The Expanding Role of Omalizumab: From Food Allergy to Drug Desensitization
Abstract
1. Introduction
Indication | Regulatory Agencies That Have Approved the Indication of Omalizumab | Remarks |
---|---|---|
Allergic Asthma | FDA EMA | FDA: Adults and children 6 years and above; positive SPT results or in vitro reactivity to perennial aeroallergen and insufficient symptom control with inhaled corticosteroids. EMA: Adults and children 6 years and above with positive SPT for aeroallergen (e.g., dust mice, pollen), high frequency of symptoms or awakenings at night, severe symptoms and insufficient symptoms control by inhaled corticosteroids and a long-acting inhaled beta2 agonist. |
Chronic Rhinosinusitis with Nasal Polyps (CRSwNP) | FDA EMA | FDA and EMA: Adults (18 years and above). |
Chronic Spontaneous Urticaria (CSU) | FDA EMA | FDA and EMA: Adults and adolescents 12 years and above, unsuccessful antihistamine treatment. |
Food Allergy and Food Related Anaphylaxis | FDA | Approved by FDA in 2024 as adjunctive therapy aimed at reducing the risk of allergic reactions following accidental allergen exposure; in adults and children over 1 year; omalizumab therapy should be combined with an elimination diet. |
Indication | Remarks | Evidence |
---|---|---|
IgE-related Respiratory Diseases (Except Asthma) |
| No exact guidelines available, low quality of evidence (case reports, studies on small research groups). |
Skin Diseases (Except CSU) |
| Numerous studies have analyzed the use of omalizumab in atopic dermatitis; only a few randomized controlled trials are available. Case reports and anecdotal evidence for other skin diseases (such as BP). |
Drug hypersensitivity reactions (DHRs) |
| No exact guidelines available, low quality of evidence (case reports, studies on small research groups). |
Other Conditions with hypereosinophilia/hyper-IgE/atopic background |
| No exact guidelines available, low quality of evidence (case reports, studies on small research groups). |
2. Food Allergy—The Role of Omalizumab in Food Desensitization
2.1. Biological Treatment of Food Allergy
2.2. Immunotherapy in Food Allergy
2.3. The Role of Omalizumab in Immunotherapy Protocols for Food Allergy
3. Omalizumab in Drug Hypersensitivity: Current State of Knowledge
- Non-allergic (pseudoallergy): e.g., red man syndrome following vancomycin administration;
- Type I: immediate hypersensitivity reactions mediated by IgE antibodies interacting with basophils and mast cells; however, IgG-mediated anaphylaxis has also been reported;
- Type II: antibody-dependent cytotoxic reactions involving IgG and IgM antibodies, such as hemolytic anemia induced by penicillin;
- Type III: immune complex-mediated reactions involving IgG, IgM, and IgA antibodies;
3.1. Chemotherapeutics
3.2. ASA and Other NSAIDs
3.3. Antibiotics
3.4. Insulin
3.5. Other Drugs
3.6. Severe Drug Eruptions—Omalizumab as an Alternative Treatment for DRESS and TEN
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FDA | United States Food and Drug Administration |
CSU | Chronic Idiopathic Urticaria |
AERD | Aspirin-Exacerbated Respiratory Disease |
DHRs | Drug Hypersensitivity Reactions |
AIT | Allergen-Specific Immunotherapy |
References
- Pongdee, T.; Li, J.T. Omalizumab safety concerns. J. Allergy Clin. Immunol. 2025, 155, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Fukutomi, Y.; Mitsui, C.; Kajiwara, K.; Watai, K.; Kamide, Y.; Nakamura, Y.; Hamada, Y.; Tomita, Y.; Sekiya, K.; et al. Omalizumab for Aspirin Hypersensitivity and Leukotriene Overproduction in Aspirin-exacerbated Respiratory Disease. A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2020, 201, 1488–1498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matheu, V.; Franco, A.; Perez, E.; Hernández, M.; Barrios, Y. Omalizumab for drug allergy. J. Allergy Clin. Immunol. 2007, 120, 1471–1472. [Google Scholar] [CrossRef] [PubMed]
- Arasi, S.; Mennini, M.; Cafarotti, A.; Fiocchi, A. Omalizumab as monotherapy for food allergy. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 286–291. [Google Scholar] [CrossRef]
- Zuberbier, T.; Wood, R.A.; Bindslev-Jensen, C.; Fiocchi, A.; Chinthrajah, R.S.; Worm, M.; Deschildre, A.; Fernandez-Rivas, M.; Santos, A.F.; Jaumont, X.; et al. Omalizumab in IgE-Mediated Food Allergy: A Systematic Review and Meta-Analysis. J. Allergy Clin. Immunol. Pract. 2023, 11, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Arnau, A.M.; Manzanares, N.; Podder, I. Recent updates in urticaria. Med. Clin. 2023, 161, 435–444, (In English, Spanish). [Google Scholar] [CrossRef] [PubMed]
- Papacharalampous, G.X.; Constantinidis, J.; Fotiadis, G.; Zhang, N.; Bachert, C.; Katotomichelakis, M. Chronic rhinosinusitis with nasal polyps (CRSwNP) treated with omalizumab, dupilumab, or mepolizumab: A systematic review of the current knowledge towards an attempt to compare agents’ efficacy. Int. Forum Allergy Rhinol. 2024, 14, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Okayama, Y.; Matsumoto, H.; Odajima, H.; Takahagi, S.; Hide, M.; Okubo, K. Roles of omalizumab in various allergic diseases. Allergol. Int. 2020, 69, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Navinés-Ferrer, A.; Serrano-Candelas, E.; Molina-Molina, G.J.; Martín, M. IgE-Related Chronic Diseases and Anti-IgE-Based Treatments. J. Immunol. Res. 2016, 2016, 8163803. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wood, R.A.; Togias, A.; Sicherer, S.H.; Shreffler, W.G.; Kim, E.H.; Jones, S.M.; Leung, D.Y.M.; Vickery, B.P.; Bird, J.A.; Spergel, J.M.; et al. Omalizumab for the Treatment of Multiple Food Allergies. N. Engl. J. Med. 2024, 390, 889–899. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grover, P.; Krummenacher, M.; Loy, T.; Nowak, A.K.; Lucas, M. Omalizumab for management of hypersensitivity reactions to anticancer drugs. Intern. Med. J. 2024, 54, 1396–1400. [Google Scholar] [CrossRef] [PubMed]
- El-Qutob, D. Off-Label Uses of Omalizumab. Clin. Rev. Allergy Immunol. 2016, 50, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Ruano-Zaragoza, M.; Blanca-Lopez, N. Omalizumab and other biologics in drug desensitization. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Roufosse, F.; Kahn, J.E.; Rothenberg, M.E.; Wardlaw, A.J.; Klion, A.D.; Kirby, S.Y.; Gilson, M.J.; Bentley, J.H.; Bradford, E.S.; Yancey, S.W.; et al. Efficacy and safety of mepolizumab in hypereosinophilic syndrome: A phase III, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2020, 146, 1397–1405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761399 (accessed on 15 June 2025).
- European Medicines Agency (EMA). Guideline on Good Pharmacovigilance Practices (GVP) Annex I–Definitions (Rev 2); EMA/876333/2011 Rev 2*; European Medicines Agency (EMA): Amsterdam, The Netherlands, 2013. [Google Scholar]
- Van Norman, G.A. Off-Label Use vs Off-Label Marketing of Drugs: Part 1: Off-Label Use-Patient Harms and Prescriber Responsibilities. JACC Basic Transl Sci. 2023, 8, 224–233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lenk, C.; Duttge, G. Ethical and legal framework and regulation for off-label use: European perspective. Ther. Clin. Risk Manag. 2014, 10, 537–546. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/xolair (accessed on 29 June 2025).
- Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/103976s5245lbl.pdf (accessed on 4 August 2025).
- Tanno, L.K.; Calderon, M.A.; Papadopoulos, N.G.; Sanchez-Borges, M.; Rosenwasser, L.J.; Bousquet, J.; Pawankar, R.; Sisul, J.C.; Cepeda, A.M.; Li, J.; et al. Revisiting Desensitization and Allergen Immunotherapy Concepts for the International Classification of Diseases (ICD)-11. J. Allergy Clin. Immunol. Pract. 2016, 4, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.T.; Huissoon, A.P. Clinical immunology review series: An approach to desensitization. Clin. Exp. Immunol. 2011, 163, 131–146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Celebi Sozener, Z.; Ozdel Ozturk, B.; Cerci, P.; Turk, M.; Gorgulu Akin, B.; Akdis, M.; Altiner, S.; Ozbey, U.; Ogulur, I.; Mitamura, Y.; et al. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 2022, 77, 1418–1449. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bartha, I.; Almulhem, N.; Santos, A.F. Feast for thought: A comprehensive review of food allergy 2021–2023. J. Allergy Clin. Immunol. 2024, 153, 576–594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sampson, H.A.; O’Mahony, L.; Burks, A.W.; Plaut, M.; Lack, G.; Akdis, C.A. Mechanisms of food allergy. J. Allergy Clin. Immunol. 2018, 141, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, A.; Artesani, M.C.; Riccardi, C.; Mennini, M.; Pecora, V.; Fierro, V.; Calandrelli, V.; Dahdah, L.; Valluzzi, R.L. Impact of Omalizumab on Food Allergy in Patients Treated for Asthma: A Real-Life Study. J. Allergy Clin. Immunol. Pract. 2019, 7, 1901–1909.e5. [Google Scholar] [CrossRef] [PubMed]
- Arasi, S.; Cafarotti, A.; Galletta, F.; Panetta, V.; Riccardi, C.; Calandrelli, V.; Fierro, V.; Dahdah, L.; Artesani, M.C.; Valluzzi, R.L.; et al. Omalizumab reduces anaphylactic reactions and allows food introduction in food-allergic in children with severe asthma: An observational study. Allergy 2025, 80, 1074–1085. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wood, R.A.; Chinthrajah, R.S.; Eggel, A.; Bottoli, I.; Gautier, A.; Woisetschlaeger, M.; Tassinari, P.; Altman, P. The rationale for development of ligelizumab in food allergy. World Allergy Organ. J. 2022, 15, 100690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Available online: https://clinicaltrials.gov/study/NCT04984876 (accessed on 16 June 2025).
- Sindher, S.B.; Nadeau, K.C.; Chinthrajah, R.S.; Leflein, J.G.; Bégin, P.; Ohayon, J.A.; Ponda, P.; Wambre, E.; Liu, J.; Khokhar, F.A.; et al. Efficacy and Safety of Dupilumab in Children With Peanut Allergy: A Multicenter, Open-Label, Phase II Study. Allergy 2025, 80, 227–237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Martinis, M.; Sirufo, M.M.; Suppa, M.; Ginaldi, L. New Perspectives in Food Allergy. Int. J. Mol. Sci. 2020, 21, 1474. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, W.; Freeland, D.M.H.; Nadeau, K.C. Food allergy: Immune mechanisms, diagnosis and immunotherapy. Nat. Rev. Immunol. 2016, 16, 751–765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peters, R.L.; Krawiec, M.; Koplin, J.J.; Santos, A.F. Update on food allergy. Pediatr Allergy Immunol. 2021, 32, 647–657. [Google Scholar] [CrossRef]
- Durham, S.R.; Shamji, M.H. Allergen immunotherapy: Past, present and future. Nat. Rev. Immunol. 2023, 23, 317–328. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- PALISADE Group of Clinical Investigators. AR101 Oral Immunotherapy for Peanut Allergy. N. Engl. J. Med. 2018, 379, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Vickery, B.P.; Vereda, A.; Nilsson, C.; du Toit, G.; Shreffler, W.G.; Burks, A.W.; Jones, S.M.; Fernández-Rivas, M.; Blümchen, K.; O’BHourihane, J.; et al. Continuous and Daily Oral Immunotherapy for Peanut Allergy: Results from a 2-Year Open-Label Follow-On Study. J. Allergy Clin. Immunol. Pract. 2021, 9, 1879–1889.e13. [Google Scholar] [CrossRef] [PubMed]
- Greenhawt, M.; Sindher, S.B.; Wang, J.; O’Sullivan, M.; du Toit, G.; Kim, E.H.; Albright, D.; Anvari, S.; Arends, N.; Arkwright, P.D.; et al. Phase 3 Trial of Epicutaneous Immunotherapy in Toddlers with Peanut Allergy. N. Engl. J. Med. 2023, 388, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Bajowala, S.S. Sublingual immunotherapy as an option for effective food allergy treatment. J. Food Allergy 2022, 4, 106–111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wood, R.A.; Kim, J.S.; Lindblad, R.; Nadeau, K.; Henning, A.K.; Dawson, P.; Plaut, M.; Sampson, H.A. A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow’s milk allergy. J. Allergy Clin. Immunol. 2016, 137, 1103–1110.e11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wood, R.; Jones, S.; Dantzer, J.; Sicherer, S.; Wang, J.; Shreffler, W.; Pyle, D.; Kim, E.; Keet, C.; Kulis, M.; et al. Treatment of multi-food allergy with omalizumab compared to omalizumab-facilitated multi-allergen OIT. J. Allergy Clin. Immunol. 2025, 155, AB444. [Google Scholar] [CrossRef]
- Andorf, S.; Purington, N.; Block, W.M.; Long, A.J.; Tupa, D.; Brittain, E.; Rudman Spergel, A.; Desai, M.; Galli, S.J.; Nadeau, K.C.; et al. Anti-IgE treatment with oral immunotherapy in multifood allergic participants: A double-blind, randomised, controlled trial. Lancet Gastroenterol. Hepatol. 2018, 3, 85–94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giavina-Bianchi, B.; Giavina-Bianchi, P. Rapid food desensitization associated with omalizumab before oral immunotherapy. World Allergy Organ. J. 2025, 18, 101032. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nurmatov, U.B.; Lo Scalzo, L.; Galletta, F.; Krasnenkova, M.; Arasi, S.; Ansotegui, I.J.; Tagiyeva-Milne, N.; Fiocchi, A. Biologics in IgE-mediated food allergy: A systematic review and meta-analysis of interventional studies. World Allergy Organ. J. 2025, 18, 101069. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buono, E.V.; Giannì, G.; Scavone, S.; Esposito, S.; Caffarelli, C. Omalizumab and Oral Immunotherapy in IgE-Mediated Food Allergy in Children: A Systematic Review and a Meta-Analysis. Pharmaceuticals 2025, 18, 437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ayats-Vidal, R.; Riera-Rubió, S.; Valdesoiro-Navarrete, L.; García-González, M.; Larramona-Carrera, H.; Cruz, O.A.; Bosque-García, M. Long-term outcome of omalizumab-assisted desensitisation to cow’s milk and eggs in patients refractory to conventional oral immunotherapy: Real-life study. Allergol. Immunopathol. 2022, 50, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, J.; Virkud, Y.; Wang, J.; Sicherer, S.; Groetch, M.; Shreffler, W.; Pyle, D.; Kim, E.; Keet, C.; Kulis, M.; et al. Introduction of Allergenic Foods After Treatment with Omalizumab. J. Allergy Clin. Immunol. 2025, 156, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov/study/NCT04045301 (accessed on 17 June 2025).
- Zuberbier, T.; Muraro, A.; Nurmatov, U.; Arasi, S.; Stevanovic, K.; Anagnostou, A.; Bonaguro, R.; Chinthrajah, S.; Lack, G.; Fiocchi, A.; et al. GA2LEN ANACARE consensus statement: Potential of omalizumab in food allergy management. Clin. Transl. Allergy 2024, 14, e70002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castells, M.C. Practical advances in drug hypersensitivity. J. Allergy Clin. Immunol. Pract. 2014, 2, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Pallardy, M.; Bechara, R.; Whritenour, J.; Mitchell-Ryan, S.; Herzyk, D.; Lebrec, H.; Merk, H.; Gourley, I.; Komocsar, W.J.; Piccotti, J.R.; et al. Drug hypersensitivity reactions: Review of the state of the science for prediction and diagnosis. Toxicol. Sci. 2024, 200, 11–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, S.Y.; Seo, J.; Kang, H.R. Desensitization for the prevention of drug hypersensitivity reactions. Korean J. Intern. Med. 2022, 37, 261–270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sousa-Pinto, B.; Fonseca, J.A.; Gomes, E.R. Frequency of self-reported drug allergy: A systematic review and meta-analysis with meta-regression. Ann. Allergy Asthma Immunol. 2017, 119, 362–373.e2. [Google Scholar] [CrossRef] [PubMed]
- Blanca, M.; Whitaker, P. Editorial: Advances in hypersensitivity drug reactions. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 331–332. [Google Scholar] [CrossRef] [PubMed]
- Böhm, R.; Proksch, E.; Schwarz, T.; Cascorbi, I. Drug Hypersensitivity. Dtsch. Ärzteblatt Int. 2018, 115, 501–512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tian, K.; Lee, H.Y.; Lim, H.B.; Chan, Y.L.; Chong, A.H.; Rama Chandran, S.; Gardner, D.S. Rapid Desensitization for Insulin Allergy in Type 1 Diabetes Using an Insulin Pump: A Case Report and Literature Review. AACE Clin. Case Rep. 2021, 7, 346–349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Penella, J.; Quan, P.; Carvallo, A.; Chopitea, A.; Sala, P.; García Del Barrio, M.A.; Gastaminza, G.; Goikoetxea, M.J. Successful Desensitization to Oxaliplatin After a Single Initial Dose of Omalizumab in a Patient with Elevated IgE Levels. J. Investig. Allergol. Clin. Immunol. 2020, 30, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Benderli Cihan, Y. The place of Omalizumab in the treatment of Carboplatin hypersensitivity. J. BUON 2021, 26, 2205. [Google Scholar] [PubMed]
- Bumbacea, R.S.; Ali, S.; Corcea, S.L.; Spiru, L.; Nitipir, C.; Strambu, V.; Bumbacea, D. Omalizumab for successful chemotherapy desensitisation: What we know so far. Clin. Transl. Allergy 2021, 11, e12086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mishra, S.; Connors, L.; Tugwell, B. Role of omalizumab in insulin hypersensitivity: A case report and review of the literature. Diabet. Med. 2018, 35, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Gemici Karaaslan, H.B.; Karabag Yilmaz, E.; Gulmez, R.; Canpolat, N.; Kiykim, A.; Cokugras, H.C. Omalizumab may facilitate drug desensitization in patients failing standard protocols. Pediatr. Allergy Immunol. 2022, 33, e13783. [Google Scholar] [CrossRef] [PubMed]
- Banerji, A.; Rudders, S.; Clark, S.; Wei, W.; Long, A.A.; Camargo, C.A., Jr. Retrospective study of drug-induced anaphylaxis treated in the emergency department or hospital: Patient characteristics, management, and 1-year follow-up. J. Allergy Clin. Immunol. Pract. 2014, 2, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, Z.; Wang, N.; Xie, X.; Zhu, T.; Wang, Y. A real-world pharmacovigilance study of omalizumab using disproportionality analysis in the FDA adverse drug events reporting system database. Sci. Rep. 2025, 15, 8045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Markman, M.; Kennedy, A.; Webster, K.; Elson, P.; Peterson, G.; Kulp, B.; Belinson, J. Clinical features of hypersensitivity reactions to carboplatin. J. Clin. Oncol. 1999, 17, 1141. [Google Scholar] [CrossRef] [PubMed]
- Vultaggio, A.; Petrella, M.C.; Tomao, F.; Nencini, F.; Mecheri, V.; Marini, A.; Perlato, M.; Vivarelli, E.; De Angelis, C.; Ferrarini, I.; et al. The anti-IgE monoclonal antibody omalizumab as adjuvant treatment in desensitization to carboplatin in patients with ovarian cancer. Gynecol. Oncol. Rep. 2021, 38, 100880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saura Foix, M.P.; Fernandez de Alba Porcel, I.; Garcia Gonzalez, F.; Carretero Anibarro, P.; Blanco Carmona, J.G.; Perez Gimenez, M.R.; Reinares Ten, C.; Juste Picon, S.M.P. Use of omalizumab in carboplatin desensitisation, our experience. Allergy 2016, 71 (Suppl. S102), 505–527. [Google Scholar] [CrossRef]
- Cuevas, C.; Tornero, P.; Garcia-Gutierrez, I.; Rojas, P.; Torrado, I.; Prieto, A. Failure of adjuvant omalizumab in drug desensitization. Allergy 2019, 74, 736. [Google Scholar]
- Quint, T.; Dahm, V.; Ramazanova, D.; Arnoldner, M.A.; Kurz, H.; Janik, S.; Brunner, P.M.; Knerer-Schally, B.; Weninger, W.; Griss, J.; et al. Omalizumab-Induced Aspirin Tolerance in Nonsteroidal Anti-Inflammatory Drug-Exacerbated Respiratory Disease Patients Is Independent of Atopic Sensitization. J. Allergy Clin. Immunol. Pract. 2022, 10, 506–516.e6. [Google Scholar] [CrossRef] [PubMed]
- Busse, W.W. Does IgE Have a Role in Aspirin-exacerbated Respiratory Disease? Am. J. Respir. Crit. Care Med. 2020, 201, 1459–1460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez Rodríguez, E.; Martínez Tadeo, H.A.; Hernández Santana, G.; Iglesias Souto, F.J.; Rodríguez Plata, E.; Barrios Recio, J.; Callero Viera, A. Multitool Approach for High-Risk Aspirin Desensitization in a Pregnant Woman. J. Investig. Allergol. Clin. Immunol. 2022, 32, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Namazy, J.A.; Blais, L.; Andrews, E.B.; Scheuerle, A.E.; Cabana, M.D.; Thorp, J.M.; Umetsu, D.T.; Veith, J.H.; Sun, D.; Kaufman, D.G.; et al. Pregnancy outcomes in the omalizumab pregnancy registry and a disease-matched comparator cohort. J. Allergy Clin. Immunol. 2020, 145, 528–536.e1. [Google Scholar] [CrossRef] [PubMed]
- Aberumand, B.; Jeimy, S. The complexities of insulin allergy: A case and approach. Allergy Asthma Clin. Immunol. 2021, 17, 79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bavbek, S.; Lee, M.J. Subcutaneous Injectable Drugs Hypersensitivity and Desensitization: Insulin and Monoclonal Antibodies. Immunol. Allergy Clin. N. Am. 2017, 37, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Said, R.; Goda, R.; Abdalrahman, I.B.; Erwa, N.H.H. Case report: Insulin desensitization as the only option for managing insulin allergy in a Sudanese patient. Front. Allergy 2023, 4, 1089966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heinzerling, L.; Raile, K.; Rochlitz, H.; Zuberbier, T.; Worm, M. Insulin allergy: Clinical manifestations and management strategies. Allergy 2008, 63, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Léonet, J.; Malaise, J.; Squifflet, J.P. Refractory insulin allergy: Pancreas transplantation or immunosuppressive therapy alone? Transpl. Int. 2010, 23, e39–e40. [Google Scholar] [CrossRef] [PubMed]
- Cavelti-Weder, C.; Muggli, B.; Keller, C.; Babians-Brunner, A.; Biason-Lauber, A.; Donath, M.Y.; Schmid-Grendelmeier, P. Successful use of omalizumab in an inadequately controlled type 2 diabetic patient with severe insulin allergy. Diabetes Care 2012, 35, e41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yong, P.F.; Malik, R.; Arif, S.; Peakman, M.; Amiel, S.; Ibrahim, M.A.; Gough, A. Rituximab and omalizumab in severe, refractory insulin allergy. N. Engl. J. Med. 2009, 360, 1045–1047. [Google Scholar] [CrossRef] [PubMed]
- Falay Gur, T.; Savas Erdogan, S.; Erdemir, V.A.; Doğan, B. Effect of omalizumab use on glucose homeostasis in non-diabetic patients with chronic urticaria. Cutan. Ocul. Toxicol. 2020, 39, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, F.; Liu, X. Targeting histamine in metabolic syndrome: Insights and therapeutic potential. Life Sci. 2024, 358, 123172. [Google Scholar] [CrossRef] [PubMed]
- Radice, A.; Fassio, F.; Meucci, E.; Bormioli, S.; Di Scala, G.; Macchia, D. Omalizumab-adjuvanted desensitization to Comirnaty® in a patient with previous PEG anaphylaxis. Clin. Case Rep. J. 2022, 3, 1–6. [Google Scholar]
- Barreiro-Fernández, E.M.; Gil-Sierra, M.D.; Briceño-Casado, M.D.P.; Martínez-Díaz, C.; Ríos-Sánchez, E. Inclusion of omalizumab in a trastuzumab desensitization protocol. Farm. Hosp. 2022, 46, 199–201. (In English) [Google Scholar] [PubMed]
- Aruanno, A.; Chini, R.; Nucera, E. Efficacy of omalizumab in reducing latex allergy. Postepy Dermatol. Alergol. 2021, 38, 921–923. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leynadier, F.; Doudou, O.; Gaouar, H.; Le Gros, V.; Bourdeix, I.; Guyomarch-Cocco, L.; Trunet, P. Effect of omalizumab in health care workers with occupational latex allergy. J. Allergy Clin. Immunol. 2004, 113, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Smola, A.; Samadzadeh, S.; Müller, L.; Adams, O.; Homey, B.; Albrecht, P.; Meller, S. Omalizumab prevents anaphylactoid reactions to mRNA COVID-19 vaccine. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e743–e745. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nucera, E.; Aruanno, A.; Rizzi, A.; Centrone, M. Latex Allergy: Current Status and Future Perspectives. J. Asthma Allergy 2020, 13, 385–398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parisi, C.A.S.; Kelly, K.J.; Ansotegui, I.J.; Gonzalez-Díaz, S.N.; Bilò, M.B.; Cardona, V.; Park, H.S.; Braschi, M.C.; Macias-Weinmann, A.; Piga, M.A.; et al. Update on latex allergy: New insights into an old problem. World Allergy Organ. J. 2021, 14, 100569. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spataro, F.; Solimando, A.G.; Desantis, V.; Vacca, A.; Di Girolamo, A.; Ria, R. How to manage hypersensitivity reactions to enzyme replacement therapy in lysosomal storage diseases? Orphanet J. Rare Dis. 2025, 20, 287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, X.; Dunham, D.; Sindher, S.B.; Long, A.; Fernandes, A.; Chang, I.; Assa’ad, A.; Pongracic, J.; Spergel, J.M.; Tam, J.; et al. HLA-DR+ regulatory T cells and IL-10 are associated with success or failure of desensitization outcomes. Allergy 2025, 80, 762–774. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Lei, Z.; Xu, C.; Zhao, J.; Kang, X. Current Perspectives on Severe Drug Eruption. Clin. Rev. Allergy Immunol. 2021, 61, 282–298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.; Kang, Y.; He, C.; Jin, H. The systemic treatments for drug reaction with eosinophilia and systemic symptoms (DRESS) beyond corticosteroids. World Allergy Organ. J. 2024, 17, 100935. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uzun, R.; Yalcin, A.D.; Celik, B.; Bulut, T.; Yalcin, A.N. Levofloxacin Induced Toxic Epidermal Necrolysis: Successful Therapy with Omalizumab (Anti-IgE) and Pulse Prednisolone. Am. J. Case Rep. 2016, 17, 666–671. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ben Said, B.; Dupire, G.; Poutrel, S.; Jullien, D. The usefulness of omalizumab in low response to corticosteroids DRESS syndrome: A case series. J. Allergy Clin. Immunol. Pract. 2024, 12, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Björkander, S.; Merid, S.K.; Brodin, D.; Brandström, J.; Fagerström-Billai, F.; van der Heiden, M.; Konradsen, J.R.; Kabesch, M.; van Drunen, C.M.; Golebski, K.; et al. Transcriptome changes during peanut oral immunotherapy and omalizumab treatment. Pediatr. Allergy Immunol. 2022, 33, e13682. [Google Scholar] [CrossRef] [PubMed]
Study Title | Population Size | Population Age | Treatment Protocols | Primary Endpoints | Outcomes |
---|---|---|---|---|---|
Wood et al., 2016 [39] | 57 patients (after exclusion and withdrawal: study group 27 patients, control: 28 patients). | 7–35 years, 7–32 years after applying exclusion criteria and patients’ withdrawal. | Double-blind, placebo controlled trial, patients randomized 1:1, ongoing milk immunotherapy (MOIT) combined with omalizumab (study group) or placebo (control group); MOIT began 2 weeks after a month treatment of omalizumab or placebo. | Double-Blind Placebo Controlled Oral Milk Challenges SPT with milk extract CD63 upregulation in basophil activation test (BAT). | Achieving tolerance with fewer MOIT doses in omalizumab group (median: 198.0 versus 225, p = 0.008), shorter escalation phase (median 25.9 versus 30 weeks, p = 0.01). |
OUtMATCH second phase [40] | 117 patients allergic to peanuts and at least two other foods (cashew, milk, egg, walnut, wheat, hazelnut; allergy confirmed by SPT, sIgE and OFCs) were qualified to study. | 1–55 years. | Double-blind, placebo controlled trial, patients underwent double-blind multi allergen OIT and placebo omalizumab or omalizumab/placebo OIT. | Tolerance of at least 2000 mg protein (cumulative 4044 mg) for all three foods. | 88% omalizumab group and 51% OIT group completed this phase of study. Omalizumab was superior to OIT (success 36% versus 19%, p = 0.031). |
Nurmatov et al., 2025 [43] | 1010 participants. | Not defined precisely (children and adults). | Systematic review and meta-analysis of 11 RCTs, two secondary reports from RCTs and two ongoing clinical trials. | Not applicable | Significant increase in tolerance of allergenic food in groups with omalizumab as monotherapy or omalizumab with OIT compared to control (risk ratio [RR] = 2.035, 299 patients, seven studies) (control treatment-placebo or no intervention). |
The GA2LEN panel [48] | 953 participants. | Not defined precisely (children and adults). | Systematic review and meta-analysis of 36 studies; Assessing guidelines and recommendations for food allergy therapy with omalizumab (OUtMATCH study was also, among others, included in the meta-analysis). | Not applicable | OUtMATCH study presents the highest level of evidence on the efficacy and safety of omalizumab administration in food allergy therapy. There are many other clinical studies, but they are ongoing, and their results have not yet been published and summarized. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosztulska, B.; Rydzyńska, M.; Bartuzi, Z.; Grześk-Kaczyńska, M.; Ukleja-Sokołowska, N. The Expanding Role of Omalizumab: From Food Allergy to Drug Desensitization. Int. J. Mol. Sci. 2025, 26, 7868. https://doi.org/10.3390/ijms26167868
Kosztulska B, Rydzyńska M, Bartuzi Z, Grześk-Kaczyńska M, Ukleja-Sokołowska N. The Expanding Role of Omalizumab: From Food Allergy to Drug Desensitization. International Journal of Molecular Sciences. 2025; 26(16):7868. https://doi.org/10.3390/ijms26167868
Chicago/Turabian StyleKosztulska, Bernadetta, Magdalena Rydzyńska, Zbigniew Bartuzi, Magdalena Grześk-Kaczyńska, and Natalia Ukleja-Sokołowska. 2025. "The Expanding Role of Omalizumab: From Food Allergy to Drug Desensitization" International Journal of Molecular Sciences 26, no. 16: 7868. https://doi.org/10.3390/ijms26167868
APA StyleKosztulska, B., Rydzyńska, M., Bartuzi, Z., Grześk-Kaczyńska, M., & Ukleja-Sokołowska, N. (2025). The Expanding Role of Omalizumab: From Food Allergy to Drug Desensitization. International Journal of Molecular Sciences, 26(16), 7868. https://doi.org/10.3390/ijms26167868