Upregulation of HOTTIP and Its Potential Role in Monitoring Exercise Adaptation
Abstract
1. Introduction
2. Results
2.1. Relationship Between Studied lncRNAs and Training Parameters
2.2. Assessment of Training Effectiveness Analysis Using ROC Curves
3. Discussion
4. Materials and Methods
4.1. Subject and Study Design
4.2. Expression Analysis
4.3. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Egan, B.; O’Connor, P.L.; Zierath, J.R.; O’Gorman, D.J. Time Course Analysis Reveals Gene-Specific Transcript and Protein Kinetics of Adaptation to Short-Term Aerobic Exercise Training in Human Skeletal Muscle. PLoS ONE 2013, 8, e74098. [Google Scholar] [CrossRef] [PubMed]
- Crewther, B.T.; Cook, C.; Cardinale, M.; Weatherby, R.P.; Lowe, T. Two Emerging Concepts for Elite Athletes: The Short-Term Effects of Testosterone and Cortisol on the Neuromuscular System and the Dose-Response Training Role of These Endogenous Hormones. Sports Med. 2011, 41, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.; Zierath, J.R. Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metab. 2013, 17, 162–184. [Google Scholar] [CrossRef]
- Polakovičová, M.; Musil, P.; Laczo, E.; Hamar, D.; Kyselovič, J. Circulating MicroRNAs as Potential Biomarkers of Exercise Response. Int. J. Mol. Sci. 2016, 17, 1553. [Google Scholar] [CrossRef]
- Podgórski, R.; Cieśla, M.; Podgórska, D.; Bajorek, W.; Płonka, A.; Czarny, W.; Trybulski, R.; Król, P. Plasma microRNA-320a as a Potential Biomarker of Physiological Changes during Training in Professional Volleyball Players. J. Clin. Med. 2022, 11, 263. [Google Scholar] [CrossRef]
- Coffey, V.G.; Hawley, J.A. The Molecular Bases of Training Adaptation. Sports Med. 2007, 37, 737–763. [Google Scholar] [CrossRef]
- Soci, U.P.R.; Melo, S.F.S.; Gomes, J.L.P.; Silveira, A.C.; Nóbrega, C.; de Oliveira, E.M. Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression. Adv. Exp. Med. Biol. 2017, 1000, 281–322. [Google Scholar] [CrossRef]
- Widmann, M.; Nieß, A.M.; Munz, B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med. 2019, 49, 509–523. [Google Scholar] [CrossRef]
- Voisin, S.; Eynon, N.; Yan, X.; Bishop, D.J. Exercise Training and DNA Methylation in Humans. Acta Physiol. 2015, 213, 39–59. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, P.; Filardo, G.; Abruzzo, P.M.; Astolfi, A.; Bolotta, A.; Indio, V.; Di Martino, A.; Hofer, C.; Kern, H.; Löfler, S.; et al. Non-Coding RNAs in the Transcriptional Network That Differentiates Skeletal Muscles of Sedentary from Long-Term Endurance- and Resistance-Trained Elderly. Int. J. Mol. Sci. 2021, 22, 1539. [Google Scholar] [CrossRef]
- The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004, 306, 636–640. [CrossRef]
- Walter, N.G. Are Non-Protein Coding RNAs Junk or Treasure? BioEssays 2024, 46, 2300201. [Google Scholar] [CrossRef] [PubMed]
- Good, D.J. Non-Coding RNAs in Human Health and Diseases. Genes 2023, 14, 1429. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.J.; Ballabio, A.; Rupert, J.L.; Lafreniere, R.G.; Grompe, M.; Tonlorenzi, R.; Willard, H.F. A Gene from the Region of the Human X Inactivation Centre Is Expressed Exclusively from the Inactive X Chromosome. Nature 1991, 349, 38–44. [Google Scholar] [CrossRef]
- Iyer, M.K.; Niknafs, Y.S.; Malik, R.; Singhal, U.; Sahu, A.; Hosono, Y.; Barrette, T.R.; Prensner, J.R.; Evans, J.R.; Zhao, S.; et al. The Landscape of Long Noncoding RNAs in the Human Transcriptome. Nat. Genet. 2015, 47, 199–208. [Google Scholar] [CrossRef]
- Bonilauri, B.; Dallagiovanna, B. Long Non-Coding RNAs Are Differentially Expressed After Different Exercise Training Programs. Front. Physiol. 2020, 11, 567614. [Google Scholar] [CrossRef] [PubMed]
- Archacka, K.; Ciemerych, M.A.; Florkowska, A.; Romanczuk, K. Non-Coding RNAs as Regulators of Myogenesis and Postexercise Muscle Regeneration. Int. J. Mol. Sci. 2021, 22, 11568. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Otto, A.; Schmidt, C.; Luke, G.; Allen, S.; Valasek, P.; Muntoni, F.; Lawrence-Watt, D.; Patel, K. Canonical Wnt Signalling Induces Satellite-Cell Proliferation during Adult Skeletal Muscle Regeneration. J. Cell Sci. 2008, 121, 2939–2950. [Google Scholar] [CrossRef]
- Glass, D.J. PI3 Kinase Regulation of Skeletal Muscle Hypertrophy and Atrophy. In Phosphoinositide 3-Kinase in Health and Disease: Volume 1; Rommel, C., Vanhaesebroeck, B., Vogt, P.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 267–278. ISBN 978-3-642-13663-4. [Google Scholar]
- Han, X.H.; Jin, Y.-R.; Seto, M.; Yoon, J.K. A WNT/β-Catenin Signaling Activator, R-Spondin, Plays Positive Regulatory Roles during Skeletal Myogenesis*. J. Biol. Chem. 2011, 286, 10649–10659. [Google Scholar] [CrossRef]
- Zimta, A.-A.; Tigu, A.B.; Braicu, C.; Stefan, C.; Ionescu, C.; Berindan-Neagoe, I. An Emerging Class of Long Non-Coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front. Oncol. 2020, 10, 389. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Q.; Xing, W.; Wang, W. Role of microRNA/lncRNA Intertwined With the Wnt/β-Catenin Axis in Regulating the Pathogenesis of Triple-Negative Breast Cancer. Front. Pharmacol. 2022, 13, 814971. [Google Scholar] [CrossRef]
- Hirose, T.; Virnicchi, G.; Tanigawa, A.; Naganuma, T.; Li, R.; Kimura, H.; Yokoi, T.; Nakagawa, S.; Bénard, M.; Fox, A.H.; et al. NEAT1 Long Noncoding RNA Regulates Transcription via Protein Sequestration within Subnuclear Bodies. Mol. Biol. Cell 2014, 25, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Doerner, S.K.; Reis, E.S.; Leung, E.S.; Ko, J.S.; Heaney, J.D.; Berger, N.A.; Lambris, J.D.; Nadeau, J.H. High-Fat Diet-Induced Complement Activation Mediates Intestinal Inflammation and Neoplasia, Independent of Obesity. Mol. Cancer Res. 2016, 14, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Neubauer, O.; Della Gatta, P.A.; Nosaka, K. Muscle Damage and Inflammation during Recovery from Exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Zhu, Y.; Cao, Y.; Wang, L.; Li, F.; Zhang, Y.; Li, Y.; Zhang, Z.; Luo, J.; et al. The CTCF/LncRNA-PACERR Complex Recruits E1A Binding Protein P300 to Induce Pro-tumour Macrophages in Pancreatic Ductal Adenocarcinoma via Directly Regulating PTGS2 Expression. Clin. Transl. Med. 2022, 12, e654. [Google Scholar] [CrossRef]
- Docherty, S.; Harley, R.; McAuley, J.J.; Crowe, L.A.N.; Pedret, C.; Kirwan, P.D.; Siebert, S.; Millar, N.L. The Effect of Exercise on Cytokines: Implications for Musculoskeletal Health: A Narrative Review. BMC Sports Sci. Med. Rehabil. 2022, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Cieśla, M.; Darmochwał-Kolarz, D.; Pałka, A.; Łagowska, K.; Tabarkiewicz, J.; Kolarz, B. Expression of lncRNAs NEAT1, PACERR, and GAS5 Can Be Associated with Disease Activity in Rheumatoid Arthritis Patients. Pol. Arch. Intern. Med. 2024, 134, 16866. [Google Scholar] [CrossRef]
- Podgórska, D.; Cieśla, M.; Płonka, A.; Bajorek, W.; Czarny, W.; Król, P.; Podgórski, R. Changes in Circulating MicroRNA Levels as Potential Indicators of Training Adaptation in Professional Volleyball Players. Int. J. Mol. Sci. 2024, 25, 6107. [Google Scholar] [CrossRef]
- Ye, Y.; Li, Y.; Wei, Y.; Xu, Y.; Wang, R.; Fu, Z.; Zheng, S.; Zhou, Q.; Zhou, Y.; Chen, R.; et al. Anticancer Effect of HOTTIP Regulates Human Pancreatic Cancer via the Metabotropic Glutamate Receptor 1 Pathway. Oncol. Lett. 2018, 16, 1937–1942. [Google Scholar] [CrossRef]
- Xiao, Z.S.; Long, H.; Zhao, L.; Li, H.X.; Zhang, X.N. LncRNA HOTTIP Promotes Proliferation and Inhibits Apoptosis of Gastric Carcinoma Cells via Adsorbing miR-615-3p. Eur. Rev. 2020, 24, 6692–6698. [Google Scholar]
- Han, L.; Yan, Y.; Zhao, L.; Liu, Y.; Lv, X.; Zhang, L.; Zhao, Y.; Zhao, H.; He, M.; Wei, M. LncRNA HOTTIP Facilitates the Stemness of Breast Cancer via Regulation of miR-148a-3p/WNT1 Pathway. J. Cell. Mol. Med. 2020, 24, 6242–6252. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, Y.; Bai, Y.; Wang, Q.; Bao, J.; Luo, Y.; Guo, Y.; Guo, L. A Long Non-Coding RNA HOTTIP Expression Is Associated with Disease Progression and Predicts Outcome in Small Cell Lung Cancer Patients. Mol. Cancer 2017, 16, 162. [Google Scholar] [CrossRef] [PubMed]
- Kalder, M.; Kyvernitakis, I.; Albert, U.S.; Baier-Ebert, M.; Hadji, P. Effects of Zoledronic Acid versus Placebo on Bone Mineral Density and Bone Texture Analysis Assessed by the Trabecular Bone Score in Premenopausal Women with Breast Cancer Treatment-Induced Bone Loss: Results of the ProBONE II Substudy. Osteoporos. Int. 2015, 26, 353–360. [Google Scholar] [CrossRef]
- Gokal, K.; Wallis, D.; Ahmed, S.; Boiangiu, I.; Kancherla, K.; Munir, F. Effects of a Self-Managed Home-Based Walking Intervention on Psychosocial Health Outcomes for Breast Cancer Patients Receiving Chemotherapy: A Randomised Controlled Trial. Support. Care Cancer 2016, 24, 1139–1166. [Google Scholar] [CrossRef]
- Liao, B.; Chen, R.; Lin, F.; Mai, A.; Chen, J.; Li, H.; Xu, Z.; Dong, S. Long Noncoding RNA HOTTIP Promotes Endothelial Cell Proliferation and Migration via Activation of the Wnt/β-Catenin Pathway. J. Cell. Biochem. 2018, 119, 2797–2805. [Google Scholar] [CrossRef]
- Zeng, X.; Dong, Q.; Liu, Q.; Tan, W.-J.; Liu, X.-D. LncRNA HOTTIP Facilitates Osteogenic Differentiation in Bone Marrow Mesenchymal Stem Cells and Induces Angiogenesis via Interacting with TAF15 to Stabilize DLX2. Exp. Cell Res. 2022, 417, 113226. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Xu, Z.; Chen, L.; Wei, Q.; Huang, Z.; Liu, G.; Li, W.; Wang, J.; Tang, Q.; Pu, J. Long Non-Coding RNA PAARH Promotes Hepatocellular Carcinoma Progression and Angiogenesis via Upregulating HOTTIP and Activating HIF-1α/VEGF Signaling. Cell Death Dis. 2022, 13, 102. [Google Scholar] [CrossRef]
- Chu, Q.; Gu, X.; Zheng, Q.; Guo, Z.; Shan, D.; Wang, J.; Zhu, H. Long Noncoding RNA SNHG4: A Novel Target in Human Diseases. Cancer Cell Int. 2021, 21, 583. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, H.; Jin, J.; Lv, W.; Xu, Z.; Fan, Y.; Zhang, J.; Zuo, B. Long Noncoding RNA Neat1 Modulates Myogenesis by Recruiting Ezh2. Cell Death Dis. 2019, 10, 505. [Google Scholar] [CrossRef]
- Desind, S.Z.; Iacona, J.R.; Yu, C.Y.; Mitrofanova, A.; Lutz, C.S. PACER lncRNA Regulates COX-2 Expression in Lung Cancer Cells. Oncotarget 2022, 13, 291–306. [Google Scholar] [CrossRef]
- Yan, S.; Wang, P.; Wang, J.; Yang, J.; Lu, H.; Jin, C.; Cheng, M.; Xu, D. Long Non-Coding RNA HIX003209 Promotes Inflammation by Sponging miR-6089 via TLR4/NF-κB Signaling Pathway in Rheumatoid Arthritis. Front. Immunol. 2019, 10, 2218. [Google Scholar] [CrossRef]
- Hacker, S.; Keck, J.; Reichel, T.; Eder, K.; Ringseis, R.; Krüger, K.; Krüger, B. Biomarkers in Endurance Exercise: Individualized Regulation and Predictive Value. Transl. Sports Med. 2023, 2023, 6614990. [Google Scholar] [CrossRef]
- Brancaccio, P.; Lippi, G.; Maffulli, N. Biochemical Markers of Muscular Damage. Clin. Chem. Lab. Med. 2010, 48, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Baird, M.F.; Graham, S.M.; Baker, J.S.; Bickerstaff, G.F. Creatine-Kinase- and Exercise-Related Muscle Damage Implications for Muscle Performance and Recovery. J. Nutr. Metab. 2012, 2012, 960363. [Google Scholar] [CrossRef]
- Mougios, V. Reference Intervals for Serum Creatine Kinase in Athletes. Br. J. Sports Med. 2007, 41, 674–678. [Google Scholar] [CrossRef]
- De Revere, J.L.; Clausen, R.D.; Astorino, T.A. Changes in VO2max and Cardiac Output in Response to Short-Term High-Intensity Interval Training in Caucasian and Hispanic Young Women: A Pilot Study. PLoS ONE 2021, 16, e0244850. [Google Scholar] [CrossRef]
- Perry, C.G.R.; Lally, J.; Holloway, G.P.; Heigenhauser, G.J.F.; Bonen, A.; Spriet, L.L. Repeated Transient mRNA Bursts Precede Increases in Transcriptional and Mitochondrial Proteins during Training in Human Skeletal Muscle. J. Physiol. 2010, 588, 4795–4810. [Google Scholar] [CrossRef] [PubMed]
- Murton, A.J.; Billeter, R.; Stephens, F.B.; Des Etages, S.G.; Graber, F.; Hill, R.J.; Marimuthu, K.; Greenhaff, P.L. Transient Transcriptional Events in Human Skeletal Muscle at the Outset of Concentric Resistance Exercise Training. J. Appl. Physiol. Bethesda Md 1985 2014, 116, 113–125. [Google Scholar] [CrossRef]
- Martínez, A.C.; Seco Calvo, J.; Tur Marí, J.A.; Abecia Inchaurregui, L.C.; Orella, E.E.; Biescas, A.P. Testosterone and Cortisol Changes in Professional Basketball Players through a Season Competition. J. Strength Cond. Res. 2010, 24, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.F.; Palao, J.M.; Clemente, F.M. Jump Performance During Official Matches in Elite Volleyball Players: A Pilot Study. J. Hum. Kinet. 2019, 67, 259–269. [Google Scholar] [CrossRef]
- McCall, A.; Wolfberg, A.; Ivarsson, A.; Dupont, G.; Larocque, A.; Bilsborough, J. A Qualitative Study of 11 World-Class Team-Sport Athletes’ Experiences Answering Subjective Questionnaires: A Key Ingredient for ‘Visible’ Health and Performance Monitoring? Sports Med. 2023, 53, 1085–1100. [Google Scholar] [CrossRef] [PubMed]
- Miloski, B.; de Freitas, V.H.; Nakamura, F.Y.; de A Nogueira, F.C.; Bara-Filho, M.G. Seasonal Training Load Distribution of Professional Futsal Players: Effects on Physical Fitness, Muscle Damage and Hormonal Status. J. Strength Cond. Res. 2016, 30, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Horta, T.A.G.; Bara Filho, M.G.; Coimbra, D.R.; Miranda, R.; Werneck, F.Z. Training Load, Physical Performance, Biochemical Markers, and Psychological Stress During a Short Preparatory Period in Brazilian Elite Male Volleyball Players. J. Strength Cond. Res. 2019, 33, 3392–3399. [Google Scholar] [CrossRef] [PubMed]
- Foroni, L.; Wilson, G.; Gerrard, G.; Mason, J.; Grimwade, D.; White, H.E.; de Castro, D.G.; Austin, S.; Awan, A.; Burt, E.; et al. Guidelines for the Measurement of BCR-ABL1 Transcripts in Chronic Myeloid Leukaemia. Br. J. Haematol. 2011, 153, 179–190. [Google Scholar] [CrossRef] [PubMed]
Parameter | Baseline | Endpoint | p-Value | Adjusted |
---|---|---|---|---|
SNHG4 | 0.53 [0.27–0.74] | 1.45 [0.75–4.62] | 0.149 | 0.298 |
SNHG5 | 0.96 ± 0.41 | 0.83 ± 0.55 | 0.214 | 0.285 |
NEAT1 | 1.12 [0.70–1.74] | 1.47 [0.76–1.99] | 0.773 | 0.773 |
HIX003209 | 1.44 [0.94–2.06] | 0.97 [0.81–1.25] | 0.149 | 0.238 |
PACERR | 1.3 [0.7–2.25] | 1.12 [0.71–5.29] | 0.773 | 0.773 |
HOTTIP | 0.3 [0.62–0.63] | 2.02 [1.3–6.57] | 0.009 | 0.024 |
Parameter | Weight | BMI | BMR | FAT% | Fat Mass | VO2 Max. | CK | CK% | CORT |
---|---|---|---|---|---|---|---|---|---|
SNHG4 | 0.27 | 0.31 | 0.06 | 0.69 | 0.57 | −0.33 | 0.09 | −0.12 | 0.24 |
SNHG5 | 0.48 | 0.27 | 0.52 | 0.06 | 0.27 | −0.54 | 0 | 0 | 0.23 |
NEAT1 | −0.37 | −0.44 | −0.32 | −0.24 | −0.28 | 0.11 | −0.21 | −0.13 | 0.18 |
HIX003209 | 0.22 | 0.25 | −0.03 | 0.46 | 0.41 | −0.18 | 0 | −0.31 | 0.62 |
HOTTIP | 0.34 | 0.34 | 0.18 | 0.53 | 0.49 | −0.31 | 0.1 | −0.04 | −0.05 |
PACERR | 0.11 | 0.33 | 0.03 | 0.16 | 0.18 | −0.15 | 0.08 | 0.18 | 0.41 |
Parameter | Weight | BMI | BMR | FAT% | Fat Mass | VO2 Max. | CK | CK% | CORT |
---|---|---|---|---|---|---|---|---|---|
SNHG4 | 0.14 | −0.29 | 0.1 | 0.03 | 0.08 | 0.07 | 0.03 | 0.08 | 0.03 |
SNHG5 | 0.43 | 0.21 | 0.49 | 0.2 | 0.31 | −0.32 | 0.2 | 0.31 | 0.2 |
NEAT1 | 0.34 | −0.01 | 0.27 | 0.42 | 0.49 | −0.38 | 0.42 | 0.49 | 0.42 |
HIX003209 | −0.29 | −0.02 | −0.34 | −0.07 | −0.08 | 0.12 | −0.07 | −0.8 | −0.07 |
HOTTIP | −0.02 | −0.39 | −0.15 | 0.17 | 0.06 | 0.17 | 0.17 | 0.06 | 0.17 |
PACERR | −0.07 | −0.2 | −0.27 | 0.34 | 0.28 | 0.01 | 0.34 | 0.28 | 0.34 |
SNHG4 | SNHG5 | NEAT1 | HIX003209 | HOTTIP | PACERR | |
---|---|---|---|---|---|---|
SNHG4 | 1 | |||||
SNHG5 | −0.18 | 1 | ||||
NEAT1 | −0.12 | 0.02 | 1 | |||
HIX003209 | 0.71 | 0.08 | −0.38 | 1 | ||
HOTTIP | 0.89 | −0.24 | −0.37 | 0.55 | 1 | |
PACERR | 0.37 | −0.16 | −0.4 | 0.59 | 0.38 | 1 |
SNHG4 | SNHG5 | NEAT1 | HIX003209 | HOTTIP | PACERR | |
---|---|---|---|---|---|---|
SNHG4 | 1 | |||||
SNHG5 | 0.41 | 1 | ||||
NEAT1 | 0.83 | 0.49 | 1 | |||
HIX003209 | −0.12 | 0.33 | −0.14 | 1 | ||
HOTTIP | 0.7 | −0.16 | 0.58 | −0.43 | 1 | |
PACERR | 0.48 | −0.11 | 0.52 | 0.26 | 0.59 | 1 |
AUC | p-Value | Youden’s Index | Sensitivity [%] | Specificity [%] | |
---|---|---|---|---|---|
CK | 0.894 | <0.001 | 0.64 | 92 | 73 |
CORT | 0.856 | <0.001 | 0.73 | 100 | 73 |
VO2 max | 0.678 | 0.116 | 0.33 | 100 | 33 |
SNHG4 | 0.785 | 0.011 | 0.75 | 75 | 100 |
SNHG5 | 0.556 | 0.649 | 0.25 | 25 | 100 |
NEAT1 | 0.549 | 0.691 | 0.25 | 42 | 83 |
HIX003209 | 0.712 | 0.055 | 0.5 | 100 | 25 |
HOTTIP | 0.917 | <0.001 | 0.75 | 83 | 92 |
PACERR | 0.59 | 0.429 | 0.33 | 33 | 100 |
Variable | AUC |
---|---|
CK + CORT | 0.932 |
HOTTIP | 0.917 |
HOTTIP + CK | 0.970 |
HOTTIP + CORT | 0.947 |
HOTTIP + CK+CORT | 0.970 |
HOTTIP + SNHG4 | 0.903 |
AUC | p-Value | Youden’s Index | Sensitivity [%] | Specificity [%] | Cut-Off Value | |
---|---|---|---|---|---|---|
CK | 0.894 | <0.001 | 0.64 | 92 | 73 | 126 |
HOTTIP | 0.917 | <0.001 | 0.75 | 83 | 92 | 1.23 |
Combination | 0.97 | <0.001 | 0.83 | 83 | 100 | 2.086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mołoń, A.; Podgórska, D.; Płonka, A.; Bajorek, W.; Czarny, W.; Król, P.; Podgórski, R.; Cieśla, M. Upregulation of HOTTIP and Its Potential Role in Monitoring Exercise Adaptation. Int. J. Mol. Sci. 2025, 26, 8086. https://doi.org/10.3390/ijms26168086
Mołoń A, Podgórska D, Płonka A, Bajorek W, Czarny W, Król P, Podgórski R, Cieśla M. Upregulation of HOTTIP and Its Potential Role in Monitoring Exercise Adaptation. International Journal of Molecular Sciences. 2025; 26(16):8086. https://doi.org/10.3390/ijms26168086
Chicago/Turabian StyleMołoń, Agnieszka, Dominika Podgórska, Artur Płonka, Wojciech Bajorek, Wojciech Czarny, Paweł Król, Rafał Podgórski, and Marek Cieśla. 2025. "Upregulation of HOTTIP and Its Potential Role in Monitoring Exercise Adaptation" International Journal of Molecular Sciences 26, no. 16: 8086. https://doi.org/10.3390/ijms26168086
APA StyleMołoń, A., Podgórska, D., Płonka, A., Bajorek, W., Czarny, W., Król, P., Podgórski, R., & Cieśla, M. (2025). Upregulation of HOTTIP and Its Potential Role in Monitoring Exercise Adaptation. International Journal of Molecular Sciences, 26(16), 8086. https://doi.org/10.3390/ijms26168086