2.2. Mouse Models for DS
2.2.1. Comparison Between Mouse and Human Pathology
2.2.2. Comparisons Between Different DS Mouse Models
2.2.3. The Latest DS Mouse Models
2.3. Deficits in Specific Pathways Identified and Examined in Animal Models
- The APP/Aβ pathway plays a crucial role in early onset AD in individuals with DS (see, e.g., [52]). While some of the DS mouse models have elevated levels of APP and/or Aβ, transgenes for Aβ have been used in both C. elegans [89] and Drosophila models to further characterize their physiological and molecular role in the brain. In C. elegans, a transgene expression of human Aβ mutations gives rise to behavioral deficits and shortened lifespans [90], mimicking the effects of this toxic product of APP in humans with DS. Although lower-order animals are suitable tools for screening approaches in terms of anti-amyloid treatments, the molecular effects of Aβ on neurons could not be elucidated utilizing these strains, at least not initially [90]. A series of elegant studies using Ts1Cje, Ts2Cje, and Ts65Dn mice showed that APP is necessary but not sufficient to give rise to age-related cognitive impairment and BFCN degeneration [86], most likely via an amyloid disruption of nerve growth factor mechanisms by binding to NGF receptors [91].
- The Akt/mTOR/Insulin pathway shows an aberrant activation, leading to dysregulation of downstream important pathways in the hippocampus of Ts1Cje mice [79], as well as in Ts65Dn mice and humans with DS [58]. Further, studies in Drosophila have shown that increased activity of the mTOR pathway can lead to neurodevelopmental defects and accumulation of AD pathology [92], which mimics aberrant signaling in this pathway in individuals with DS. Both insulin and mTOR signaling pathways are dysregulated early in life in individuals with DS [92,93]. The mTORC1/insulin signaling pathways are key regulators of cell growth and proliferation [94]; this has been shown in multiple animal models. Dysregulation of mTOR and associated signaling can affect autophagy and oxidative stress, which are known to contribute to AD pathology (see, e.g., [87]). In Drosophila, the mTORC1 pathway is involved in organ size control and longevity. Patterson and collaborators administered Rapamycin, an mTOR inhibitor, to Ts65Dn mice, giving rise to increased lifespan and health span [95], which was corroborated by several other research groups [15,58]. Thus, the mTOR/Akt/Insulin pathways are highly conserved between different animal models, and the clinical field has benefited significantly from these animal studies.
- The JAK/STAT pathway. The JAK/STAT pathway has been extensively investigated in different DS models, especially as it relates to brain development and to leukemia [96], which has an increased incidence in children with DS [97]. In 1992, the laboratories of Darnell, Kerr, and Stark discovered the JAK/STAT signaling pathway when exploring the cellular response to interferon [98]. JAK/STAT signaling is implicated in neuroinflammation and activation of astrocytes, making it a potential target for therapeutic interventions in the chronically hyper-inflamed DS brain. The connection between impaired JAK/STAT signaling and cognitive function was first described in mouse models, where the JAK/STAT pathway was examined using traditional gene knockout studies [98]. Mechanistic studies of small molecules that can act as inhibitors in this pathway have been carried out in several animal models and have led to clinical trials using the JAK inhibitor tofacitinib, to assess its effects on individuals with DS [99]. Hyperactivation of the interferon pathway and downstream JAK/STAT signaling has been linked to developmental and cognitive deficits [100,101,102].
- The DYRK1A pathway. DYRK1A is a kinase located in the DSCR and is therefore over-expressed in DS. In Drosophila, the homolog of DYRK1A is Mini brain (mnb), which is involved in neurogenesis and migration of neurons. By studying the mnb pathway in Drosophila, researchers have gained insights into the role of DYRK1A in DS neurodevelopment. Calcium signaling, which is crucial for angiogenesis, has been shown to be dysregulated in DYRK1A-deficient zebrafish, mimicking vascular defects seen in DS in humans [103]. On the other hand, over-expression of DYRK1A in zebrafish leads to enhanced Wnt signaling and inhibited TGFβ signaling [28,104]; similar to the imbalance in these two pathways seen in neuronal progenitors in humans with DS [105]. By suppressing calcineurin signaling in zebrafish and then co-treating with DYRK1A inhibitors, the potential therapeutic benefits and risks with these interventions were studied in zebrafish [104]. DYRK1A over-expression has also been studied heavily in mouse models, leading to the development of inhibitors that can be used for clinical prevention of cognitive deficits in humans with DS. The DYRK1A inhibitor Leucettinib is currently in Phase 1 clinical trial for both AD and DS [106].
- The Notch pathway. Notch signaling is crucial during development, involved in cell fate determination, neurogenesis, and tissue organization [107]. Altered Notch signaling has been implicated in DS, especially during development (Figure 3). For example, dysregulation of the Notch pathway has been proposed to be involved in the gliogenic shift observed in the DS brain [108]. Interestingly, DYRK1A (which is located on Hsa21 and over-expressed in the DS brain) is co-expressed with Notch and over-expression of DYRK1A (as in the DS brain) leads to inhibition of Notch signaling [107,109], altering the fate of neural progenitor cell proliferation as well as neuronal migration that could cause some of the developmental delays seen in children with DS [110]. Studies in Drosophila have been instrumental in understanding the mechanisms of Notch signaling and its role in developmental processes, and continued studies using the Drosophila model have unearthed new findings regarding this important pathway for neural development [109,110,111], see also Figure 3.
3. Discussion
4. Conclusions
5. Summarization in Molecular Aspects
- The APP/Aβ pathway;
- The Akt/mTOR/Insulin pathway;
- The JAK/STAT pathway;
- The DYRK1A pathway;
- The Notch pathway.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MAPT | Microtubule-associated protein tau |
AD | Alzheimer’s disease |
DS | Down syndrome |
DYRK1A | Dual-specificity tyrosine phosphorylation-regulated kinase 1A |
RCAN1 | Regulator of Calcineurin 1 |
MMMU | Mouse chromosome |
MAC | Mammalian artificial chromosome |
Hsa21 | Human chromosome 21 |
ADHD | Attention deficit and hyperactivity disorder |
ASD | Autism spectrum disorder |
NGF | Nerve growth factor |
NFT | Neurofibrillary tangles |
DSCR | Down syndrome critical region |
References
- Antonarakis, S.E.; Skotko, B.G.; Rafii, M.S.; Strydom, A.; Pape, S.E.; Bianchi, D.W.; Sherman, S.L.; Reeves, R.H. Down syndrome. Nat. Rev. Dis. Primers 2020, 6, 9. [Google Scholar] [CrossRef]
- Antonaros, F.; Zenatelli, R.; Guerri, G.; Bertelli, M.; Locatelli, C.; Vione, B.; Catapano, F.; Gori, A.; Vitale, L.; Pelleri, M.C.; et al. The transcriptome profile of human trisomy 21 blood cells. Hum. Genom. 2021, 15, 25. [Google Scholar] [CrossRef]
- Capone, G.T.; Brecher, L.; Bay, M. Guanfacine Use in Children with Down Syndrome and Comorbid Attention-Deficit Hyperactivity Disorder (ADHD) with Disruptive Behaviors. J. Child Neurol. 2016, 31, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Mason, G.M.; Spano, G.; Edgin, J. Symptoms of attention-deficit/hyperactivity disorder in Down syndrome: Effects of the dopamine receptor D4 gene. Am. J. Intellect. Dev. Disabil. 2015, 120, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, J.A.; Amon, A.; Abbeduto, L.; Agiovlasitis, S.; Alsaied, T.; Anderson, H.A.; Bain, L.J.; Baumer, N.; Bhattacharyya, A.; Bogunovic, D.; et al. Opportunities, barriers, and recommendations in down syndrome research. Transl. Sci. Rare Dis. 2021, 5, 99–129. [Google Scholar] [CrossRef] [PubMed]
- Benhaourech, S.; Drighil, A.; Hammiri, A.E. Congenital heart disease and Down syndrome: Various aspects of a confirmed association. Cardiovasc. J. Afr. 2016, 27, 287–290. [Google Scholar] [CrossRef]
- Sterling, A.; Lorang, E.; Reis, K.; Elmquist, M. The Impact of Autistic Traits on Joint Attention in Young Children with Down Syndrome During Mother-Child and Father-Child Interactions. Am. J. Speech Lang. Pathol. 2025, 34, 834–844. [Google Scholar] [CrossRef]
- Landes, S.D.; Stevens, J.D.; Turk, M.A. Cause of death in adults with Down syndrome in the United States. Disabil. Health J. 2020, 13, 100947. [Google Scholar] [CrossRef]
- Hattori, M.; Fujiyama, A.; Taylor, T.D.; Watanabe, H.; Yada, T.; Park, H.S.; Toyoda, A.; Ishii, K.; Totoki, Y.; Choi, D.K.; et al. The DNA sequence of human chromosome 21. Nature 2000, 405, 311–319. [Google Scholar] [CrossRef]
- Rastogi, M.; Bartolucci, M.; Nanni, M.; Aloisio, M.; Vozzi, D.; Petretto, A.; Contestabile, A.; Cancedda, L. Integrative multi-omic analysis reveals conserved cell-projection deficits in human Down syndrome brains. Neuron 2024, 112, 2503–2523.e2510. [Google Scholar] [CrossRef]
- Kadkhoda, S.; Eslami, S.; Mahmud Hussen, B.; Ghafouri-Fard, S. A review on the importance of miRNA-135 in human diseases. Front. Genet. 2022, 13, 973585. [Google Scholar] [CrossRef]
- Liu, H.; Chen, S.; Sun, Q.; Sha, Q.; Tang, Y.; Jia, W.; Chen, L.; Zhao, J.; Wang, T.; Sun, X. Let-7c increases BACE2 expression by RNAa and decreases Abeta production. Am. J. Transl. Res. 2022, 14, 899–908. [Google Scholar]
- Mahernia, S.; Hassanzadeh, M.; Adib, M.; Peytam, F.; Haghighijoo, Z.; Iraji, A.; Mahdavi, M.; Edraki, N.; Amanlou, M. The possible effect of microRNA-155 (miR-155) and BACE1 inhibitors in the memory of patients with down syndrome and Alzheimer’s disease: Design, synthesis, virtual screening, molecular modeling and biological evaluations. J. Biomol. Struct. Dyn. 2022, 40, 5803–5814. [Google Scholar] [CrossRef]
- Perez-Villarreal, J.M.; Avina-Padilla, K.; Beltran-Lopez, E.; Guadron-Llanos, A.M.; Lopez-Bayghen, E.; Magana-Gomez, J.; Meraz-Rios, M.A.; Varela-Echavarria, A.; Angulo-Rojo, C. Profiling of circulating chromosome 21-encoded microRNAs, miR-155, and let-7c, in down syndrome. Mol. Genet. Genomic. Med. 2022, 10, e1938. [Google Scholar] [CrossRef]
- Andrade-Talavera, Y.; Benito, I.; Casanas, J.J.; Rodriguez-Moreno, A.; Montesinos, M.L. Rapamycin restores BDNF-LTP and the persistence of long-term memory in a model of Down’s syndrome. Neurobiol. Dis. 2015, 82, 516–525. [Google Scholar] [CrossRef]
- Chang, K.T.; Shi, Y.J.; Min, K.T. The Drosophila homolog of Down’s syndrome critical region 1 gene regulates learning: Implications for mental retardation. Proc. Natl. Acad. Sci. USA 2003, 100, 15794–15799. [Google Scholar] [CrossRef]
- Costa, A.C.; Stasko, M.R.; Schmidt, C.; Davisson, M.T. Behavioral validation of the Ts65Dn mouse model for Down syndrome of a genetic background free of the retinal degeneration mutation Pde6b(rd1). Behav. Brain Res. 2010, 206, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, E.; Morabito, S.; Henningfield, C.M.; Das, S.; Rahimzadeh, N.; Shabestari, S.K.; Michael, N.; Emerson, N.; Reese, F.; Shi, Z.; et al. Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer’s disease. Nat. Genet. 2024, 56, 2704–2717. [Google Scholar] [CrossRef] [PubMed]
- Moyer, A.J.; Gardiner, K.; Reeves, R.H. All Creatures Great and Small: New Approaches for Understanding Down Syndrome Genetics. Trends Genet. 2021, 37, 444–459. [Google Scholar] [CrossRef] [PubMed]
- Atas-Ozcan, H.; Brault, V.; Duchon, A.; Herault, Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes 2021, 12, 1833. [Google Scholar] [CrossRef]
- Costa, A.C.; Scott-McKean, J.J.; Stasko, M.R. Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test. Neuropsychopharmacology 2008, 33, 1624–1632. [Google Scholar] [CrossRef]
- Dohl, J.; Treadwell, Z.; Norris, C.; Head, E. Calcineurin inhibition may prevent Alzheimer disease in people with Down syndrome. Alzheimers Dement. 2025, 21, e70034. [Google Scholar] [CrossRef]
- Shpak, M.; Ghanavi, H.R.; Lange, J.D.; Pool, J.E.; Stensmyr, M.C. Genomes from historical Drosophila melanogaster specimens illuminate adaptive and demographic changes across more than 200 years of evolution. PLoS Biol. 2023, 21, e3002333. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fernandez, H.R.; Donohue, R.C.; Li, J.; Cheng, J.; Birchler, J.A. Male-specific lethal complex in Drosophila counteracts histone acetylation and does not mediate dosage compensation. Proc. Natl. Acad. Sci. USA 2013, 110, E808–E817. [Google Scholar] [CrossRef] [PubMed]
- Nordquist, S.K.; Smith, S.R.; Pierce, J.T. Systematic Functional Characterization of Human 21st Chromosome Orthologs in Caenorhabditis elegans. G3 (Bethesda) 2018, 8, 967–979. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.L. A new reference genome sequence for Caenorhabditis elegans? Lab Anim. 2019, 48, 267–268. [Google Scholar] [CrossRef]
- Blaise, B.J.; Giacomotto, J.; Triba, M.N.; Toulhoat, P.; Piotto, M.; Emsley, L.; Segalat, L.; Dumas, M.E.; Elena, B. Metabolic profiling strategy of Caenorhabditis elegans by whole-organism nuclear magnetic resonance. J. Proteome Res. 2009, 8, 2542–2550. [Google Scholar] [CrossRef]
- Crouzier, L.; Richard, E.M.; Sourbron, J.; Lagae, L.; Maurice, T.; Delprat, B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int. J. Mol. Sci. 2021, 22, 13356. [Google Scholar] [CrossRef]
- Chapman, L.R.; Ramnarine, I.V.P.; Zemke, D.; Majid, A.; Bell, S.M. Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes? Int. J. Mol. Sci. 2024, 25, 2968. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Wang, J.; Ren, C.; Chen, H.; Zhang, J. DYRK1A inhibitors for disease therapy: Current status and perspectives. Eur. J. Med. Chem. 2022, 229, 114062. [Google Scholar] [CrossRef]
- Tlili, A.; Hoischen, A.; Ripoll, C.; Benabou, E.; Badel, A.; Ronan, A.; Touraine, R.; Grattau, Y.; Stora, S.; van Bon, B.; et al. BDNF and DYRK1A are variable and inversely correlated in lymphoblastoid cell lines from Down syndrome patients. Mol. Neurobiol. 2012, 46, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Kishi, S.; Slack, B.E.; Uchiyama, J.; Zhdanova, I.V. Zebrafish as a genetic model in biological and behavioral gerontology: Where development meets aging in vertebrates--a mini-review. Gerontology 2009, 55, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Evsiukova, V.S.; Sorokin, I.E.; Kulikov, P.A.; Kulikov, A.V. Alterations in the brain serotonin system and serotonin-regulated behavior during aging in zebrafish males and females. Behav. Brain Res. 2024, 466, 115000. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef]
- Ericsson, A.C.; Crim, M.J.; Franklin, C.L. A brief history of animal modeling. Mo. Med. 2013, 110, 201–205. [Google Scholar]
- Farrell, C.; Mumford, P.; Wiseman, F.K. Rodent Modeling of Alzheimer’s Disease in Down Syndrome: In vivo and ex vivo Approaches. Front. Neurosci. 2022, 16, 909669. [Google Scholar] [CrossRef]
- Kawakami, K.; Matsuo, H.; Kajitani, N.; Yamada, T.; Matsumoto, K.I. Comparison of survival rates in four inbred mouse strains under different housing conditions: Effects of environmental enrichment. Exp. Anim. 2022, 71, 150–160. [Google Scholar] [CrossRef]
- Shaw, P.R.; Klein, J.A.; Aziz, N.M.; Haydar, T.F. Longitudinal neuroanatomical and behavioral analyses show phenotypic drift and variability in the Ts65Dn mouse model of Down syndrome. Dis. Models Mech. 2020, 13, dmm046243. [Google Scholar] [CrossRef]
- Alldred, M.J.; Lee, S.H.; Petkova, E.; Ginsberg, S.D. Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer’s disease (AD). Brain Struct. Funct. 2015, 220, 2983–2996. [Google Scholar] [CrossRef]
- Bimonte-Nelson, H.A.; Hunter, C.L.; Nelson, M.E.; Granholm, A.C. Frontal cortex BDNF levels correlate with working memory in an animal model of Down syndrome. Behav. Brain Res. 2003, 139, 47–57. [Google Scholar] [CrossRef]
- Demas, G.E.; Nelson, R.J.; Krueger, B.K.; Yarowsky, P.J. Spatial memory deficits in segmental trisomic Ts65Dn mice. Behav. Brain Res. 1996, 82, 85–92. [Google Scholar] [CrossRef]
- Fortress, A.M.; Hamlett, E.D.; Vazey, E.M.; Aston-Jones, G.; Cass, W.A.; Boger, H.A.; Granholm, A.C. Designer receptors enhance memory in a mouse model of Down syndrome. J. Neurosci. 2015, 35, 1343–1353. [Google Scholar] [CrossRef]
- Granholm, A.C.; Ford, K.A.; Hyde, L.A.; Bimonte, H.A.; Hunter, C.L.; Nelson, M.; Albeck, D.; Sanders, L.A.; Mufson, E.J.; Crnic, L.S. Estrogen restores cognition and cholinergic phenotype in an animal model of Down syndrome. Physiol. Behav. 2002, 77, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Guidi, S.; Stagni, F.; Bianchi, P.; Ciani, E.; Ragazzi, E.; Trazzi, S.; Grossi, G.; Mangano, C.; Calza, L.; Bartesaghi, R. Early pharmacotherapy with fluoxetine rescues dendritic pathology in the Ts65Dn mouse model of down syndrome. Brain Pathol. 2013, 23, 129–143. [Google Scholar] [CrossRef]
- Hamlett, E.D.; Boger, H.A.; Ledreux, A.; Kelley, C.M.; Mufson, E.J.; Falangola, M.F.; Guilfoyle, D.N.; Nixon, R.A.; Patterson, D.; Duval, N.; et al. Cognitive Impairment, Neuroimaging, and Alzheimer Neuropathology in Mouse Models of Down Syndrome. Curr. Alzheimer Res. 2016, 13, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Granholm, A.C.; Sanders, L.A.; Crnic, L.S. Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down’s syndrome. Exp. Neurol. 2000, 161, 647–663. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.; Block, A.; Tong, S.; Davisson, M.T.; Gardiner, K.J. Age exacerbates abnormal protein expression in a mouse model of Down syndrome. Neurobiol. Aging 2017, 57, 120–132. [Google Scholar] [CrossRef]
- Driscoll, L.L.; Carroll, J.C.; Moon, J.; Crnic, L.S.; Levitsky, D.A.; Strupp, B.J. Impaired sustained attention and error-induced stereotypy in the aged Ts65Dn mouse: A mouse model of Down syndrome and Alzheimer’s disease. Behav. Neurosci. 2004, 118, 1196–1205. [Google Scholar] [CrossRef]
- Escorihuela, R.M.; Vallina, I.F.; Martinez-Cue, C.; Baamonde, C.; Dierssen, M.; Tobena, A.; Florez, J.; Fernandez-Teruel, A. Impaired short- and long-term memory in Ts65Dn mice, a model for Down syndrome. Neurosci. Lett. 1998, 247, 171–174. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Johnson, N.R.; Boyd, T.D.; Coughlan, C.; Chial, H.J.; Potter, H. Innate Immune System Activation and Neuroinflammation in Down Syndrome and Neurodegeneration: Therapeutic Targets or Partners? Front. Aging Neurosci. 2021, 13, 718426. [Google Scholar] [CrossRef]
- Hamlett, E.D.; Hjorth, E.; Ledreux, A.; Gilmore, A.; Schultzberg, M.; Granholm, A.C. RvE1 treatment prevents memory loss and neuroinflammation in the Ts65Dn mouse model of Down syndrome. Glia 2020, 68, 1347–1360. [Google Scholar] [CrossRef]
- Alldred, M.J.; Martini, A.C.; Patterson, D.; Hendrix, J.; Granholm, A.C. Aging with Down Syndrome-Where Are We Now and Where Are We Going? J. Clin. Med. 2021, 10, 4687. [Google Scholar] [CrossRef]
- Head, E.; Lott, I.T.; Wilcock, D.M.; Lemere, C.A. Aging in Down Syndrome and the Development of Alzheimer’s Disease Neuropathology. Curr. Alzheimer Res. 2016, 13, 18–29. [Google Scholar] [CrossRef]
- Martini, A.C.; Helman, A.M.; McCarty, K.L.; Lott, I.T.; Doran, E.; Schmitt, F.A.; Head, E. Distribution of microglial phenotypes as a function of age and Alzheimer’s disease neuropathology in the brains of people with Down syndrome. Alzheimers Dement. 2020, 12, e12113. [Google Scholar] [CrossRef]
- Wilcock, D.M.; Griffin, W.S. Down’s syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J. Neuroinflamm. 2013, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Lockrow, J.P.; Fortress, A.M.; Granholm, A.C. Age-related neurodegeneration and memory loss in down syndrome. Curr. Gerontol. Geriatr. Res. 2012, 2012, 463909. [Google Scholar] [CrossRef] [PubMed]
- Aldecoa, I.; Barroeta, I.; Carroll, S.L.; Fortea, J.; Gilmore, A.; Ginsberg, S.D.; Guzman, S.J.; Hamlett, E.D.; Head, E.; Perez, S.E.; et al. Down Syndrome Biobank Consortium: A perspective. Alzheimers Dement. 2024, 20, 2262–2272. [Google Scholar] [CrossRef]
- Di Domenico, F.; Tramutola, A.; Barone, E.; Lanzillotta, C.; Defever, O.; Arena, A.; Zuliani, I.; Foppoli, C.; Iavarone, F.; Vincenzoni, F.; et al. Restoration of aberrant mTOR signaling by intranasal rapamycin reduces oxidative damage: Focus on HNE-modified proteins in a mouse model of down syndrome. Redox Biol. 2019, 23, 101162. [Google Scholar] [CrossRef] [PubMed]
- Granholm, A.E.; Englund, E.; Gilmore, A.; Head, E.; Yong, W.H.; Perez, S.E.; Guzman, S.J.; Hamlett, E.D.; Mufson, E.J. Neuropathological findings in Down syndrome, Alzheimer’s disease and control patients with and without SARS-CoV: Preliminary findings. Acta Neuropathol. 2024, 147, 92. [Google Scholar] [CrossRef]
- Saternos, H.; Hamlett, E.D.; Guzman, S.; Head, E.; Granholm, A.C.; Ledreux, A. Unique Pathology in the Locus Coeruleus of Individuals with Down Syndrome. J. Alzheimers Dis. 2024, 101, 541–561. [Google Scholar] [CrossRef]
- Ledreux, A.; Thomas, S.; Hamlett, E.D.; Trautman, C.; Gilmore, A.; Rickman Hager, E.; Paredes, D.A.; Margittai, M.; Fortea, J.; Granholm, A.C. Small Neuron-Derived Extracellular Vesicles from Individuals with Down Syndrome Propagate Tau Pathology in the Wildtype Mouse Brain. J. Clin. Med. 2021, 10, 3931. [Google Scholar] [CrossRef]
- Di Domenico, F.; Tramutola, A.; Foppoli, C.; Head, E.; Perluigi, M.; Butterfield, D.A. mTOR in Down syndrome: Role in Ass and tau neuropathology and transition to Alzheimer disease-like dementia. Free Radic. Biol. Med. 2018, 114, 94–101. [Google Scholar] [CrossRef]
- Granholm, A.C.; Hamlett, E.D. The Role of Tau Pathology in Alzheimer’s Disease and Down Syndrome. J. Clin. Med. 2024, 13, 1338. [Google Scholar] [CrossRef]
- Winston, C.N.; Aulston, B.; Rockenstein, E.M.; Adame, A.; Prikhodko, O.; Dave, K.N.; Mishra, P.; Rissman, R.A.; Yuan, S.H. Neuronal Exosome-Derived Human Tau is Toxic to Recipient Mouse Neurons in vivo. J. Alzheimers Dis. 2019, 67, 541–553. [Google Scholar] [CrossRef]
- Bennett, R.E.; DeVos, S.L.; Dujardin, S.; Corjuc, B.; Gor, R.; Gonzalez, J.; Roe, A.D.; Frosch, M.P.; Pitstick, R.; Carlson, G.A.; et al. Enhanced Tau Aggregation in the Presence of Amyloid beta. Am. J. Pathol. 2017, 187, 1601–1612. [Google Scholar] [CrossRef] [PubMed]
- Furman, J.L.; Vaquer-Alicea, J.; White, C.L., 3rd; Cairns, N.J.; Nelson, P.T.; Diamond, M.I. Widespread tau seeding activity at early Braak stages. Acta Neuropathol. 2017, 133, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Goedert, M.; Eisenberg, D.S.; Crowther, R.A. Propagation of Tau Aggregates and Neurodegeneration. Annu. Rev. Neurosci. 2017, 40, 189–210. [Google Scholar] [CrossRef] [PubMed]
- Guix, F.X.; Corbett, G.T.; Cha, D.J.; Mustapic, M.; Liu, W.; Mengel, D.; Chen, Z.; Aikawa, E.; Young-Pearse, T.; Kapogiannis, D.; et al. Detection of Aggregation-Competent Tau in Neuron-Derived Extracellular Vesicles. Int. J. Mol. Sci. 2018, 19, 663. [Google Scholar] [CrossRef]
- Guo, J.L.; Lee, V.M. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 2011, 286, 15317–15331. [Google Scholar] [CrossRef]
- Haruyama, N.; Cho, A.; Kulkarni, A.B. Overview: Engineering transgenic constructs and mice. Curr. Protoc. Cell Biol. 2009, 42, 19-10. [Google Scholar] [CrossRef]
- Ogaki, A.; Ikegaya, Y.; Koyama, R. Replacement of Mouse Microglia with Human Induced Pluripotent Stem Cell (hiPSC)-Derived Microglia in Mouse Organotypic Slice Cultures. Front. Cell. Neurosci. 2022, 16, 918442. [Google Scholar] [CrossRef]
- Duchon, A.; Del Mar Muniz Moreno, M.; Chevalier, C.; Nalesso, V.; Andre, P.; Fructuoso-Castellar, M.; Mondino, M.; Po, C.; Noblet, V.; Birling, M.C.; et al. Ts66Yah, a mouse model of Down syndrome with improved construct and face validity. Dis. Model Mech. 2022, 15. [Google Scholar] [CrossRef]
- Emili, M.; Stagni, F.; Guidi, S.; Russo, C.; Chevalier, C.; Duchon, A.; Herault, Y.; Bartesaghi, R. Dendritic phenotype and proliferation potency in the hippocampal dentate gyrus of the Ts66Yah model of Down syndrome. Neurosci. Lett. 2025, 850, 138156. [Google Scholar] [CrossRef]
- Moreau, M.; Madani, A.; Dard, R.; Romero, N.; Ringot, M.; d’Ortho, M.P.; Bokov, P.; Janel, N.; Matrot, B. Neonatal obstructive sleep apneas in a mouse model of Down syndrome. J. Neurophysiol. 2025, 133, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Goodliffe, J.W.; Olmos-Serrano, J.L.; Aziz, N.M.; Pennings, J.L.; Guedj, F.; Bianchi, D.W.; Haydar, T.F. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome. J. Neurosci. 2016, 36, 2926–2944. [Google Scholar] [CrossRef] [PubMed]
- Lana-Elola, E.; Cater, H.; Watson-Scales, S.; Greenaway, S.; Muller-Winkler, J.; Gibbins, D.; Nemes, M.; Slender, A.; Hough, T.; Keskivali-Bond, P.; et al. Comprehensive phenotypic analysis of the Dp1Tyb mouse strain reveals a broad range of Down syndrome-related phenotypes. Dis. Model Mech. 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dyakin, V.V.; Branch, C.A.; Ardekani, B.; Yang, D.; Guilfoyle, D.N.; Peterson, J.; Peterhoff, C.; Ginsberg, S.D.; Cataldo, A.M.; et al. In vivo MRI identifies cholinergic circuitry deficits in a Down syndrome model. Neurobiol. Aging 2009, 30, 1453–1465. [Google Scholar] [CrossRef]
- Siegel, A.E.; Bianchi, D.W.; Guedj, F. Visual discrimination and inhibitory control deficits in mouse models of Down syndrome: A pilot study using rodent touchscreen technology. J. Neurosci. Res. 2023, 101, 492–507. [Google Scholar] [CrossRef]
- Troca-Marin, J.A.; Casanas, J.J.; Benito, I.; Montesinos, M.L. The Akt-mTOR pathway in Down’s syndrome: The potential use of rapamycin/rapalogs for treating cognitive deficits. CNS Neurol. Disord. Drug Targets 2014, 13, 34–40. [Google Scholar] [CrossRef]
- Olson, L.E.; Roper, R.J.; Sengstaken, C.L.; Peterson, E.A.; Aquino, V.; Galdzicki, Z.; Siarey, R.; Pletnikov, M.; Moran, T.H.; Reeves, R.H. Trisomy for the Down syndrome ‘critical region’ is necessary but not sufficient for brain phenotypes of trisomic mice. Hum. Mol. Genet. 2007, 16, 774–782. [Google Scholar] [CrossRef]
- Arima-Yoshida, F.; Raveau, M.; Shimohata, A.; Amano, K.; Fukushima, A.; Watanave, M.; Kobayashi, S.; Hattori, S.; Usui, M.; Sago, H.; et al. Impairment of spatial memory accuracy improved by Cbr1 copy number resumption and GABA(B) receptor-dependent enhancement of synaptic inhibition in Down syndrome model mice. Sci. Rep. 2020, 10, 14187. [Google Scholar] [CrossRef]
- Kazuki, Y.; Gao, F.J.; Li, Y.; Moyer, A.J.; Devenney, B.; Hiramatsu, K.; Miyagawa-Tomita, S.; Abe, S.; Kazuki, K.; Kajitani, N.; et al. A non-mosaic transchromosomic mouse model of down syndrome carrying the long arm of human chromosome 21. Elife 2020, 9, e56223. [Google Scholar] [CrossRef]
- Herault, Y.; Delabar, J.M.; Fisher, E.M.C.; Tybulewicz, V.L.J.; Yu, E.; Brault, V. Rodent models in Down syndrome research: Impact and future opportunities. Dis. Model Mech. 2017, 10, 1165–1186. [Google Scholar] [CrossRef]
- Demas, G.E.; Nelson, R.J.; Krueger, B.K.; Yarowsky, P.J. Impaired spatial working and reference memory in segmental trisomy (Ts65Dn) mice. Behav. Brain Res. 1998, 90, 199–201. [Google Scholar] [CrossRef]
- Rueda, N.; Florez, J.; Martinez-Cue, C. Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural. Plast. 2012, 2012, 584071. [Google Scholar] [CrossRef]
- Salehi, A.; Delcroix, J.D.; Belichenko, P.V.; Zhan, K.; Wu, C.; Valletta, J.S.; Takimoto-Kimura, R.; Kleschevnikov, A.M.; Sambamurti, K.; Chung, P.P.; et al. Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 2006, 51, 29–42. [Google Scholar] [CrossRef]
- Troublesome variability in mouse studies. Nat. Neurosci. 2009, 12, 1075. [CrossRef] [PubMed]
- Casellas, J. Inbred mouse strains and genetic stability: A review. Animal 2011, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.G.; Marfil, V.; Li, C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front. Genet. 2014, 5, 279. [Google Scholar] [CrossRef] [PubMed]
- Gallrein, C.; Iburg, M.; Michelberger, T.; Kocak, A.; Puchkov, D.; Liu, F.; Ayala Mariscal, S.M.; Nayak, T.; Kaminski Schierle, G.S.; Kirstein, J. Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity. Prog. Neurobiol. 2021, 198, 101907. [Google Scholar] [CrossRef]
- Kokkali, M.; Karali, K.; Thanou, E.; Papadopoulou, M.A.; Zota, I.; Tsimpolis, A.; Efstathopoulos, P.; Calogeropoulou, T.; Li, K.W.; Sidiropoulou, K.; et al. Multimodal beneficial effects of BNN27, a nerve growth factor synthetic mimetic, in the 5xFAD mouse model of Alzheimer’s disease. Mol. Psychiatry 2025, 30, 2265–2283. [Google Scholar] [CrossRef]
- Perluigi, M.; Picca, A.; Montanari, E.; Calvani, R.; Marini, F.; Matassa, R.; Tramutola, A.; Villani, A.; Familiari, G.; Domenico, F.D.; et al. Aberrant crosstalk between insulin signaling and mTOR in young Down syndrome individuals revealed by neuronal-derived extracellular vesicles. Alzheimers Dement. 2022, 18, 1498–1510. [Google Scholar] [CrossRef]
- Wohlfert, A.J.; Phares, J.; Granholm, A.C. The mTOR Pathway: A Common Link Between Alzheimer’s Disease and Down Syndrome. J. Clin. Med. 2024, 13, 6183. [Google Scholar] [CrossRef]
- Caldwell, A.L.M.; Sancho, L.; Deng, J.; Bosworth, A.; Miglietta, A.; Diedrich, J.K.; Shokhirev, M.N.; Allen, N.J. Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders. Nat. Neurosci. 2022, 25, 1163–1178. [Google Scholar] [CrossRef]
- Duval, N.; Vacano, G.N.; Patterson, D. Rapamycin Treatment Ameliorates Age-Related Accumulation of Toxic Metabolic Intermediates in Brains of the Ts65Dn Mouse Model of Down Syndrome and Aging. Front. Aging Neurosci. 2018, 10, 263. [Google Scholar] [CrossRef]
- Grimm, J.; Bhayadia, R.; Gack, L.; Heckl, D.; Klusmann, J.H. Combining LSD1 and JAK-STAT inhibition targets Down syndrome-associated myeloid leukemia at its core. Leukemia 2022, 36, 1926–1930. [Google Scholar] [CrossRef]
- Hsu, C.J.; Schraw, J.M.; Desrosiers, T.A.; Janitz, A.E.; Kirby, R.S.; Nestoridi, E.; Nembhard, W.N.; Salemi, J.L.; Shumate, C.; Tanner, J.P.; et al. All genetic subtypes of B-cell acute lymphoblastic leukemia exhibit increased incidence rates in children with Down syndrome. Leukemia 2025, 39, 1516–1519. [Google Scholar] [CrossRef] [PubMed]
- Philips, R.L.; Wang, Y.; Cheon, H.; Kanno, Y.; Gadina, M.; Sartorelli, V.; Horvath, C.M.; Darnell, J.E., Jr.; Stark, G.R.; O’Shea, J.J. The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022, 185, 3857–3876. [Google Scholar] [CrossRef] [PubMed]
- Rachubinski, A.L.; Wallace, E.; Gurnee, E.; Estrada, B.A.E.; Worek, K.R.; Smith, K.P.; Araya, P.; Waugh, K.A.; Granrath, R.E.; Britton, E.; et al. JAK inhibition decreases the autoimmune burden in Down syndrome. medRxiv 2024. [Google Scholar] [CrossRef]
- Chung, H.; Green, P.H.R.; Wang, T.C.; Kong, X.F. Interferon-Driven Immune Dysregulation in Down Syndrome: A Review of the Evidence. J. Inflamm. Res. 2021, 14, 5187–5200. [Google Scholar] [CrossRef]
- Espinosa, J.M. Down Syndrome and COVID-19: A Perfect Storm? Cell Rep. Med. 2020, 1, 100019. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.D.; Lewis, H.C.; Hill, A.A.; Pandey, A.; Jackson, L.P.; Cabral, J.M.; Smith, K.P.; Liggett, L.A.; Gomez, E.B.; Galbraith, M.D.; et al. Trisomy 21 consistently activates the interferon response. Elife 2016, 5, e16220. [Google Scholar] [CrossRef] [PubMed]
- Head, E.; Phelan, M.J.; Doran, E.; Kim, R.C.; Poon, W.W.; Schmitt, F.A.; Lott, I.T. Cerebrovascular pathology in Down syndrome and Alzheimer disease. Acta Neuropathol. Commun. 2017, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lin, Z.; Peng, Y.; Jiang, Y.; Zhang, X.; Zhu, H.; Zhang, L.; Chen, J.; Shu, X.; Luo, M.; et al. Embryonic organizer formation disorder leads to multiorgan dysplasia in Down syndrome. Cell Death Dis. 2022, 13, 1054. [Google Scholar] [CrossRef]
- Giffin-Rao, Y.; Sheng, J.; Strand, B.; Xu, K.; Huang, L.; Medo, M.; Risgaard, K.A.; Dantinne, S.; Mohan, S.; Keshan, A.; et al. Altered patterning of trisomy 21 interneuron progenitors. Stem Cell Reports 2022, 17, 1366–1379. [Google Scholar] [CrossRef]
- Meijer, L.; Chretien, E.; Ravel, D. Leucettinib-21, a DYRK1A Kinase Inhibitor as Clinical Drug Candidate for Alzheimer’s Disease and Down Syndrome. J. Alzheimers Dis. 2024, 101, S95–S113. [Google Scholar] [CrossRef]
- McLaren, M.; Butts, J. Notch signaling in neurogenesis. Development 2025, 152. [Google Scholar] [CrossRef]
- Yusof, H.H.; Lee, H.C.; Seth, E.A.; Wu, X.; Hewitt, C.A.; Scott, H.S.; Cheah, P.S.; Li, Y.M.; Chau, D.M.; Ling, K.H. Expression Profiling of Notch Signalling Pathway and Gamma-Secretase Activity in the Brain of Ts1Cje Mouse Model of Down Syndrome. J. Mol. Neurosci. 2019, 67, 632–642. [Google Scholar] [CrossRef]
- Hammerle, B.; Ulin, E.; Guimera, J.; Becker, W.; Guillemot, F.; Tejedor, F.J. Transient expression of Mnb/Dyrk1a couples cell cycle exit and differentiation of neuronal precursors by inducing p27KIP1 expression and suppressing NOTCH signaling. Development 2011, 138, 2543–2554. [Google Scholar] [CrossRef]
- Xu, C.; Ramos, T.B.; Marshall, O.J.; Doe, C.Q. Notch signaling and Bsh homeodomain activity are integrated to diversify Drosophila lamina neuron types. Elife 2024, 12, RP90136. [Google Scholar] [CrossRef]
- Andriatsilavo, M.; Barata, C.; Reifenstein, E.; Dumoulin, A.; Tao Griffin, T.; Dutta, S.B.; Stoeckli, E.T.; von Kleist, M.; Hiesinger, P.R.; Hassan, B.A. Sequential and independent probabilistic events regulate differential axon targeting during development in Drosophila melanogaster. Nat. Neurosci. 2025, 28, 998–1011. [Google Scholar] [CrossRef]
- Poon, C.H.; Wang, Y.; Fung, M.L.; Zhang, C.; Lim, L.W. Rodent Models of Amyloid-Beta Feature of Alzheimer’s Disease: Development and Potential Treatment Implications. Aging Dis. 2020, 11, 1235–1259. [Google Scholar] [CrossRef]
- McKean, N.E.; Handley, R.R.; Snell, R.G. A Review of the Current Mammalian Models of Alzheimer’s Disease and Challenges That Need to Be Overcome. Int. J. Mol. Sci. 2021, 22, 13168. [Google Scholar] [CrossRef]
- Ashe, K.H.; Zahs, K.R. Probing the biology of Alzheimer’s disease in mice. Neuron 2010, 66, 631–645. [Google Scholar] [CrossRef]
- William, C.M.; Saqran, L.; Stern, M.A.; Chiang, C.L.; Herrick, S.P.; Rangwala, A.; Albers, M.W.; Frosch, M.P.; Hyman, B.T. Activity-Dependent Dysfunction in Visual and Olfactory Sensory Systems in Mouse Models of Down Syndrome. J. Neurosci. 2017, 37, 9880–9888. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.; Buck, J.M.; Borski, C.; Pafford, J.T.; Keller, B.N.; Milstead, R.A.; Hanson, J.L.; Stitzel, J.A.; Hoeffer, C.A. RCAN1 knockout and overexpression recapitulate an ensemble of rest-activity and circadian disruptions characteristic of Down syndrome, Alzheimer’s disease, and normative aging. J. Neurodev. Disord. 2022, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.S.; Park, J.H.; Ryu, Y.S.; Choi, S.H.; Yoon, S.H.; Kwen, M.Y.; Oh, J.Y.; Song, W.J.; Chung, S.H. Regulation of RCAN1 protein activity by Dyrk1A protein-mediated phosphorylation. J. Biol. Chem. 2011, 286, 40401–40412. [Google Scholar] [CrossRef] [PubMed]
- Sasaguri, H.; Nilsson, P.; Hashimoto, S.; Nagata, K.; Saito, T.; De Strooper, B.; Hardy, J.; Vassar, R.; Winblad, B.; Saido, T.C. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J. 2017, 36, 2473–2487. [Google Scholar] [CrossRef]
- Tai, L.M.; Maldonado Weng, J.; LaDu, M.J.; Brady, S.T. Relevance of transgenic mouse models for Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2021, 177, 1–48. [Google Scholar] [CrossRef]
- Welikovitch, L.A.; Mate de Gerando, A.; Khasnavis, A.; Bhavsar, H.; Meltzer, J.C.; Buee, L.; Chibnik, L.B.; Bussiere, T.; Hyman, B.T. Tau, synapse loss and gliosis progress in an Alzheimer’s mouse model after amyloid-beta immunotherapy. Brain 2025, 148, 1316–1328. [Google Scholar] [CrossRef]
- Jaramillo, S.; Zador, A.M. Mice and rats achieve similar levels of performance in an adaptive decision-making task. Front. Syst. Neurosci. 2014, 8, 173. [Google Scholar] [CrossRef]
Model | Genetic Modulation | Deficits | Advantage | Reference |
---|---|---|---|---|
Ts65Dn | Segmental MMU16 trisomy syntenic to Hsa21 + some MMU17 | Cognitive loss | Recapitulates DS phenotype | [49] |
Neuronal loss | Most studied model | [17] | ||
Developmental deficits | ||||
Dp(16)1Yey/+ | Triplication of entire MMU16 homologous to Hsa21 | Neonatal sleep apnea APP, CTF, Aβ elevated Age-related BFCN loss | More specific for DS More targeted trisomy | [74] |
[75] | ||||
[76] | ||||
Ts66Yah | Generated by CRISPR/Cas9 | Milder phenotype | Less studied to date May be a more accurate model | [72] |
Excludes the non-Hsa21 genes on MMU16 | Learning/memory deficits | [73] | ||
Ts1Cje | Shorter triplication of MMU16 Excludes APP and SOD1 | Milder cognitive deficits No BFCN loss | Demonstrates the importance of amyloid | [77] |
[78] | ||||
Ts2Cje | Robertsonian translocation MMU16 larger segment than Ts1Cje | BFCN cell loss | Larger segmental trisomy of MMU16 = more severe deficits | [79] |
Ts1Rhr | Trisomic for DSCR homologous to Hsa21 | Memory deficits | Nearly complete copy of Hsa21q | [80] |
Ms1Rhr | Monosomic for DSCR | Memory loss corrected | Important control | [81] |
TcMAC21 | Mouse Artificial Chr~93% Hsa21 protein genes | Congenital heart defects Learning/memory deficit LPT/neurogenesis delayed | Incomplete studies yet | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granholm, A.-C. Vertebrate and Invertebrate Animal Models for the Study of Down Syndrome. Int. J. Mol. Sci. 2025, 26, 8092. https://doi.org/10.3390/ijms26168092
Granholm A-C. Vertebrate and Invertebrate Animal Models for the Study of Down Syndrome. International Journal of Molecular Sciences. 2025; 26(16):8092. https://doi.org/10.3390/ijms26168092
Chicago/Turabian StyleGranholm, Ann-Charlotte. 2025. "Vertebrate and Invertebrate Animal Models for the Study of Down Syndrome" International Journal of Molecular Sciences 26, no. 16: 8092. https://doi.org/10.3390/ijms26168092
APA StyleGranholm, A.-C. (2025). Vertebrate and Invertebrate Animal Models for the Study of Down Syndrome. International Journal of Molecular Sciences, 26(16), 8092. https://doi.org/10.3390/ijms26168092