Neutrophil Extracellular Trap Markers in Post Mortem Lung Biopsies from COVID-19 Patients
Abstract
1. Introduction
2. Results
2.1. Epidemiology and Demographical Information
2.2. Serum Tests: Platelets, Leucocytes, Neutrophils, D-Dimer and Neutrophil-Lymphocyte Ratio
2.3. Histopathology Findings
2.4. Comparison of Histopathological Findings
2.5. Histopathological Findings and Duration of Hospitalization from Admission to Death
2.6. Comparative Analysis of the First and Second COVID-19 Waves
2.7. Immunohistochemistry of NETs Markers
2.8. Clinical Information, Serum Results and Histopathology Findings of Patients with Evidence of NETs
3. Discussion
3.1. Histolopathologic Findings, Trombosis and the Role of Neutrophils
3.2. Comparison Between the Two Waves of COVID-19
3.3. NETs, Immunothrombosis and D-Dimer
3.4. Markers of Mortality in COVID-19
3.5. Final Considerations
4. Materials and Methods
4.1. Collection of Post Mortem Samples and Clinical Information
4.2. Immunohistochemistry Assay
4.3. Histopathological Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
COVID-19 | Coronavirus disease 2019 |
CRP | C-reactive protein |
NETs | Neutrophil extracellular traps |
MPO | Myeloperoxidase |
ICU | Intensive care unit |
DAD | Diffuse alveolar damage |
sd | Standard deviation |
Day 1 | First day of hospitalization |
Day F | Final 24 h of hospitalization or prior to death |
PMN | Polymorphonuclear leucocytes |
NLR | Neutrophil-to-lymphocyte ratio |
MN | Mononuclear leucocytes |
Group 1 | Patients from the first wave |
Group 2 | Patients from the second wave |
cit-H3 | Citrullinated histone H3 |
H&E | Hematoxylin–Eosin |
FFPE | Formalin-fixed and paraffin-embedded |
CONEP | National Research Ethics Committee |
RT-qPCR | Reverse Transcription Quantitative Polymerase Chain Reaction |
TMA | Tissue Microarray |
VOC | Variants of concern |
References
- World Health Organization. WHO Coronavirus Disease (COVID-19). Available online: http://covid19.who.int (accessed on 5 August 2025).
- Iftimie, S.; López-Azcona, A.F.; Vallverdú, I.; Hernández-Flix, S.; De Febrer, G.; Parra, S.; Hernández-Aguilera, A.; Riu, F.; Joven, J.; Andreychuk, N.; et al. First and second waves of coronavirus disease-19: A comparative study in hospitalized patients in Reus, Spain. PLoS ONE 2021, 16, e0248029. [Google Scholar] [CrossRef] [PubMed]
- Azkur, A.K.; Akdis, M.; Azkur, D.; Sokolowska, M.; van de Veen, W.; Brüggen, M.C.; O’Mahony, L.; Gao, Y.; Nadeau, K.; Akdis, C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Eur. J. Allergy Clin. Immunol. 2020, 75, 1564–1581. [Google Scholar] [CrossRef]
- Caramaschi, S.; Kapp, M.E.; Miller, S.E.; Eisenberg, R.; Johnson, J.; Epperly, G.; Maiorana, A.; Silvestri, G.; Giannico, G.A. Histopathological findings and clinicopathologic correlation in COVID-19: A systematic review. Mod. Pathol. 2021, 34, 1614–1633. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Dos Santos Miggiolaro, A.F.; da Silva Motta Junior, J.; Busatta Vaz de Paula, C.; Nagashima, S.; Scaranello Malaquias, M.A.; Baena Carstens, L.; Moreno-Amaral, A.N.; Pellegrino Baena, C.; de Noronha, L. Covid-19 cytokine storm in pulmonary tissue: Anatomopathological and immunohistochemical findings. Respir. Med. Case Rep. 2020, 31, 101292. [Google Scholar] [CrossRef]
- Peiris, S.; Mesa, H.; Aysola, A.; Manivel, J.; Toledo, J.; Borges-Sa, M.; Aldighieri, S.; Reveiz, L. Pathological findings in organs and tissues of patients with COVID-19: A systematic review. PLoS ONE 2021, 16, e0250708. [Google Scholar] [CrossRef]
- Calabrese, F.; Pezzuto, F.; Fortarezza, F.; Hofman, P.; Kern, I.; Panizo, A.; von der Thüsen, J.; Timofeev, S.; Gorkiewicz, G.; Lunardi, F. Pulmonary pathology and COVID-19: Lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch. 2020, 477, 359–372. [Google Scholar] [CrossRef]
- Konopka, K.E.; Nguyen, T.; Jentzen, J.M.; Rayes, O.; Schmidt, C.J.; Wilson, A.M.; Farver, C.F.; Myers, J.L. Diffuse alveolar damage (DAD) resulting from coronavirus disease 2019 infection is morphologically indistinguishable from other causes of DAD. Histopathology 2020, 77, 570–578. [Google Scholar] [CrossRef]
- Grosse, C.; Grosse, A.; Salzer, H.J.F.; Dünser, M.W.; Motz, R.; Langer, R. Analysis of cardiopulmonary findings in COVID-19 fatalities: High incidence of pulmonary artery thrombi and acute suppurative bronchopneumonia. Cardiovasc. Pathol. 2020, 49, 107263. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, L.; Leunig, A.; Brambs, S.; Kaiser, R.; Weinberger, T.; Weigand, M.; Muenchhoff, M.; Hellmuth, J.C.; Ledderose, S.; Schulz, H.; et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 2020, 142, 1176–1189. [Google Scholar] [CrossRef]
- Bösmüller, H.; Traxler, S.; Bitzer, M.; Häberle, H.; Raiser, W.; Nann, D.; Frauenfeld, L.; Vogelsberg, A.; Klingel, K.; Fend, F. The evolution of pulmonary pathology in fatal COVID-19 disease: An autopsy study with clinical correlation. Virchows Arch. 2020, 477, 349–357. [Google Scholar] [CrossRef]
- Li, S.; Jiang, L.; Li, X.; Lin, F.; Wang, Y.; Li, B.; Jiang, T.; An, W.; Liu, S.; Liu, H.; et al. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight 2020, 5, e138070. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J. Transl. Med. 2020, 18, 206. [Google Scholar] [CrossRef] [PubMed]
- Szturmowicz, M.; Demkow, U. Neutrophil Extracellular Traps (NETs) in Severe SARS-CoV-2 Lung Disease. Int. J. Mol. Sci. 2021, 22, 8854. [Google Scholar] [CrossRef] [PubMed]
- Potey, P.M.; Rossi, A.G.; Lucas, C.D.; Dorward, D.A. Neutrophils in the initiation and resolution of acute pulmonary inflammation: Understanding biological function and therapeutic potential. J. Pathol. 2019, 247, 672–685. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Desai, J.; Mulay, S.R.; Nakazawa, D.; Anders, H.J. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell Mol. Life Sci. 2016, 73, 2211–2219. [Google Scholar] [CrossRef]
- Manda, A.; Pruchniak, M.P.; Araźna, M.; Demkow, U.A. Neutrophil extracellular traps in physiology and pathology. Cent. Eur. J. Immunol. 2014, 39, 116–121. [Google Scholar] [CrossRef]
- Gould, T.J.; Lysov, Z.; Liaw, P.C. Extracellular DNA and histones: Double-edged swords in immunothrombosis. J. Thromb. Haemost. 2015, 13 (Suppl. 1), S82–S91. [Google Scholar] [CrossRef]
- Nakazawa, D.; Tomaru, U.; Yamamoto, C.; Jodo, S.; Ishizu, A. Abundant neutrophil extracellular traps in thrombus of patient with microscopic polyangiitis. Front. Immunol. 2012, 3, 333. [Google Scholar] [CrossRef]
- Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 2020, 217, e20200652. [Google Scholar] [CrossRef]
- Thierry, A.R.; Roch, B. SARS-CoV2 may evade innate immune response, causing uncontrolled neutrophil extracellular traps formation and multi-organ failure. Clin. Sci. 2020, 134, 1295–1300. [Google Scholar] [CrossRef]
- Tomar, B.; Anders, H.J.; Desai, J.; Mulay, S.R. Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells 2020, 9, 1383. [Google Scholar] [CrossRef] [PubMed]
- Veras, F.P.; Pontelli, M.C.; Silva, C.M.; Toller-Kawahisa, J.E.; de Lima, M.; Nascimento, D.C.; Schneider, A.H.; Caetité, D.; Tavares, L.A.; Paiva, I.M.; et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 2020, 217, e20201129. [Google Scholar] [CrossRef] [PubMed]
- Schurink, B.; Roos, E.; Radonic, T.; Barbe, E.; Bouman, C.S.; de Boer, H.H.; de Bree, G.J.; Bulle, E.B.; Aronica, E.M.; Florquin, S.; et al. Viral presence and immunopathology in patients with lethal COVID-19: A prospective autopsy cohort study. Lancet Microbe 2020, 1, e290–e299. [Google Scholar] [CrossRef]
- Nienhold, R.; Ciani, Y.; Koelzer, V.H.; Tzankov, A.; Haslbauer, J.D.; Menter, T.; Schwab, N.; Henkel, M.; Frank, A.; Zsikla, V.; et al. Two distinct immunopathological profiles in autopsy lungs of COVID-19. Nat. Commun. 2020, 11, 5086. [Google Scholar] [CrossRef] [PubMed]
- Erjefält, J.S.; de Souza Xavier Costa, N.; Jönsson, J.; Cozzolino, O.; Dantas, K.C.; Clausson, C.M.; Siddhuraj, P.; Lindö, C.; Alyamani, M.; Lombardi, S.C.F.S.; et al. Diffuse alveolar damage patterns reflect the immunological and molecular heterogeneity in fatal COVID-19. EBioMedicine 2022, 83, 104229. [Google Scholar] [CrossRef]
- Borczuk, A.C. Pulmonary pathology of COVID-19: A review of autopsy studies. Curr. Opin. Pulm. Med. 2021, 27, 184–192. [Google Scholar] [CrossRef]
- Miggiolaro, A.F.R.S.; da Silva, F.P.G.; Wiedmer, D.B.; Godoy, T.M.; Borges, N.H.; Piper, G.W.; Oricil, A.G.G.; Klein, C.K.; Hlatchuk, E.C.; Dagostini, J.C.H.; et al. COVID-19 and pulmonary angiogenesis: The possible role of hypoxia and hyperinflammation in the overexpression of proteins involved in alveolar vascular dysfunction. Viruses 2023, 15, 706. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Borczuk, A.C.; Salvatore, S.P.; Seshan, S.V.; Patel, S.S.; Bussel, J.B.; Mostyka, M.; Elsoukkary, S.; He, B.; Del Vecchio, C.; Fortarezza, F.; et al. COVID-19 pulmonary pathology: A multi-institutional autopsy cohort from Italy and New York City. Mod. Pathol. 2020, 33, 2156–2168. [Google Scholar] [CrossRef]
- Kyada, H.C.; Bhalara, R.V.; Vadgama, D.K.; Varu, P.R.; Trangadia, M.M.; Manvar, P.J.; Bhuva, S.D. Pathological findings in COVID-19: A conventional autopsy-based study from India. Indian. J. Med. Res. 2022, 155, 178–188. [Google Scholar] [CrossRef]
- Dao, T.L.; Hoang, V.T.; Colson, P.; Lagier, J.C.; Million, M.; Lagier, J.C.; Million, M.; Raoult, D.; Levasseur, A.; Gautret, P. SARS-CoV-2 infectivity and severity of COVID-19 according to SARS-CoV-2 variants: Current evidence. J. Clin. Med. 2021, 10, 2635. [Google Scholar] [CrossRef]
- Faria, N.R.; Mellan, T.A.; Whittaker, C.; Claro, I.M.; Candido, D.D.S.; Mishra, S.; Crispim, M.A.E.; Sales, F.C.S.; Hawryluk, I.; McCrone, J.T.; et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021, 372, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. SARS-CoV-2 Variants. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-surveillance.html (accessed on 20 August 2021).
- Bastos, L.S.; Ranzani, O.T.; Souza, T.M.L.; Hamacher, S.; Bozza, F.A. COVID-19 hospital admissions: Brazil’s first and second waves compared. Lancet Respir. Med. 2021, 9, e82–e83. [Google Scholar] [CrossRef] [PubMed]
- Zeiser, F.A.; Donida, B.; da Costa, C.A.; Ramos, G.O.; Scherer, J.N.; Barcellos, N.T.; Alegretti, A.P.; Ikeda, M.L.R.; Müller, A.P.W.C.; Bohn, H.C.; et al. First and second COVID-19 waves in Brazil: A cross-sectional study of patients’ characteristics related to hospitalization and in-hospital mortality. Lancet Reg. Health Am. 2022, 6, 100107. [Google Scholar] [CrossRef] [PubMed]
- Rede Genômica Fiocruz. Vigilância Genômica do SARS-CoV-2 No Brasil. Dashboard. Available online: https://www.genomahcov.fiocruz.br/dashboards (accessed on 26 May 2022).
- Martins, A.F.; Zavascki, A.P.; Wink, P.L.; Volpato, F.C.Z.; Monteiro, F.L.; Rosset, C.; De-Paris, F.; Ramos, Á.K.; Barth, A.L. Detection of SARS-CoV-2 lineage P.1 in patients from a region with exponentially increasing hospitalization rate, February 2021, Rio Grande do Sul, Southern Brazil. Euro. Surveill. 2021, 26, 2100276. [Google Scholar] [CrossRef]
- Fan, G.; Yang, Z.; Lin, Q.; Zhao, S.; Yang, L.; He, D. Decreased case fatality rate of COVID-19 in the second wave: A study in 53 countries or regions. Transbound. Emerg. Dis. 2021, 68, 213–215. [Google Scholar] [CrossRef]
- Palmieri, L.; Palmer, K.; Lo Noce, C.; Meli, P.; Giuliano, M.; Floridia, M.; Tamburo de Bella, M.; Piccioli, A.; Brusaferro, S.; Onder, G.; et al. Differences in the clinical characteristics of COVID-19 patients who died in hospital during different phases of the pandemic: National data from Italy. Aging Clin. Exp. Res. 2021, 33, 193–199. [Google Scholar] [CrossRef]
- Maccio, U.; Zinkernagel, A.S.; Schuepbach, R.; Probst-Mueller, E.; Frontzek, K.; Brugger, S.D.; Hofmaenner, D.A.; Moch, H.; Varga, Z. Long-Term Persisting SARS-CoV-2 RNA and Pathological Findings: Lessons Learnt From a Series of 35 COVID-19 Autopsies. Front. Med. 2022, 9, 778489. [Google Scholar] [CrossRef]
- Lebourgeois, S.; David, A.; Chenane, H.R.; Granger, V.; Menidjel, R.; Fidouh, N.; Noël, B.; Delelis, O.; Richetta, C.; Charpentier, C.; et al. Differential activation of human neutrophils by SARS-CoV-2 variants of concern. Front. Immunol. 2022, 13, 1010140. [Google Scholar] [CrossRef]
- Plunkard, J.; Mulka, K.; Zhou, R.; Tarwater, P.; Zhong, W.; Lowman, M.; Wong, A.; Pekosz, A.; Villano, J. SARS-CoV-2 variant pathogenesis following primary infection and reinfection in Syrian hamsters. Mbio 2023, 14, e0007823. [Google Scholar] [CrossRef] [PubMed]
- Jeican, I.I.; Inișca, P.; Gheban, D.; Anton, V.; Lazăr, M.; Vică, M.L.; Mironescu, D.; Rebeleanu, C.; Crivii, C.B.; Aluaș, M.; et al. Histopathological Lung Findings in COVID-19 B.1.617.2 SARS-CoV-2 Delta Variant. J. Pers. Med. 2023, 13, 279. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zuo, Y.; Yalavarthi, S.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Woodward, W.; Lezak, S.P.; Lugogo, N.L.; et al. Neutrophil calprotectin identifies severe pulmonary disease in COVID-19. J. Leukoc. Biol. 2021, 109, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Zuo, M.; Yalavarthi, S.; Gockman, K.; Madison, J.A.; Shi, H.; Woodard, W.; Lezak, S.P.; Lugogo, N.L.; Knight, J.S.; et al. Neutrophil extracellular traps and thrombosis in COVID-19. J. Thromb. Thrombolysis 2021, 51, 446–453. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, Y.; Gu, Z.; Huang, C. Neutrophils in COVID-19: Recent insights and advances. Virol. J. 2023, 20, 169. [Google Scholar] [CrossRef]
- Ng, H.; Havervall, S.; Rosell, A.; Aguilera, K.; Parv, K.; von Meijenfeldt, F.A.; Lisman, T.; Mackman, N.; Thålin, C.; Phillipson, M. Circulating markers of neutrophil extracellular traps are of prognostic value in patients with COVID-19. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 988–994. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, L.; Zhang, Y.; Pu, L.; Liu, J.; Li, X.; Chen, Z.; Hao, Y.; Wang, B.; Han, J.; et al. High level of neutrophil extracellular traps correlates with poor prognosis of severe influenza A infection. J. Infect. Dis. 2018, 217, 428–437. [Google Scholar] [CrossRef]
- Middleton, E.A.; He, X.Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.; Loda, M.; et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020, 136, 1169–1179. [Google Scholar] [CrossRef]
- Vanderbeke, L.; Van Mol, P.; Van Herck, Y.; De Smet, F.; Humblet-Baron, S.; Martinod, K.; Antoranz, A.; Arijs, I.; Boeckx, B.; Bosisio, F.M.; et al. Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nat. Commun. 2021, 12, 4117. [Google Scholar] [CrossRef]
- Krinsky, N.; Sizikov, S.; Nissim, S.; Dror, A.; Sas, A.; Prinz, H.; Pri-Or, E.; Perek, S.; Raz-Pasteur, A.; Lejbkowicz, I.; et al. NETosis induction reflects COVID-19 severity and long COVID: Insights from a 2-center patient cohort study in Israel. J. Thromb. Haemost. 2023, 21, 2569–2584. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, A.P.H.; Bub, C.B.; Dametto, A.P.F.; Sakashita, A.M.; Costa, T.H.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps and COVID-19. Hematol. Transfus. Cell Ther. 2021, 43 (Suppl. 1), S512. [Google Scholar] [CrossRef]
- Huckriede, J.; Anderberg, S.B.; Morales, A.; de Vries, F.; Hultström, M.; Bergqvist, A.; Ortiz-Pérez, J.T.; Sels, J.W.; Wichapong, K.; Lipcsey, M.; et al. Evolution of NETosis markers and DAMPs have prognostic value in critically ill COVID-19 patients. Sci. Rep. 2021, 11, 15701. [Google Scholar] [CrossRef]
- Radermecker, C.; Detrembleur, N.; Guiot, J.; Cavalier, E.; Henket, M.; d’Emal, C.; Cataldo, D.; Oury, C.; Delvenne, P.; Marichal, T. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med. 2020, 217, e20201012. [Google Scholar] [CrossRef]
- Shaw, R.J.; Abrams, S.T.; Austin, J.; Taylor, J.M.; Lane, S.; Dutt, T.; Downey, C.; Du, M.; Turtle, L.; Baillie, J.K.; et al. Circulating histones play a central role in COVID-19-associated coagulopathy and mortality. Haematologica 2021, 106, 2493–2498. [Google Scholar] [CrossRef]
- Leppkes, M.; Knopf, J.; Naschberger, E.; Lindemann, A.; Singh, J.; Herrmann, I.; Stürzl, M.; Staats, L.; Mahajan, A.; Schauer, C.; et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine 2020, 58, 102925. [Google Scholar] [CrossRef] [PubMed]
- Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 2012, 10, 136–144. [Google Scholar] [CrossRef]
- Carsana, L.; Sonzogni, A.; Nasr, A.; Rossi, R.S.; Pellegrinelli, A.; Zerbi, P.; Rech, R.; Colombo, R.; Antinori, S.; Corbellino, M.; et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect. Dis. 2020, 20, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Loutsidi, N.E.; Politou, M.; Vlahakos, V.; Korakakis, D.; Kassi, T.; Nika, A.; Pouliakis, A.; Eleftheriou, K.; Balis, E.; Pappas, A.G.; et al. Hypercoagulable Rotational Thromboelastometry During Hospital Stay Is Associated with Post-Discharge DLco Impairment in Patients with COVID-19-Related Pneumonia. Viruses 2024, 16, 1916. [Google Scholar] [CrossRef]
- Todor, S.; Bîrluțiu, V.; Topîrcean, D.; Mihăilă, R. Role of biological markers and CT severity score in predicting mortality in patients with COVID-19: An observational retrospective study. Exp. Ther. Med. 2020, 24, 698. [Google Scholar] [CrossRef]
- Gadotti, A.C.; de Castro Deus, M.; Telles, J.P.; Wind, R.; Goes, M.; Garcia Charello Ossoski, R.; de Pádua, A.M.; de Noronha, L.; Moreno-Amaral, A.; Baena, C.P.; et al. IFN-γ is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection. Virus Res. 2020, 289, 198171. [Google Scholar] [CrossRef]
- Sarkar, S.; Khanna, P.; Singh, A.K. The Impact of Neutrophil-Lymphocyte Count Ratio in COVID-19: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2022, 37, 857–869. [Google Scholar] [CrossRef]
- Papanikolopoulou, A.; Rapti, V.; Alexiou, P.; Charalampous, C.M.; Livanou, M.E.; Sakka, V.; Syrigos, K.N.; Poulakou, G. Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR) as Prognostic Markers of COVID-19 Disease Irrespective of Immunosuppression Status: A Case-Control Retrospective Single-Center Study. Pathogens 2025, 14, 550. [Google Scholar] [CrossRef] [PubMed]
- de Diego, C.; Lasierra, A.B.; López-Vergara, L.; Torralba, L.; Ruiz de Gopegui, P.; Lahoz, R.; Abadía, C.; Godino, J.; Cebollada, A.; Jimeno, B.; et al. What is the actual relationship between neutrophil extracellular traps and COVID-19 severity? A longitudinal study. Respir. Res. 2024, 25, 48. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, S.; Dutra, A.A.; Arantes, M.P.; Zeni, R.C.; Klein, C.K.; de Oliveira, F.C.; Piper, G.W.; Brenny, I.D.; Pereira, M.R.C.; Stocco, R.B.; et al. COVID-19 and Lung Mast Cells: The Kallikrein-Kinin Activation Pathway. Int. J. Mol. Sci. 2022, 23, 1714. [Google Scholar] [CrossRef]
- Vaz de Paula, C.B.; Nagashima, S.; Liberalesso, V.; Collete, M.; da Silva, F.P.G.; Oricil, A.G.G.; Barbosa, G.S.; da Silva, G.V.C.; Wiedmer, D.B.; da Silva Dezidério, F.; et al. COVID-19: Immunohistochemical Analysis of TGF-β Signaling Pathways in Pulmonary Fibrosis. Int. J. Mol. Sci. 2021, 23, 168. [Google Scholar] [CrossRef] [PubMed]
- Gazeau, S.; Deng, X.; Ooi, H.K.; Mostefai, F.; Hussin, J.; Heffernan, J.; Jenner, A.L.; Craig, M. The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions. Immunoinformatics 2023, 9, 100021. [Google Scholar] [CrossRef] [PubMed]
- Pappas, A.G.; Chaliasou, A.L.; Panagopoulos, A.; Dede, K.; Daskalopoulou, S.; Moniem, E.; Polydora, E.; Grigoriou, E.; Psarra, K.; Tsirogianni, A.; et al. Kinetics of Immune Subsets in COVID-19 Patients Treated with Corticosteroids. Viruses 2022, 15, 51. [Google Scholar] [CrossRef]
Clinical Information | Value |
---|---|
Total number of cases | 42 |
Gender—male | 30 (71%) |
Gender—female | 12 (29%) |
Age (years) | 65.6 ± 14.6 a |
From admission to death (days) | 16.6 ± 8.83 a |
Death during the first wave | 24 (57.1%) |
Death during the second wave | 18 (42.9%) |
Variable | Day 1 (n = 42) | Day F (n = 41) |
---|---|---|
Neutrophilia (patients) | 19/42 (45.2%) | 34/41 (82.9%) |
Leukocytosis (patients) | 15/42 (35.7%) | 30/41 (73.1%) |
Thrombocytopenia (patients) | 14/42 (33.3%) | 12/41 (29.3%) |
D-dimer > 500 ng/mL (patients) | 26/30 (86.7%) | 8/8 (100%) |
D-dimer > 1000 ng/mL (patients) | 15/30 (50%) | 7/8 (87.5%) |
PMN Infiltrate | Thrombosis Present | Thrombosis Absent | p-Value |
---|---|---|---|
Absent/Mild (n = 27) | 15 (55.6%) | 12 (44.4%) | 0.04 |
Moderate/Intense (n = 15) | 13 (86.7%) | 2 (13.3%) |
MN Infiltration | Fibrosis Absent/Mild | Fibrosis Moderate/Intense | p-Value |
---|---|---|---|
Absent/Mild | 13 (81.2%) | 3 (18.8%) | <0.01 |
Moderate/Intense | 5 (19.2%) | 21 (80.8%) |
Histopathological Findings | Duration of Hospitalization—From Admission to Death | ||
---|---|---|---|
14 Days or Less (n = 21) | More than 14 Days (n = 21) | ||
Inflammatory infiltrate in interstitial compartment | MN—Absent/Mild | 12 (57%) | 4 (19%) |
MN—Moderate/Intense | 9 (43%) | 17 (81%) | |
PMN—Absent/Mild | 14 (66.7%) | 13 (62%) | |
PMN—Moderate/Intense | 7 (33.3%) | 8 (38%) | |
DAD—phase | DAD—absent | 1 (4.8%) | 0 |
DAD—exudative phase | 10 (47.6%) | 4 (19%) | |
DAD—proliferative phase | 8 (38%) | 6 (28.6%) | |
DAD—fibrotic phase | 2 (9.6%) | 11 (52.4%) | |
Vascular compartment | Thrombi | 8 (38%) | 11 (52.4%) |
Thrombi (≥1 mm) | 4 (19%) | 5 (23.8%) | |
absence of thrombi | 9 (43%) | 5 (23.8%) |
Group 1 (First Wave) n = 24 | Group 2 (Second Wave) n = 18 | p-Value | |
---|---|---|---|
Gender (male) a | 15 (62.5%) | 15 (83.3%) | |
Gender (female) a | 9 (37.5%) | 3 (16.7%) | |
Age (years) b | 71.9 ± 12.4 | 57.2 ± 13.3 | |
Duration of Hospitalization (days) b | 15.8 ± 10.2 | 17.6 ± 6.6 | |
Thrombocytopenia a | |||
Present | 8 (34.8%) | 4 (22.2%) | |
Absent | 15 (65.2%) | 14 (77.8%) | p > 0.333 |
Leukocytosis a | |||
Present | 16 (66.7%) | 14 (77.8%) | p > 0.262 |
Absent | 8 (33.3%) | 4 (22.2%) | |
Neutrophilia a | |||
Present | 19 (79.2%) | 15 (83.3%) | p > 0.679 |
Absent | 5 (20.8%) | 3 (16.7%) | |
NLR b | 22.0 ± 15.4 | 26.6 ± 29.9 (n = 16) | |
MN interstitial infiltrate a | |||
Mild | 10 (41.6%) | 6 (33.3%) | p = 0.174 |
Moderate | 7 (29.2%) | 5 (27.7%) | |
Intense | 7 (29.2%) | 7 (39%) | |
PMN interstitial infiltrate a | |||
Absent | 5 (20.9%) | 1 (5.6%) | p = 0.004 |
Mild | 15 (62.5%) | 6 (33.3%) | |
Moderate | 4 (16.6%) | 10 (55.5%) | |
Intense | 0 | 1 (5.6%) | |
Interstitial fibrosis b | |||
Present | 18 (75%) | 15 (83.3%) | p = 0.708 |
Absent | 6 (25%) | 3 (16.7%) | |
MN alveolar infiltrate a | |||
Absent | 0 | 1 (5.6%) | p = 0.194 |
Mild | 9 (37.5%) | 4 (22.2%) | |
Moderate | 9 (37.5%) | 9 (50%) | |
Intense | 6 (25%) | 4 (22.2%) | |
PMN alveolar infiltrate a | |||
Absent | 8 (33.3%) | 1 (5.6%) | p = 0.0049 |
Mild | 11 (45.8%) | 6 (33.3%) | |
Moderate | 3 (12.5%) | 3 (16.7%) | |
Intense | 2 (8.4%) | 8 (44.4%) | |
Hialine membrane b | |||
Present | 19 (79.1%) | 13 (72.3%) | p = 0.601 |
Absent | 5 (20.9%) | 5 (27.7%) | |
Diffuse alveolar damage a | |||
Absent | 0 | 1 (5.6%) | p = 0.047 |
DAD—exudative phase | 9 (37.5%) | 5 (27.7%) | |
DAD—proliferative phase | 11 (45.8%) | 3 (16.7%) | |
DAD—organization phase | 4 (16.6%) | 9 (50%) | |
Vascular thrombus b | |||
Present | 15 (62.5%) | 13 (72.3%) | p = 0.742 |
Absent | 9 (37.5%) | 5 (27.7%) | |
Thrombus ≥ 1 mm b | |||
Present | 4 (16.6%) | 5 (27.7%) | p = 0.462 |
Absent | 20 (83.4%) | 13 (72.3%) |
D-Dimer Values of Day 1 (n = 30) | First Wave (n = 17) | Second Wave (n = 13) |
---|---|---|
Value > 500 (ng/mL) | 16/17 (94.1%) | 10/13 (76.9%) |
Clinical Information | Value |
---|---|
Number of cases with evidence of NETs | 10 |
Age range (years) | 58.4 ± 11.5 |
Hospitalization range (days) | 18.3 ± 8.4 |
Patients from first wave of COVID-19 | 3 cases (30%) |
Patients from second wave of COVID-19 | 7 cases (70%) |
Microscopic Findings | Value |
Presence of microthrombi | 8 (80%) |
Moderate- intense MN alveolar infiltrate | 10 (100%) |
Moderate- intense PMN aveolar infiltrate | 8 (80%) |
Variables | Day 1 (n = 10) | Day F (n = 9) |
---|---|---|
Thrombocytopenia | 5 (50%) | 2 (22.2%) |
Leukocytosis | 3 (30%) | 9 (100%) |
Neutrophilia | 4 (40%) | 9 (100%) |
Mean Neutrophil Count | 8876/μL | 20,294/μL |
Mean Leukocyte Count | 10,470/μL | 23,200/μL |
D-dimer > 500 ng/mL | – | 5/7 (71.4%) |
NLR | 15.1 ± 12.2 | 26.6 ± 25.2 (n = 8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collete, M.; dos Santos, T.R.; de Araújo, N.; Martins, A.P.C.; Nagashima, S.; Vaz de Paula, C.B.; Machado-Souza, C.; de Noronha, L. Neutrophil Extracellular Trap Markers in Post Mortem Lung Biopsies from COVID-19 Patients. Int. J. Mol. Sci. 2025, 26, 8059. https://doi.org/10.3390/ijms26168059
Collete M, dos Santos TR, de Araújo N, Martins APC, Nagashima S, Vaz de Paula CB, Machado-Souza C, de Noronha L. Neutrophil Extracellular Trap Markers in Post Mortem Lung Biopsies from COVID-19 Patients. International Journal of Molecular Sciences. 2025; 26(16):8059. https://doi.org/10.3390/ijms26168059
Chicago/Turabian StyleCollete, Mariana, Thiago Rodrigues dos Santos, Natan de Araújo, Ana Paula Camargo Martins, Seigo Nagashima, Caroline Busatta Vaz de Paula, Cleber Machado-Souza, and Lucia de Noronha. 2025. "Neutrophil Extracellular Trap Markers in Post Mortem Lung Biopsies from COVID-19 Patients" International Journal of Molecular Sciences 26, no. 16: 8059. https://doi.org/10.3390/ijms26168059
APA StyleCollete, M., dos Santos, T. R., de Araújo, N., Martins, A. P. C., Nagashima, S., Vaz de Paula, C. B., Machado-Souza, C., & de Noronha, L. (2025). Neutrophil Extracellular Trap Markers in Post Mortem Lung Biopsies from COVID-19 Patients. International Journal of Molecular Sciences, 26(16), 8059. https://doi.org/10.3390/ijms26168059