Polymorphic Variants of Neurotrophic Factor Genes in Affective Disorders: Pilot Study
Abstract
1. Introduction
2. Results
2.1. Study of Polymorphic Variants of Neurotrophic Factor Genes in Patients with AD
2.2. Association of Polymorphic Variants of Neurotrophic Factor Genes with Clinical Characteristics of AD
3. Discussion
4. Materials and Methods
4.1. Design
4.2. Examined Groups
4.2.1. Inclusion and Exclusion Criteria
4.2.2. Clinical, Dynamic, and Psychopathological Examination
4.3. Genetic Analysis
- A minor allele frequency (MAF) of at least 5%;
- Availability of information from previous studies on a given SNP;
- Marker localization.
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AD | Affective Disorder |
BD | Bipolar Disorder |
BDNF | Brain-Derived Neurotrophic Factor |
HC | Healthy Control |
MDD | Major Depressive Disorder |
NGF | Nerve Growth Factor |
NRG1 | Neuregulin 1 |
SNP | Single-Nucleotide Polymorphism |
References
- Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell Mol. Neurobiol. 2018, 38, 579–593. [Google Scholar] [CrossRef]
- Chu, C.-S.; Stubbs, B.; Chen, T.-Y.; Tang, C.-H.; Li, D.-J.; Yang, W.-C.; Wu, C.-K.; Carvalho, A.F.; Vieta, E.; Miklowitz, D.J.; et al. The Effectiveness of Adjunct Mindfulness-Based Intervention in Treatment of Bipolar Disorder: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2018, 225, 234–245. [Google Scholar] [CrossRef]
- Ogłodek, E.A.; Just, M.J.; Szromek, A.R.; Araszkiewicz, A. Melatonin and Neurotrophins NT-3, BDNF, NGF in Patients with Varying Levels of Depression Severity. Pharmacol. Rep. 2016, 68, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Elsworth, J.D.; Groman, S.M.; Jentsch, J.D.; Leranth, C.; Redmond, D.E.; Kim, J.D.; Diano, S.; Roth, R.H. Primate Phencyclidine Model of Schizophrenia: Sex-Specific Effects on Cognition, Brain Derived Neurotrophic Factor, Spine Synapses, and Dopamine Turnover in Prefrontal Cortex. Int. J. Neuropsychopharmacol. 2015, 18, pyu048. [Google Scholar] [CrossRef] [PubMed]
- Woo, E.; Sansing, L.H.; Arnsten, A.F.T.; Datta, D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. Chronic Stress 2021, 5. [Google Scholar] [CrossRef] [PubMed]
- Mikhalitskaya, E.V.; Levchuk, L.A. Brain neuroplasticity: Brain-derived neurotrophic factor and protein kinase signaling pathways (literature review). Sib. Bull. Psychiatry Narcology 2022, 3, 5–14. [Google Scholar] [CrossRef]
- Carniel, B.P.; da Rocha, N.S. Brain-Derived Neurotrophic Factor (BDNF) and Inflammatory Markers: Perspectives for the Management of Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 108, 110151. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-Derived Neurotrophic Factor in Alzheimer’s Disease and Its Pharmaceutical Potential. Transl. Neurodegener. 2022, 11, 4. [Google Scholar] [CrossRef]
- Koroleva, E.S.; Tolmachev, I.V.; Alifirova, V.M.; Boiko, A.S.; Levchuk, L.A.; Loonen, A.J.M.; Ivanova, S.A. Serum BDNF’s Role as a Biomarker for Motor Training in the Context of AR-Based Rehabilitation after Ischemic Stroke. Brain Sci. 2020, 10, 623. [Google Scholar] [CrossRef]
- Notaras, M.; van den Buuse, M. Neurobiology of BDNF in Fear Memory, Sensitivity to Stress, and Stress-Related Disorders. Mol. Psychiatry 2020, 25, 2251–2274. [Google Scholar] [CrossRef]
- Antolasic, E.J.; Jaehne, E.J.; van den Buuse, M. Interaction of Brain-Derived Neurotrophic Factor, Exercise, and Fear Extinction: Implications for Post-Traumatic Stress Disorder. Curr. Neuropharmacol. 2024, 22, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Levchuk, L.A.; Meeder, E.M.G.; Roschina, O.V.; Loonen, A.J.M.; Boiko, A.S.; Michalitskaya, E.V.; Epimakhova, E.V.; Losenkov, I.S.; Simutkin, G.G.; Bokhan, N.A.; et al. Exploring Brain Derived Neurotrophic Factor and Cell Adhesion Molecules as Biomarkers for the Transdiagnostic Symptom Anhedonia in Alcohol Use Disorder and Comorbid Depression. Front. Psychiatry 2020, 11, 296. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Fu, X.; Zhang, X.; Zhang, S.; Zhang, H.; Wu, L.; Li, J.; Zhou, L. Association of Plasma Pro-Brain-Derived Neurotrophic Factor (ProBDNF)/Mature Brain-Derived Neurotrophic Factor (MBDNF) Levels with BDNF Gene Val66Met Polymorphism in Alcohol Dependence. Med. Sci. Monit. 2021, 27, e930421. [Google Scholar] [CrossRef] [PubMed]
- Troyan, A.S.; Levada, O.A. The Diagnostic Value of the Combination of Serum Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor-1 for Major Depressive Disorder Diagnosis and Treatment Efficacy. Front. Psychiatry 2020, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, Y.; Yuan, Y. The Combination of Serum BDNF, Cortisol and IFN-Gamma Can Assist the Diagnosis of Major Depressive Disorder. Neuropsychiatr. Dis. Treat. 2021, 17, 2819–2829. [Google Scholar] [CrossRef]
- Ochi, T.; Vyalova, N.M.; Losenkov, I.S.; Levchuk, L.A.; Osmanova, D.Z.; Mikhalitskaya, E.V.; Loonen, A.J.M.; Bosker, F.J.; Simutkin, G.G.; Bokhan, N.A.; et al. Investigating the Potential Role of BDNF and PRL Genotypes on Antidepressant Response in Depression Patients: A Prospective Inception Cohort Study in Treatment-Free Patients. J. Affect. Disord. 2019, 259, 432–439. [Google Scholar] [CrossRef]
- Nieto, R.; Kukuljan, M.; Silva, H. BDNF and Schizophrenia: From Neurodevelopment to Neuronal Plasticity, Learning, and Memory. Front. Psychiatry 2013, 4, 45. [Google Scholar] [CrossRef]
- Dombi, Z.B.; Szendi, I.; Burnet, P.W.J. Brain Derived Neurotrophic Factor and Cognitive Dysfunction in the Schizophrenia-Bipolar Spectrum: A Systematic Review and Meta-Analysis. Front. Psychiatry 2022, 13, 827322. [Google Scholar] [CrossRef]
- Autry, A.E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacol. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef]
- Hirshler, Y.; Doron, R. Neuroplasticity-Related Mechanisms Underlying the Antidepressant-like Effects of Traditional Herbal Medicines. Eur. Neuropsychopharmacol. 2017, 27, 945–958. [Google Scholar] [CrossRef]
- Lin, C.-C.; Huang, T.-L. Brain-Derived Neurotrophic Factor and Mental Disorders. Biomed. J. 2020, 43, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yao, X.; Zhao, F.; Zhao, H.; Cheng, Z.; Yang, W.; Cui, R.; Xu, S.; Li, B. Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast. 2020, 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hacimusalar, Y.; Esel, E. Suggested Biomarkers for Major Depressive Disorder. Noro Psikiyatr. Ars. 2017, 55, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.C.; Fatima, M. Direct and Indirect Evidences of BDNF and NGF as Key Modulators in Depression: Role of Antidepressants Treatment. Int. J. Neurosci. 2019, 129, 283–296. [Google Scholar] [CrossRef]
- Smit, A.J.T.; Wu, G.W.Y.; Rampersaud, R.; Reus, V.I.; Wolkowitz, O.M.; Mellon, S.H. Serum Brain-Derived Neurotrophic Factor, Val66Met Polymorphism and Open-Label SSRI Treatment Response in Major Depressive Disorder. Psychoneuroendocrinology 2024, 165, 107045. [Google Scholar] [CrossRef]
- Shi, Y.; Luan, D.; Song, R.; Zhang, Z. Value of Peripheral Neurotrophin Levels for the Diagnosis of Depression and Response to Treatment: A Systematic Review and Meta-Analysis. Eur. Neuropsychopharmacol. 2020, 41, 40–51. [Google Scholar] [CrossRef]
- Duman, R.S.; Deyama, S.; Fogaça, M.V. Role of BDNF in the Pathophysiology and Treatment of Depression: Activity-dependent Effects Distinguish Rapid-acting Antidepressants. Eur. J. Neurosci. 2021, 53, 126–139. [Google Scholar] [CrossRef]
- Mosiołek, A.; Mosiołek, J.; Jakima, S.; Pięta, A.; Szulc, A. Effects of Antidepressant Treatment on Neurotrophic Factors (BDNF and IGF-1) in Patients with Major Depressive Disorder (MDD). J. Clin. Med. 2021, 10, 3377. [Google Scholar] [CrossRef]
- El Hayek, L.; Khalifeh, M.; Zibara, V.; Abi Assaad, R.; Emmanuel, N.; Karnib, N.; El-Ghandour, R.; Nasrallah, P.; Bilen, M.; Ibrahim, P.; et al. Lactate Mediates the Effects of Exercise on Learning and Memory through SIRT1-Dependent Activation of Hippocampal Brain-Derived Neurotrophic Factor (BDNF). J. Neurosci. 2019, 39, 2369–2382. [Google Scholar] [CrossRef]
- Levchenko, A.; Losenkov, I.S.; Vyalova, N.M.; Simutkin, G.G.; Bokhan, N.A.; Wilffert, B.; Loonen, A.J.; Ivanova, S.A. The Functional Variant Rs334558 of GSK3B Is Associated with Remission in Patients with Depressive Disorders. Pharmgenomics Pers. Med. 2018, 11, 121–126. [Google Scholar] [CrossRef]
- Marshe, V.S.; Islam, F.; Maciukiewicz, M.; Bousman, C.; Eyre, H.A.; Lavretsky, H.; Mulsant, B.H.; Reynolds, C.F.; Lenze, E.J.; Müller, D.J. Pharmacogenetic Implications for Antidepressant Pharmacotherapy in Late-Life Depression: A Systematic Review of the Literature for Response, Pharmacokinetics and Adverse Drug Reactions. Am. J. Geriatr. Psychiatry 2020, 28, 609–629. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, P.; Sun, L.; Guan, X.; Xiu, M.; Zhang, X. The Association between BDNF Levels and Risperidone-Induced Weight Gain Is Dependent on the BDNF Val66Met Polymorphism in Antipsychotic-Naive First Episode Schizophrenia Patients: A 12-Week Prospective Study. Transl. Psychiatry 2021, 11, 458. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, O.Y.; Loonen, A.J.M.; Lang, F.; Toshchakova, V.A.; Boyarko, E.G.; Semke, A.V.; Bokhan, N.A.; Govorin, N.V.; Aftanas, L.I.; Ivanova, S.A. Association Study Indicates a Protective Role of Phosphatidylinositol-4-Phosphate-5-Kinase against Tardive Dyskinesia. Int. J. Neuropsychopharmacol. 2015, 18, pyu098. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Deng, C. BDNF as a Pharmacogenetic Target for Antipsychotic Treatment of Schizophrenia. Neurosci. Lett. 2020, 726, 133870. [Google Scholar] [CrossRef]
- Menezes, I.C.; von Werne Baes, C.; Lacchini, R.; Juruena, M.F. Genetic Biomarkers for Differential Diagnosis of Major Depressive Disorder and Bipolar Disorder: A Systematic and Critical Review. Behav. Brain Res. 2019, 357–358, 29–38. [Google Scholar] [CrossRef]
- Hosang, G.M.; Shiles, C.; Tansey, K.E.; McGuffin, P.; Uher, R. Interaction between Stress and the BDNFVal66Met Polymorphism in Depression: A Systematic Review and Meta-Analysis. BMC Med. 2014, 12, 7. [Google Scholar] [CrossRef]
- Galvez-Contreras, A.Y.; Campos-Ordonez, T.; Lopez-Virgen, V.; Gomez-Plascencia, J.; Ramos-Zuniga, R.; Gonzalez-Perez, O. Growth Factors as Clinical Biomarkers of Prognosis and Diagnosis in Psychiatric Disorders. Cytokine Growth Factor. Rev. 2016, 32, 85–96. [Google Scholar] [CrossRef]
- de Azevedo Cardoso, T.; Mondin, T.C.; Wiener, C.D.; Marques, M.B.; Fucolo, B.d.Á.; Pinheiro, R.T.; de Souza, L.D.M.; da Silva, R.A.; Jansen, K.; Oses, J.P. Neurotrophic Factors, Clinical Features and Gender Differences in Depression. Neurochem. Res. 2014, 39, 1571–1578. [Google Scholar] [CrossRef]
- Qazi, S.R.; Irfan, M.; Ramzan, Z.; Jahanzaib, M.; Khan, M.Z.; Nasir, M.; Shakeel, M.; Khan, I.A. Identification of Putative Genetic Variants in Major Depressive Disorder Patients in Pakistan. Mol. Biol. Rep. 2022, 49, 2283–2292. [Google Scholar] [CrossRef]
- Wiener, C.D.; de Mello Ferreira, S.; Pedrotti Moreira, F.; Bittencourt, G.; de Oliveira, J.F.; Lopez Molina, M.; Jansen, K.; de Mattos Souza, L.D.; Rizzato Lara, D.; Portela, L.V.; et al. Serum Levels of Nerve Growth Factor (NGF) in Patients with Major Depression Disorder and Suicide Risk. J. Affect. Disord. 2015, 184, 245–248. [Google Scholar] [CrossRef]
- Jaiswal, A.; Shreekantiah, U.; Goyal, N. Nerve Growth Factor in Psychiatric Disorders: A Scoping Review. Indian J. Psychol. Med. 2023, 45, 555–564. [Google Scholar] [CrossRef]
- McGeary, J.E.; Gurel, V.; Knopik, V.S.; Spaulding, J.; McMichael, J. Effects of Nerve Growth Factor (NGF), Fluoxetine, and Amitriptyline on Gene Expression Profiles in Rat Brain. Neuropeptides 2011, 45, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Samsom, J.N.; Wong, A.H.C. Schizophrenia and Depression Co-Morbidity: What We Have Learned from Animal Models. Front. Psychiatry 2015, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Ledonne, A.; Mercuri, N.B. On the Modulatory Roles of Neuregulins/ErbB Signaling on Synaptic Plasticity. Int. J. Mol. Sci. 2019, 21, 275. [Google Scholar] [CrossRef]
- Clarke, D.J.; Stuart, J.; McGregor, I.S.; Arnold, J.C. Endocannabinoid Dysregulation in Cognitive and Stress-Related Brain Regions in the Nrg1 Mouse Model of Schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 72, 9–15. [Google Scholar] [CrossRef]
- Abdelaziz, H.A.; Abdelbaki, T.N.; Dean, Y.E.; Assem, S. Is Neuregulin-1 (NRG-1) a Potential Blood Biomarker Linking Depression to Obesity? A Case-Control Study. BMC Psychiatry 2023, 23, 670. [Google Scholar] [CrossRef]
- Ropret, S.; Zupanc, T.; Komel, R.; Videtič Paska, A. Single Nucleotide Polymorphisms in the BDNF Gene and Suicide in the Slovenian Sample. Neurosci. Lett. 2015, 602, 12–16. [Google Scholar] [CrossRef]
- Jenwitheesuk, A.; Pabalan, N.; Tapanadechopone, P.; Jarjanazi, H.; Arunphalungsanti, K.; Tharabenjasin, P. Association of Brain-derived Neurotrophic Factor Polymorphisms With Alcohol Use Disorder: An Updated Meta-Analysis of Genetic Association Studies. Brain Behav. 2025, 15, e70359. [Google Scholar] [CrossRef]
- Norovsambuu, O.; Ganbold, C.; Lkhagvasuren, N.; Jav, S. Synergistic SNP-SNP Interaction of NRG1 and ERBB4 Increases the Risk of Schizophrenia. Gene 2025, 964, 149645. [Google Scholar] [CrossRef]
- Andre, K.; Kampman, O.; Viikki, M.; Setälä-Soikkeli, E.; Illi, A.; Mononen, N.; Lehtimäki, T.; Leinonen, E. BDNF and NRG1 Polymorphisms and Temperament in Selective Serotonin Reuptake Inhibitor-Treated Patients with Major Depression. Acta Neuropsychiatr. 2018, 30, 168–174. [Google Scholar] [CrossRef]
- Losenkov, I.S.; Mulder, N.J.V.; Levchuk, L.A.; Vyalova, N.M.; Loonen, A.J.M.; Bosker, F.J.; Simutkin, G.G.; Boiko, A.S.; Bokhan, N.A.; Wilffert, B.; et al. Association Between BDNF Gene Variant Rs6265 and the Severity of Depression in Antidepressant Treatment-Free Depressed Patients. Front. Psychiatry 2020, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- Shkundin, A.; Halaris, A. Associations of BDNF/BDNF-AS SNPs with Depression, Schizophrenia, and Bipolar Disorder. J. Pers. Med. 2023, 13, 1395. [Google Scholar] [CrossRef] [PubMed]
- Schosser, A.; Fischer-Hansal, D.; Swoboda, M.M.; Ludwig, B.; Carlberg, L.; Swoboda, P.; Kienesberger, K.; Bernegger, A.; Fuxjäger, M.; Zotter, M.; et al. BDNF Gene Polymorphisms Predicting Treatment Response to CBT-Based Rehabilitation of Depression. Eur. Neuropsychopharmacol. 2022, 58, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; He, W.; Liu, D. Functional BDNF Rs7124442 Variant Regulated by MiR-922 Is Associated with Better Short-Term Recovery of Ischemic Stroke. Ther. Clin. Risk Manag. 2019, 15, 1369–1375. [Google Scholar] [CrossRef]
- Domschke, K.; Lawford, B.; Laje, G.; Berger, K.; Young, R.; Morris, P.; Deckert, J.; Arolt, V.; McMahon, F.J.; Baune, B.T. Brain-Derived Neurotrophic Factor (BDNF) Gene: No Major Impact on Antidepressant Treatment Response. Int. J. Neuropsychopharmacol. 2010, 13, 93. [Google Scholar] [CrossRef]
- Musil, R.; Zill, P.; Seemüller, F.; Bondy, B.; Obermeier, M.; Spellmann, I.; Bender, W.; Adli, M.; Heuser, I.; Zeiler, J.; et al. No Influence of Brain-Derived Neurotrophic Factor (BDNF) Polymorphisms on Treatment Response in a Naturalistic Sample of Patients with Major Depression. Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 405–412. [Google Scholar] [CrossRef]
- Calabrò, M.; Mandelli, L.; Crisafulli, C.; Lee, S.-J.; Jun, T.-Y.; Wang, S.-M.; Patkar, A.A.; Masand, P.S.; Benedetti, F.; Han, C.; et al. Neuroplasticity, Neurotransmission and Brain-Related Genes in Major Depression and Bipolar Disorder: Focus on Treatment Outcomes in an Asiatic Sample. Adv. Ther. 2018, 35, 1656–1670. [Google Scholar] [CrossRef]
- Nugraha, B.; Anwar, S.L.; Gutenbrunner, C.; Korallus, C. Polymorphisms of Brain-Derived Neurotrophic Factor Genes Are Associated with Anxiety and Body Mass Index in Fibromyalgia Syndrome Patients. BMC Res. Notes 2020, 13, 402. [Google Scholar] [CrossRef]
- Czira, M.E.; Wersching, H.; Baune, B.T.; Berger, K. Brain-Derived Neurotrophic Factor Gene Polymorphisms, Neurotransmitter Levels, and Depressive Symptoms in an Elderly Population. Age 2012, 34, 1529–1541. [Google Scholar] [CrossRef]
- Williams, J.; Link, M.; Rosenthal, N.; Terman, M. Structured Interview Guide for the Hamilton Depression Rating Scale, Seasonal Affective Disorder Version (SIGH-SAD). 1988. Available online: https://www.researchgate.net/publication/279233846_Structured_Interview_Guide_for_the_Hamilton_Depression_Rating_Scale_Seasonal_Affective_Disorder_Version_SIGH-SAD (accessed on 1 July 2025).
- Hamilton, M. The Assessment of Anxiety States by Rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef]
- Guy, W. Clinical Global Impressions. In ECDEU Assessment Manual for Psychopharmacology; National Institute of Mental Health: Rockville, MD, USA, 1976; pp. 218–222. [Google Scholar]
SNP | Genotypes/Alleles | HC Group; n, (%) | AD Group; n, (%) | OR [95% CI] | χ2 | p |
---|---|---|---|---|---|---|
rs7124442 BDNF | TT | 102 (54.5%) | 127 (55.7%) | 1.05 [0.71–1.55] | 6.465 | 0.039 * |
CT | 70 (37.4%) | 95 (41.7%) | 1.09 [0.73–1.63] | |||
CC | 15 (8%) | 6 (2.6%) | 0.32 [0.12–0.86] | |||
T | 0.733 | 0.765 | 1.19 [0.87–1.63] | 1.176 | 0.278 | |
C | 0.267 | 0.235 | 0.84 [0.61–1.15] | |||
rs11030104 BDNF | AA | 128 (68.8%) | 147 (66.2%) | 0.89 [0.59–1.35] | 0.737 | 0.692 |
AG | 55 (29.6%) | 69 (31.1%) | 1.09 [0.71–1.67] | |||
GG | 3 (1.6%) | 6 (2.7%) | 1.74 [0.43–7.1] | |||
A | 0.836 | 0.818 | 0.88 [0.61–1.27] | 0.480 | 0.489 | |
G | 0.164 | 0.182 | 1.14 [0.79–1.64] | |||
rs7103411 BDNF | TT | 128 (69.9%) | 148 (66.7%) | 0.86 [0.56–1.31] | 1.231 | 0.540 |
CT | 52 (28.4%) | 67 (30.2%) | 1.11 [0.72–1.72] | |||
CC | 3 (1.6%) | 7 (3.2%) | 2.02 [0.51–7.97] | |||
T | 0.842 | 0.818 | 0.84 [0.58–1.22] | 0.810 | 0.368 | |
C | 0.158 | 0.182 | 1.18 [0.82–1.72] | |||
rs6330 NGF | GG | 64 (34%) | 65 (28.6%) | 0.78 [0.51–1.18] | 1.606 | 0.448 |
AG | 94 (50%) | 119 (52.4%) | 1.25 [0.8–1.93] | |||
AA | 30 (16%) | 43 (18.9%) | 1.41 [0.79–2.52] | |||
G | 0.590 | 0.548 | 0.84 [0.64–1.11] | 1.476 | 0.224 | |
A | 0.410 | 0.452 | 1.19 [0.9–1.56] | |||
rs3924999 NRG1 | GG | 75 (42.9%) | 82 (35.8%) | 0.74 [0.5–1.11] | 3.587 | 0.166 |
AG | 88 (50.3%) | 121 (52.8%) | 1.26 [0.83–1.91] | |||
AA | 12 (6.9%) | 26 (11.4%) | 1.98 [0.93–4.2] | |||
G | 0.680 | 0.622 | 0.78 [0.58–1.04] | 2.896 | 0.089 | |
A | 0.320 | 0.378 | 1.29 [0.96–1.73] |
Psychometric Scales | Day of Therapy | CC | CT | TT | χ2 | p |
---|---|---|---|---|---|---|
HARS | upon admission | 15.5 (11.25:26.5) | 17 (11:26) | 19 (14:26) | 3.610 | 0.164 |
on day 14 of therapy | 14.5 (9.25:19.5) | 7 (4.5:12.5) | 10 (7:15) | 9.710 | 0.008 * | |
on day 28 of therapy | 5.5 (2.75:6) | 3 (2:7) | 4 (2:7) | 1.110 | 0.574 | |
SIGH-SAD | upon admission | 21 (13.25:25) | 20 (16:25) | 21 (17:27) | 2.578 | 0.275 |
on day 14 of therapy | 13 (10.25:15.75) | 9 (5.25:12) | 11 (8:14) | 7.893 | 0.019 * | |
on day 28 of therapy | 6 (4.25:7.75) | 4 (2:7) | 4 (2:7) | 2.286 | 0.319 | |
CGI-S | upon admission | 4.5 (4:5.75) | 4 (4:4) | 4 (4:4.75) | 3.923 | 0.141 |
on day 14 of therapy | 3 (3:5) | 3 (3:3) | 3 (3:4) | 3.832 | 0.147 | |
on day 28 of therapy | 2.5 (2:3) | 2 (2:2) | 2 (2:3) | 5.254 | 0.072 |
Psychometric Scales | CC | CT | TT | χ2 | p |
---|---|---|---|---|---|
CGI-S upon admission | 4 (4:4.5) | 4 (4:5) | 4 (4:4) | 0.168 | 0.919 |
CGI-S on day 14 of therapy | 3 (3:3) | 3 (3:3) | 3 (3:4) | 0.369 | 0.832 |
CGI-I on day 14 of therapy | 3 (3:3) | 3 (2:3) | 3 (2:3) | 1.335 | 0.513 |
CGI-S on day 28 of therapy | 2 (2:3.5) | 2 (2:3) | 2 (2:2) | 5.723 | 0.057 |
CGI-I on day 28 of therapy | 2 (1.5:2.5) | 2 (1:2) | 2 (1:2) | 0.832 | 0.660 |
Psychometric Scales | Day of Therapy | AA | AG | GG | χ2 | p |
---|---|---|---|---|---|---|
SIGH-SAD for typical depressive symptoms | upon admission | 16 (14:21.5) | 21.5 (18:26) | 21 (17:26) | 7.969 | 0.019 * |
on day 14 of therapy | 8 (6:10) | 11 (7:13.25) | 11 (8:13) | 4.537 | 0.103 | |
on day 28 of therapy | 4 (3:6) | 4 (2:7) | 4 (2:7) | 0.010 | 0.995 | |
CGI-I | on day 14 of therapy | 3 (2.25:3) | 3 (2:3) | 3 (2:3) | 2.107 | 0.349 |
on day 28 of therapy | 2 (2:2) | 2 (1:2) | 2 (2:2) | 9.680 | 0.008 * |
Psychometric Scales | Day of Therapy | AA | AG | GG | χ2 | p |
---|---|---|---|---|---|---|
SIGH-SAD total | upon admission | 29 (24.5:33.5) | 30 (22:36) | 28 (22:33.5) | 2.123 | 0.346 |
on day 14 of therapy | 15 (12.25:18) | 14 (10.5:18.75) | 13 (9:15) | 5.167 | 0.076 | |
on day 28 of therapy | 7 (3:11) | 6 (3:11) | 6 (3:9) | 1.391 | 0.499 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhalitskaya, E.V.; Vyalova, N.M.; Paderina, D.Z.; Roschina, O.V.; Simutkin, G.G.; Bokhan, N.A.; Ivanova, S.A. Polymorphic Variants of Neurotrophic Factor Genes in Affective Disorders: Pilot Study. Int. J. Mol. Sci. 2025, 26, 7982. https://doi.org/10.3390/ijms26167982
Mikhalitskaya EV, Vyalova NM, Paderina DZ, Roschina OV, Simutkin GG, Bokhan NA, Ivanova SA. Polymorphic Variants of Neurotrophic Factor Genes in Affective Disorders: Pilot Study. International Journal of Molecular Sciences. 2025; 26(16):7982. https://doi.org/10.3390/ijms26167982
Chicago/Turabian StyleMikhalitskaya, Ekaterina V., Natalya M. Vyalova, Diana Z. Paderina, Olga V. Roschina, German G. Simutkin, Nikolay A. Bokhan, and Svetlana A. Ivanova. 2025. "Polymorphic Variants of Neurotrophic Factor Genes in Affective Disorders: Pilot Study" International Journal of Molecular Sciences 26, no. 16: 7982. https://doi.org/10.3390/ijms26167982
APA StyleMikhalitskaya, E. V., Vyalova, N. M., Paderina, D. Z., Roschina, O. V., Simutkin, G. G., Bokhan, N. A., & Ivanova, S. A. (2025). Polymorphic Variants of Neurotrophic Factor Genes in Affective Disorders: Pilot Study. International Journal of Molecular Sciences, 26(16), 7982. https://doi.org/10.3390/ijms26167982