Multi-Layered Analysis of TGF-β Signaling and Regulation via DNA Methylation and microRNAs in Astrocytic Tumors
Abstract
1. Introduction
2. Results
2.1. mRNA Microarray and RT-qPCR Analysis
2.2. In Silico Identification of miRNA Regulators of TGF-β Signaling-Associated Genes
2.3. Methylation Patterns of Selected Genes Related to TGF-β Signaling Pathway in Astrocytic Tumor Samples
2.4. Analysis of Differences in Concentration of SKIL, BMP2, SMAD1, SMAD3, SMAD4, and MAPK1 in Astrocytic Tumor Obtained via ELISA
2.5. Functional Enrichment Analysis (PPI) of TGF-β Signaling-Associated Genes
2.6. Kaplan–Meier Survival Analysis and Cox Proportional Hazards Model for SKIL, BMP2, SMAD1, SMAD3, SMAD4, and MAPK1 in Astrocytic Tumors
3. Discussion
4. Materials and Methods
4.1. Patient Enrollment and Tissue Collection
4.2. Extraction of Total Ribonucleic Acid (RNA) from Tissues
4.3. Gene Expression Microarrays
4.4. miRNA Profiling and Target Prediction
4.5. qRT-PCR Validation
4.6. DNA Methylation Assessment
4.7. Enzyme-Linked Immunosorbent Assay (ELISA) Quantification
4.8. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMP | Bone Morphogenetic Protein |
BMP2 | Bone Morphogenetic Protein 2 |
CNS | Central Nervous System |
CNS WHO | CNS WHO Classification |
Co-SMAD | Common Mediator SMAD |
CpG | Cytosine-phosphate-Guanine |
DOAJ | Directory of Open Access Journals |
ELISA | Enzyme-Linked Immunosorbent Assay |
EMT | Epithelial-to-Mesenchymal Transition |
ERK | Extracellular Signal-Regulated Kinase |
FC | Fold Change |
G-CIMP | Glioma CpG Island Methylator Phenotype |
GO | Gene Ontology |
HR | Hazard Ratio |
IDH | Isocitrate Dehydrogenase |
LD | Linear Dichroism |
MGMT | O6-Methylguanine-DNA Methyltransferase |
miRNA | MicroRNA |
MSP | Methylation-Specific Polymerase Chain Reaction |
mRNA | Messenger RNA |
PCR | Polymerase Chain Reaction |
PPI | Protein–Protein Interaction |
qPCR | Quantitative Polymerase Chain Reaction |
RefSeq | NCBI Reference Sequence Database |
R-SMAD | Receptor-Regulated SMAD |
RT-qPCR | Reverse Transcription Quantitative PCR |
SKIL | SKI-like Proto-Oncogene |
SMAD | Mothers Against Decapentaplegic Homolog |
STRING | Search Tool for the Retrieval of Interacting Genes |
TGF-β | Transforming Growth Factor-Beta |
TLA | Three-Letter Acronym |
WHO | World Health Organization |
MAPK | Mitogen-Activated Protein Kinase |
MAPK1 | Mitogen-Activated Protein Kinase 1 |
Appendix A
ID | mRNA | log2FC G3 Vs. G2 | log2FC G4 Vs. G2 |
---|---|---|---|
206675_s_at | SKIL | 7.43 ± 0.54 | 9.18 ± 0.43 |
215889_at | 7.42 ± 0.43 | 9.54 ± 0.76 | |
217591_at | 7.18 ± 0.87 | 9.71 ± 0.43 | |
225227_at | 7.21 ± 0.32 | 9.81 ± 0.51 | |
210993_s_at | SMAD1 | 5.76 ± 0.87 | 8.18 ± 0.98 |
227798_at | 5.87 ± 0.71 | 7.34 ± 1.02 | |
205396_at | SMAD3 | 6.13 ± 0.77 | 7.81 ± 1.03 |
205397_x_at | 6.21 ± 0.54 | 8.12 ± 0.76 | |
205398_s_at | 6.43 ± 0.91 | 8.43 ± 0.76 | |
202526_at | SMAD4 | 8.16 ± 0.78 | 9.12 ± 0.65 |
202527_s_at | 8.23 ± 0.60 | 9.87 ± 0.17 | |
235725_at | 8.43 ± 0.86 | 9.12 ± 1.09 | |
1565702_at | 8.11 ± 0.81 | 9.54 ± 1.02 | |
1565703_at | 8.71 ± 0.44 | 9.88 ± 1.04 | |
205289_at | BMP2 | 5.11 ± 0.31 | 7.65 ± 0.87 |
205290_s_at | 6.09 ± 0.61 | 7.53 ± 0.56 | |
208351_s_at | MAPK1 | 10.11 ± 0.98 | 14.13 ± 1.23 |
212271_at | 9.98 ± 1.07 | 14.55 ± 1.24 | |
224620_at | 9.73 ± 0.43 | 16.12±1.32 | |
224621_at | 10.16 ± 0.76 | 15.65 ± 0.98 | |
229847_at | 10.54 ± 0.11 | 14.76 ± 1.19 | |
1552263_at | 10.17 ± 0.76 | 14.61 ± 1.25 | |
1552264_a_at | 10.78 ± 0.19 | 14.19 ± 1.28 | |
207530_s_at | CDKN2B | −2.51 ± 0.32 | −4.67 ± 0.65 |
236313_at | −2.32 ± 0.34 | −4.87 ± 0.43 | |
202248_at | E2F4 | 2.01 ± 0.12 | 2.98 ± 0.19 |
38707_r_at | 2.12 ± 0.19 | 3.09 ± 0.23 | |
221586_s_at | E2F5 | 2.19 ± 0.28 | 3.81 ± 0.51 |
203304_at | BAMBI | 3.17 ± 0.32 | 4.87 ± 0.43 |
218468_s_at | GREM1 | 2.18 ± 0.43 | 4.12 ± 0.32 |
218469_at | 2.22 ± 0.65 | 4.18 ± 0.91 | |
206516_at | AMH | 2.02 ± 0.19 | 2.16 ± 0.13 |
204926_at | INHBA | 2.87 ± 0.32 | 4.32 ± 0.16 |
210511_s_at | 2.91 ± 0.31 | 4.51 ± 0.19 | |
227140_at | 2.71 ± 0.54 | 4.81 ± 0.32 | |
205258_at | INHBB | 3.18 ± 0.43 | 3.91 ± 0.39 |
207687_at | INHBC | 2.11 ± 0.71 | 2.12 ± 0.21 |
203075_at | SMAD2 | 3.43 ± 0.19 | 4.32 ± 0.32 |
203076_s_at | 3.32 ± 0.21 | 4.54 ± 0.22 | |
203077_s_at | 3.51 ± 0.32 | 4.32 ± 0.12 | |
226563_at | 3.76 ± 0.31 | 4.38 ± 0.76 | |
235598_at | 3,81 ± 0.19 | 4.44 ± 0.18 | |
239271_at | 3.55 ± 0.37 | 4.79 ± 0.23 | |
205187_at | SMAD5 | 3.43 ± 0.43 | 4.31 ± 0.43 |
205188_s_at | 3.43 ± 0.21 | 4.51 ± 0.32 | |
225219_at | 3.15 ± 0.81 | 4.48 ± 0.19 | |
225223_at | 3.81 ± 0.19 | 4.65±0.23 | |
235451_at | 3.45 ± 0.18 | 4.71 ± 0.43 | |
207069_s_at | SMAD6 | −4.13 ± 0.17 | −4.81 ± 0.18 |
209886_s_at | −4.32 ± 0.31 | −4.65 ± 0.43 | |
209887_at | −4.19 ± 0.54 | −4.71 ± 0.44 | |
213565_s_at | −4.32 ± 0.43 | −4.91 ± 0.23 | |
204790_at | SMAD7 | −3.21 ± 0.51 | −4.13 ± 0.17 |
206320_s_at | SMAD9 | 2.12 ± 0.18 | 2.87 ± 0.32 |
227719_at | 2.10 ± 0.65 | 2.51 ± 0.12 | |
213044_at | ROCK1 | 3.31 ± 0.25 | 4.18 ± 0.19 |
214578_s_at | 3.32 ± 0.32 | 4.56 ± 0.25 | |
230239_at | 3.71 ± 0.54 | 4.32 ± 0.19 | |
235854_x_at | 3.45 ± 0.51 | 4.51 ± 0.23 | |
1561486_at | 3.81 ± 0.67 | 4.44 ± 0.44 | |
205596_s_at | SMURF2 | 3.12 ± 0.71 | 3.98 ± 0.51 |
227489_at | 3.18 ± 0.19 | 4.05 ± 0.62 | |
230820_at | 3.65 ± 0.28 | 4.09 ± 0.71 | |
232020_at | 3.23 ± 0.54 | 3.98 ± 0.32 | |
211518_s_at | BMP4 | −3.91 ± 0.19 | −4.54 ± 0.18 |
205430_at | BMP5 | −3.49 ± 0.31 | −3.71 ± 0.32 |
205431_s_at | −4.01 ± 0.29 | −3.87 ± 0.47 | |
206176_at | BMP6 | −2.19 ± 0.71 | −3.09 ± 0.61 |
215042_at | −2.11 ± 0.18 | −3.32 ± 0.54 | |
241141_at | −2.87 ± 0.15 | −3.21 ± 0.43 | |
209590_at | BMP7 | −4.54 ± 0.71 | −4.98 ± 0.17 |
209591_s_at | −4.32 ± 0.29 | −4.71 ± 0.65 | |
211259_s_at | −4.87 ± 0.34 | −4.76 ± 0.23 | |
211260_at | −4.54 ± 0.71 | −4.87 ± 0.35 | |
209747_at | TGFB3 | 2.76 ± 0.53 | 3.45 ± 0.46 |
References
- Cano-Valdez, A.M.; Sevilla-Lizcano, D.B. Pathological Classification of Brain Tumors. In Principles of Neuro-Oncology; Monroy-Sosa, A., Chakravarthi, S.S., De La Garza-Salazar, J.G., Meneses Garcia, A., Kassam, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 75–105. ISBN 978-3-030-54878-0. [Google Scholar]
- Pienkowski, T.; Kowalczyk, T.; Kretowski, A.; Ciborowski, M. A Review of Gliomas-Related Proteins. Characteristics of Potential Biomarkers. Am. J. Cancer Res. 2021, 11, 3425. [Google Scholar]
- Machnik, G.; Bułdak, Ł.; Zapletal-Pudełko, K.; Grabarek, B.O.; Staszkiewicz, R.; Sobański, D.; Okopień, B. The Impact of Wound-Healing Assay, Phorbol Myristate Acetate (PMA) Stimulation and siRNA-Mediated FURIN Gene Silencing on Endogenous Retroviral ERVW-1 Expression Level in U87-MG Astrocytoma Cells. Adv. Med. Sci. 2024, 69, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hambardzumyan, D. Immune Microenvironment in Glioblastoma Subtypes. Front. Immunol. 2018, 9, 1004. [Google Scholar] [CrossRef] [PubMed]
- Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, S.U. Glioblastoma Multiforme: A Review of Its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac. J. Cancer Prev. 2017, 18, 3–9. [Google Scholar] [CrossRef]
- Reifenberger, G.; Wirsching, H.-G.; Knobbe-Thomsen, C.B.; Weller, M. Advances in the Molecular Genetics of Gliomas—Implications for Classification and Therapy. Nat. Rev. Clin. Oncol. 2017, 14, 434–452. [Google Scholar] [CrossRef]
- Bale, T.A.; Rosenblum, M.K. The 2021 WHO Classification of Tumors of the Central Nervous System: An Update on Pediatric Low-grade Gliomas and Glioneuronal Tumors. Brain Pathol. 2022, 32, e13060. [Google Scholar] [CrossRef]
- Horbinski, C.; Berger, T.; Packer, R.J.; Wen, P.Y. Clinical Implications of the 2021 Edition of the WHO Classification of Central Nervous System Tumours. Nat. Rev. Neurol. 2022, 18, 515–529. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Sokolenko, A.P.; Imyanitov, E.N. Molecular Diagnostics in Clinical Oncology. Front. Mol. Biosci. 2018, 5, 76. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Barthel, F.P.; Malta, T.M.; Sabedot, T.S.; Salama, S.R.; Murray, B.A.; Morozova, O.; Newton, Y.; Radenbaugh, A.; Pagnotta, S.M.; et al. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell 2016, 164, 550–563. [Google Scholar] [CrossRef]
- Radke, J.; Koch, A.; Pritsch, F.; Schumann, E.; Misch, M.; Hempt, C.; Lenz, K.; Löbel, F.; Paschereit, F.; Heppner, F.L.; et al. Predictive MGMT Status in a Homogeneous Cohort of IDH Wildtype Glioblastoma Patients. Acta Neuropathol. Commun. 2019, 7, 89. [Google Scholar] [CrossRef]
- Labreche, K.; Kinnersley, B.; Berzero, G.; Di Stefano, A.L.; Rahimian, A.; Detrait, I.; Marie, Y.; Grenier-Boley, B.; Hoang-Xuan, K.; Delattre, J.-Y.; et al. Diffuse Gliomas Classified by 1p/19q Co-Deletion, TERT Promoter and IDH Mutation Status Are Associated with Specific Genetic Risk Loci. Acta Neuropathol. 2018, 135, 743–755. [Google Scholar] [CrossRef]
- Cekanaviciute, E.; Dietrich, H.K.; Axtell, R.C.; Williams, A.M.; Egusquiza, R.; Wai, K.M.; Koshy, A.A.; Buckwalter, M.S. Astrocytic TGF-β Signaling Limits Inflammation and Reduces Neuronal Damage during Central Nervous System Toxoplasma Infection. J. Immunol. 2014, 193, 139–149. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.; Wang, W.; Zhang, B.; Yu, X.; Shi, S. Epigenetic Regulation in the Tumor Microenvironment: Molecular Mechanisms and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 210. [Google Scholar] [CrossRef]
- Wu, Q.; Berglund, A.E.; Etame, A.B. The Impact of Epigenetic Modifications on Adaptive Resistance Evolution in Glioblastoma. Int. J. Mol. Sci. 2021, 22, 8324. [Google Scholar] [CrossRef]
- Dexheimer, P.J.; Cochella, L. MicroRNAs: From Mechanism to Organism. Front. Cell Dev. Biol. 2020, 8, 409. [Google Scholar] [CrossRef] [PubMed]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An Overview of microRNAs: Biology, Functions, Therapeutics, and Analysis Methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.; Thakur, N. Epigenetic Regulation of TGF-β and Vice Versa in Cancers—A Review on Recent Developments. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2024, 1879, 189219. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Lee, K.; Kim, E.E.; Kim, S.-I.; Park, S.-H. Brain Tumor Classification by Methylation Profile. J. Korean Med. Sci. 2023, 38, e356. [Google Scholar] [CrossRef]
- Ahuja, S.; Zaheer, S. Multifaceted TGF-β Signaling, a Master Regulator: From Bench-to-Bedside, Intricacies, and Complexities. Cell Biol. Int. 2024, 48, 87–127. [Google Scholar] [CrossRef]
- Galassi, C.; Esteller, M.; Vitale, I.; Galluzzi, L. Epigenetic Control of Immunoevasion in Cancer Stem Cells. Trends Cancer 2024, 10, 1052–1071. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhou, G.; Hu, W. Epigenetic Regulation of TGF-β Pathway and Its Role in Radiation Response. Int. J. Radiat. Biol. 2024, 100, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Kurowska, N.; Strzalka-Mrozik, B.; Madej, M.; Pająk, K.; Kruszniewska-Rajs, C.; Kaspera, W.; Gola, J.M. Differences in the Expression Patterns of TGFβ Isoforms and Associated Genes in Astrocytic Brain Tumors. Cancers 2022, 14, 1876. [Google Scholar] [CrossRef] [PubMed]
- Boroń, D.; Zmarzły, N.; Wierzbik-Strońska, M.; Rosińczuk, J.; Mieszczański, P.; Grabarek, B.O. Recent Multiomics Approaches in Endometrial Cancer. Int. J. Mol. Sci. 2022, 23, 1237. [Google Scholar] [CrossRef]
- Fu, Y.; Tao, J.; Liu, T.; Liu, Y.; Qiu, J.; Su, D.; Wang, R.; Luo, W.; Cao, Z.; Weng, G.; et al. Unbiasedly Decoding the Tumor Microenvironment with Single-Cell Multiomics Analysis in Pancreatic Cancer. Mol. Cancer 2024, 23, 140. [Google Scholar] [CrossRef]
- Li, L.; Bai, L.; Lin, H.; Dong, L.; Zhang, R.; Cheng, X.; Liu, Z.; Ouyang, Y.; Ding, K. Multiomics Analysis of Tumor Mutational Burden across Cancer Types. Comput. Struct. Biotechnol. J. 2021, 19, 5637–5646. [Google Scholar] [CrossRef]
- Galozzi, P.; Bindoli, S.; Doria, A.; Sfriso, P. The Revisited Role of Interleukin-1 Alpha and Beta in Autoimmune and Inflammatory Disorders and in Comorbidities. Autoimmun. Rev. 2021, 20, 102785. [Google Scholar] [CrossRef]
- Nigam, M.; Mishra, A.P.; Deb, V.K.; Dimri, D.B.; Tiwari, V.; Bungau, S.G.; Bungau, A.F.; Radu, A.-F. Evaluation of the Association of Chronic Inflammation and Cancer: Insights and Implications. Biomed. Pharmacother. 2023, 164, 115015. [Google Scholar] [CrossRef]
- Michels, N.; van Aart, C.; Morisse, J.; Mullee, A.; Huybrechts, I. Chronic Inflammation towards Cancer Incidence: A Systematic Review and Meta-Analysis of Epidemiological Studies. Crit. Rev. Oncol./Hematol. 2021, 157, 103177. [Google Scholar] [CrossRef]
- Basheer, A.S.; Abas, F.; Othman, I.; Naidu, R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers 2021, 13, 4226. [Google Scholar] [CrossRef]
- Skora, K.; Strojny, D.; Sobanski, D.; Staszkiewicz, R.; Brys, K.; Gogol, P.; Bereza, K.; Masternak, M.; Grabarek, B.O. Multi-Omics Profiling of TGF-β Isoforms and Regulatory miRNAs in Astrocytic Tumors Reveals TGF-β-3 as a Prognostic Biomarker. Front. Oncol. 2025, 15, 1592685. [Google Scholar] [CrossRef] [PubMed]
- Boye, A. A Cytokine in Turmoil: Transforming Growth Factor Beta in Cancer. Biomed. Pharmacother. 2021, 139, 111657. [Google Scholar] [CrossRef] [PubMed]
- Golán-Cancela, I.; Caja, L. The TGF-β Family in Glioblastoma. Int. J. Mol. Sci. 2024, 25, 1067. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Massagué, J. TGF-β in Developmental and Fibrogenic EMTs. Semin. Cancer Biol. 2022, 86, 136–145. [Google Scholar] [CrossRef]
- Wang, X.; Eichhorn, P.J.A.; Thiery, J.P. TGF-β, EMT, and Resistance to Anti-Cancer Treatment. Semin. Cancer Biol. 2023, 97, 1–11. [Google Scholar] [CrossRef]
- Zhou, K.; Zhao, Z.; Li, S.; Liu, Y.; Li, G.; Jiang, T. A New Glioma Grading Model Based on Histopathology and Bone Morphogenetic Protein 2 mRNA Expression. Sci. Rep. 2020, 10, 18420. [Google Scholar] [CrossRef]
- Rampazzo, E.; Dettin, M.; Maule, F.; Scabello, A.; Calvanese, L.; D’Auria, G.; Falcigno, L.; Porcù, E.; Zamuner, A.; Della Puppa, A.; et al. A Synthetic BMP-2 Mimicking Peptide Induces Glioblastoma Stem Cell Differentiation. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2282–2292. [Google Scholar] [CrossRef]
- Zou, M.-L.; Chen, Z.-H.; Teng, Y.-Y.; Liu, S.-Y.; Jia, Y.; Zhang, K.-W.; Sun, Z.-L.; Wu, J.-J.; Yuan, Z.-D.; Feng, Y.; et al. The Smad Dependent TGF-β and BMP Signaling Pathway in Bone Remodeling and Therapies. Front. Mol. Biosci. 2021, 8, 593310. [Google Scholar] [CrossRef]
- Miao, X.; Yuan, J.; Wu, J.; Zheng, J.; Zheng, W.; Wang, F.; Wang, C.; Li, X.; Liu, S.; Shi, Z.; et al. Bone Morphogenetic Protein-2 Promotes Osteoclasts-Mediated Osteolysis via Smad1 and P65 Signaling Pathways. Spine 2021, 46, E234–E242. [Google Scholar] [CrossRef]
- Jing, N.; Gao, W.-Q.; Fang, Y.-X. Regulation of Formation, Stemness and Therapeutic Resistance of Cancer Stem Cells. Front. Cell Dev. Biol. 2021, 9, 641498. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, K.; Xi, Q. BMP Signaling in Cancer Stemness and Differentiation. Cell Regen. 2023, 12, 37. [Google Scholar] [CrossRef]
- Ganjoo, S.; Puebla-Osorio, N.; Nanez, S.; Hsu, E.; Voss, T.; Barsoumian, H.; Duong, L.K.; Welsh, J.W.; Cortez, M.A. Bone Morphogenetic Proteins, Activins, and Growth and Differentiation Factors in Tumor Immunology and Immunotherapy Resistance. Front. Immunol. 2022, 13, 1033642. [Google Scholar] [CrossRef]
- Abdulmawjood, B.; Costa, B.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Genetic Biomarkers in Chronic Myeloid Leukemia: What Have We Learned So Far? Int. J. Mol. Sci. 2021, 22, 12516. [Google Scholar] [CrossRef]
- Heider, T.R.; Lyman, S.; Schoonhoven, R.; Behrns, K.E. Ski Promotes Tumor Growth through Abrogation of Transforming Growth Factor-Beta Signaling in Pancreatic Cancer. Ann. Surg. 2007, 246, 61–68. [Google Scholar] [CrossRef]
- Kawamura, E.; Matsubara, T.; Daikoku, A.; Deguchi, S.; Kinoshita, M.; Yuasa, H.; Urushima, H.; Odagiri, N.; Motoyama, H.; Kotani, K.; et al. Suppression of Intrahepatic Cholangiocarcinoma Cell Growth by SKI via Upregulation of the CDK Inhibitor P21. FEBS Open Bio 2022, 12, 2122–2135. [Google Scholar] [CrossRef]
- Liao, H.-Y.; Da, C.-M.; Wu, Z.-L.; Zhang, H.-H. Ski: Double Roles in Cancers. Clin. Biochem. 2021, 87, 1–12. [Google Scholar] [CrossRef]
- Tavleeva, M.M.; Belykh, E.S.; Rybak, A.V.; Rasova, E.E.; Chernykh, A.A.; Ismailov, Z.B.; Velegzhaninov, I.O. Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants 2022, 11, 2316. [Google Scholar] [CrossRef]
- Liu, H.; Tang, T. MAPK Signaling Pathway-Based Glioma Subtypes, Machine-Learning Risk Model, and Key Hub Proteins Identification. Sci. Rep. 2023, 13, 19055. [Google Scholar] [CrossRef]
- Aashaq, S.; Batool, A.; Mir, S.A.; Beigh, M.A.; Andrabi, K.I.; Shah, Z.A. TGF-β Signaling: A Recap of SMAD-Independent and SMAD-Dependent Pathways. J. Cell Physiol. 2022, 237, 59–85. [Google Scholar] [CrossRef]
- Turati, M.; Mousset, A.; Issa, N.; Turtoi, A.; Ronca, R. TGF-β Mediated Drug Resistance in Solid Cancer. Cytokine Growth Factor. Rev. 2023, 71–72, 54–65. [Google Scholar] [CrossRef]
- Papa, S.; Choy, P.M.; Bubici, C. The ERK and JNK Pathways in the Regulation of Metabolic Reprogramming. Oncogene 2019, 38, 2223–2240. [Google Scholar] [CrossRef]
- Strickland, M.; Stoll, E.A. Metabolic Reprogramming in Glioma. Front. Cell Dev. Biol. 2017, 5, 43. [Google Scholar] [CrossRef]
- Ouellette, M.M.; Zhou, S.; Yan, Y. Cell Signaling Pathways That Promote Radioresistance of Cancer Cells. Diagnostics 2022, 12, 656. [Google Scholar] [CrossRef]
- Hamosh, A.; Scott, A.F.; Amberger, J.; Valle, D.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM). Hum. Mutat. 2000, 15, 57–61. [Google Scholar] [CrossRef]
- Jean-Quartier, C.; Jeanquartier, F.; Holzinger, A. Open Data for Differential Network Analysis in Glioma. Int. J. Mol. Sci. 2020, 21, 547. [Google Scholar] [CrossRef]
- Hao, J.; Cao, Y.; Yu, H.; Zong, L.; An, R.; Xue, Y. Effect of MAP3K8 on Prognosis and Tumor-Related Inflammation in Renal Clear Cell Carcinoma. Front. Genet. 2021, 12, 674613. [Google Scholar] [CrossRef]
- Chiu, C.-Y.; Willis-Owen, S.A.G.; Wong, K.C.C.; Farrow, S.N.; Cookson, W.O.C.; Moffatt, M.F.; Zhang, Y. MAP3K8 Is a Potential Therapeutic Target in Airway Epithelial Inflammation. J. Inflamm. 2024, 21, 27. [Google Scholar] [CrossRef]
- Gianì, F.; Russo, G.; Pennisi, M.; Sciacca, L.; Frasca, F.; Pappalardo, F. Computational Modeling Reveals MAP3K8 as Mediator of Resistance to Vemurafenib in Thyroid Cancer Stem Cells. Bioinformatics 2019, 35, 2267–2275. [Google Scholar] [CrossRef]
- Weng, J.Y.; Salazar, N. DNA Methylation Analysis Identifies Patterns in Progressive Glioma Grades to Predict Patient Survival. Int. J. Mol. Sci. 2021, 22, 1020. [Google Scholar] [CrossRef]
- Ferreyra Vega, S.; Olsson Bontell, T.; Corell, A.; Smits, A.; Jakola, A.S.; Carén, H. DNA Methylation Profiling for Molecular Classification of Adult Diffuse Lower-Grade Gliomas. Clin. Epigenetics 2021, 13, 102. [Google Scholar] [CrossRef]
- Waha, A.; Rodrigues, F.J.; Waha, A.; Meyer-Puttlitz, B.; Cavenee, W.K.; Huang, T.H.-M.; Wiestler, O.D.; Yan, P.S. Methylation Profiling Identifies Epigenetic Markers for High-Grade Gliomas. Cancer Genom. Proteom. 2004, 1, 209–214. [Google Scholar]
- de Souza, C.F.; Sabedot, T.S.; Malta, T.M.; Stetson, L.; Morozova, O.; Sokolov, A.; Laird, P.W.; Wiznerowicz, M.; Iavarone, A.; Snyder, J.; et al. A Distinct DNA Methylation Shift in a Subset of Glioma CpG Island Methylator Phenotypes during Tumor Recurrence. Cell Rep. 2018, 23, 637–651. [Google Scholar] [CrossRef]
- Lebrun, L.; Bizet, M.; Melendez, B.; Alexiou, B.; Absil, L.; Van Campenhout, C.; D’Haene, N.; Rorive, S.; Fuks, F.; Decaestecker, C.; et al. Analyses of DNA Methylation Profiling in the Diagnosis of Intramedullary Astrocytomas. J. Neuropathol. Exp. Neurol. 2021, 80, 663–673. [Google Scholar] [CrossRef]
- Pratt, D.; Sahm, F.; Aldape, K. DNA Methylation Profiling as a Model for Discovery and Precision Diagnostics in Neuro-Oncology. Neuro Oncol. 2021, 23, S16–S29. [Google Scholar] [CrossRef]
- Singh, J.; Sahu, S.; Mohan, T.; Mahajan, S.; Sharma, M.C.; Sarkar, C.; Suri, V. Current Status of DNA Methylation Profiling in Neuro-Oncology as a Diagnostic Support Tool: A Review. Neurooncol Pract. 2023, 10, 518–526. [Google Scholar] [CrossRef]
- White, C.L.; Kinross, K.M.; Moore, M.K.; Rasouli, E.; Strong, R.; Jones, J.M.; Cain, J.E.; Sturm, D.; Sahm, F.; Jones, D.T.W.; et al. Implementation of DNA Methylation Array Profiling in Pediatric Central Nervous System Tumors: The AIM BRAIN Project: An Australian and New Zealand Children’s Haematology/Oncology Group Study. J. Mol. Diagn. 2023, 25, 709–728. [Google Scholar] [CrossRef]
- Zmarzły, N.; Wojdas, E.; Skubis, A.; Sikora, B.; Mazurek, U. DNA Methylation: Gene Expression Regulation. Acta Univ. Lodziensis. Folia Biol. Et Oecologica 2017, 12, 1–10. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Y.; Zhang, L.; Huang, F.; Li, J.; Wang, S. MicroRNAs, TGF-β Signaling, and the Inflammatory Microenvironment in Cancer. Tumour Biol. 2016, 37, 115–125. [Google Scholar] [CrossRef]
- Saadh, M.J.; Allela, O.Q.B.; Sattay, Z.J.; Al Zuhairi, R.A.H.; Ahmad, H.; Eldesoky, G.E.; Adil, M.; Ali, M.S. Deciphering the Functional Landscape and Therapeutic Implications of Noncoding RNAs in the TGF-β Signaling Pathway in Colorectal Cancer: A Comprehensive Review. Pathol. Res. Pract. 2024, 255, 155158. [Google Scholar] [CrossRef]
- Gong, Y.; Gong, D.; Liu, S.; Gong, X.; Xiong, J.; Zhang, J.; Jiang, L.; Liu, J.; Zhu, L.; Luo, H.; et al. Deciphering the Role of NcRNAs in Pancreatic Cancer Immune Evasion and Drug Resistance: A New Perspective for Targeted Therapy. Front. Immunol. 2024, 15, 1480572. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; Xu, J.; Cheng, J.; Jiao, D.; Zhou, C.; Dai, Y.; Chen, Q. Lower Serum Levels of miR-29c-3p and miR-19b-3p as Biomarkers for Alzheimer’s Disease. Tohoku J. Exp. Med. 2017, 242, 129–136. [Google Scholar] [CrossRef]
- Hashemi, M.; Hajimazdarany, S.; Mohan, C.D.; Mohammadi, M.; Rezaei, S.; Olyaee, Y.; Goldoost, Y.; Ghorbani, A.; Mirmazloomi, S.R.; Gholinia, N.; et al. Long Non-Coding RNA/Epithelial-Mesenchymal Transition Axis in Human Cancers: Tumorigenesis, Chemoresistance, and Radioresistance. Pharmacol. Res. 2022, 186, 106535. [Google Scholar] [CrossRef] [PubMed]
- González-Cantó, E.; Monteiro, M.; Aghababyan, C.; Ferrero-Micó, A.; Navarro-Serna, S.; Mellado-López, M.; Tomás-Pérez, S.; Sandoval, J.; Llueca, A.; Herreros-Pomares, A.; et al. Reduced Levels of miR-145-3p Drive Cell Cycle Progression in Advanced High-Grade Serous Ovarian Cancer. Cells 2024, 13, 1904. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Mishra, L.; Deng, C.-X. The Role of TGF-β/SMAD4 Signaling in Cancer. Int. J. Biol. Sci. 2018, 14, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Lucarelli, P.; Schilling, M.; Kreutz, C.; Vlasov, A.; Boehm, M.E.; Iwamoto, N.; Steiert, B.; Lattermann, S.; Wäsch, M.; Stepath, M.; et al. Resolving the Combinatorial Complexity of Smad Protein Complex Formation and Its Link to Gene Expression. Cell Syst. 2018, 6, 75–89.e11. [Google Scholar] [CrossRef]
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef]
- Wang, Z. Regulation of Cell Cycle Progression by Growth Factor-Induced Cell Signaling. Cells 2021, 10, 3327. [Google Scholar] [CrossRef]
- Mansisidor, A.R.; Risca, V.I. Chromatin Accessibility: Methods, Mechanisms, and Biological Insights. Nucleus 2022, 13, 236–276. [Google Scholar] [CrossRef]
- Li, B.; Liu, Y.; Sun, S. Proton Pump Inhibitors Display Anti-Tumour Potential in Glioma. Cell Prolif. 2023, 56, e13321. [Google Scholar] [CrossRef]
- Wang, C.; Song, W.; Zhang, Y.; Deng, H.; Zhou, Z.; Zhu, J.; Wang, X. SKIL Promotes Pancreatic Cancer Metastasis by Inhibiting TSPYL2 to Activate the TGF-β Pathway. Cancer Innov. 2025, 4, e70011. [Google Scholar] [CrossRef]
- Luo, K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb. Perspect. Biol. 2017, 9, a022137. [Google Scholar] [CrossRef]
- Yan, C.; Wang, J.; Yang, Y.; Ma, W.; Chen, X. Molecular Biomarker-Guided Anti-Angiogenic Targeted Therapy for Malignant Glioma. J. Cell Mol. Med. 2019, 23, 4876–4882. [Google Scholar] [CrossRef]
- Renovanz, M.; Kurz, S.C.; Rieger, J.; Walter, B.; Becker, H.; Hille, H.; Bombach, P.; Rieger, D.; Grosse, L.; Häusser, L.; et al. Clinical Outcome of Biomarker-Guided Therapies in Adult Patients with Tumors of the Nervous System. Neurooncol Adv. 2023, 5, vdad012. [Google Scholar] [CrossRef]
- Shah, S.; Nag, A.; Sachithanandam, S.V.; Lucke-Wold, B. Predictive and Prognostic Significance of Molecular Biomarkers in Glioblastoma. Biomedicines 2024, 12, 2664. [Google Scholar] [CrossRef]
- Śledzińska, P.; Bebyn, M.G.; Furtak, J.; Kowalewski, J.; Lewandowska, M.A. Prognostic and Predictive Biomarkers in Gliomas. Int. J. Mol. Sci. 2021, 22, 10373. [Google Scholar] [CrossRef]
- Skóra, K.; Strojny, D.; Sobański, D.; Staszkiewicz, R.; Gogol, P.; Miller, M.; Grabarek, B.O. Analysis of the Expression Patterns of Tumor Necrosis Factor Alpha Signaling Pathways and Regulatory MicroRNAs in Astrocytic Tumors. Int. J. Mol. Sci. 2025, 26, 5892. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for Taxonomy-Based Analysis of Pathways and Genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
- Staszkiewicz, R.; Sobański, D.; Pulka, W.; Gładysz, D.; Gadzieliński, M.; Strojny, D.; Grabarek, B.O. Variances in the Expression Profile of Circadian Clock-Related Genes in Astrocytic Brain Tumors. Cancers 2024, 16, 2335. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting Effective microRNA Target Sites in Mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X. miRDB: An Online Database for Prediction of Functional microRNA Targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, X. Prediction of Functional microRNA Targets by Integrative Modeling of microRNA Binding and Target Expression Data. Genome Biol. 2019, 20, 18. [Google Scholar] [CrossRef]
- Li, L.-C.; Dahiya, R. MethPrimer: Designing Primers for Methylation PCRs. Bioinformatics 2002, 18, 1427–1431. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000; ISBN 0-387-98784-3. [Google Scholar]
- Therneau, T.M. A Package for Survival Analysis in R. Available online: https://ftp2.uib.no/cran/web/packages/survival/vignettes/survival.pdf (accessed on 15 July 2025).
- Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves Using “Ggplot2”. Available online: https://cir.nii.ac.jp/crid/1360300776601012224 (accessed on 15 July 2025).
- Raporty|Krajowy Rejestr Nowotworów. Available online: http://onkologia.org.pl/pl/raporty (accessed on 5 May 2025).
ID | mRNA | log2FC G3 Vs. G2 | log2FC G4 Vs. G2 |
---|---|---|---|
206675_s_at | SKIL | 7.43 ± 0.54 | 9.18 ± 0.43 |
215889_at | 7.42 ± 0.43 | 9.54 ± 0.76 | |
217591_at | 7.18 ± 0.87 | 9.71 ± 0.43 | |
225227_at | 7.21 ± 0.32 | 9.81 ± 0.51 | |
210993_s_at | SMAD1 | 5.76 ± 0.87 | 8.18 ± 0.98 |
227798_at | 5.87 ± 0.71 | 7.34 ± 1.02 | |
205396_at | SMAD3 | 6.13 ± 0.77 | 7.81 ± 1.03 |
205397_x_at | 6.21 ± 0.54 | 8.12 ± 0.76 | |
205398_s_at | 6.43 ± 0.91 | 8.43 ± 0.76 | |
202526_at | SMAD4 | 8.16 ± 0.78 | 9.12 ± 0.65 |
202527_s_at | 8.23 ± 0.60 | 9.87 ± 0.17 | |
235725_at | 8.43 ± 0.86 | 9.12 ± 1.09 | |
1565702_at | 8.11 ± 0.81 | 9.54 ± 1.02 | |
1565703_at | 8.71 ± 0.44 | 9.88 ± 1.04 | |
205289_at | BMP2 | 5.11 ± 0.31 | 7.65 ± 0.87 |
205290_s_at | 6.09 ± 0.61 | 7.53 ± 0.56 | |
208351_s_at | MAPK1 | 10.11 ± 0.98 | 14.13 ± 1.23 |
212271_at | 9.98 ± 1.07 | 14.55 ± 1.24 | |
224620_at | 9.73 ± 0.43 | 16.12 ± 1.32 | |
224621_at | 10.16 ± 0.76 | 15.65 ± 0.98 | |
229847_at | 10.54 ± 0.11 | 14.76 ± 1.19 | |
1552263_at | 10.17 ± 0.76 | 14.61 ± 1.25 | |
1552264_a_at | 10.78 ± 0.19 | 14.19 ± 1.28 |
miRNA | Target Score | G3 Vs. G2 (log2FC) | G4 Vs. G2 (log2FC) | Predicted mRNA Target |
---|---|---|---|---|
hsa-miR-1277-3p | 100 | −3.18 ± 0.98 | −3.81 ± 0.12 | SKIL |
hsa-miR-30a-5p | 96 | −4.91 ± 0.71 | −4.78 ± 0.19 | SMAD1 |
hsa-miR-miR-145-5p | 98 | −4.18 ± 0.73 | −3.91 ± 0.98 | SMAD3 |
hsa-miR- miR-155-3p | 83 | −2.11 ± 0.41 | −2.13 ± 0.12 | SMAD4 |
hsa-miR-587 | 94 | −3.65 ± 0.17 | −4.71 ± 0.19 | BMP2 |
has-miR-302c-5p | 93 | −2.18 ± 0.51 | −3.18 ± 0.61 | BMP2 |
hsa-miR-130b-3p | 96 | +2.87 ± 0.37 | +3.16 ± 0.12 | MAPK1 |
Protein | G2 | G3 | G4 |
---|---|---|---|
SKIL [ng/mL] | 456.98 ± 43.91 | 1234.13 ± 76.12 * | 1345.19 ± 51.36 * |
SMAD1 [ng/mL] | 2.17 ± 0.18 | 5.16 ± 0.61 * | 8.17 ± 0.17 * |
SMAD3 [ng/mL] | 5.81 ± 0.34 | 9.18 ± 0.12 * | 13.34 ± 0.13 * |
SMAD4 [ng/mL] | 2.15 ± 0.19 | 2.87 ± 0.29 | 7.87 ± 0.91 * |
BMP2 [pg/mL] | 121.12 ± 7.12 | 541.90 ± 19.33 * | 601.19 ± 12.81 * |
MAPK1 [ng/mL] | 1.19 ± 0.81 | 5.91 ± 0.76 * | 5.21 ± 2.09 * |
mRNA | RT-qPCR Amplification Primers (5′-3′) |
---|---|
SKIL | Forward: AGAGACTCTGTTTGCCCCAA |
Reverse: CAGGATGGGGCATTGAATGG | |
SMAD1 | Forward: CACTCAACGCCACTTTTCCA |
Reverse: TCTTCAGGAGGCAGGTAAGC | |
SMAD3 | Forward: CTACCAGAGAGTAGAGACAC Reverse: TCTCTGGAATATTGCTCTGG |
SMAD4 | Forward: AAAGGTCTTTGATTTGCGTC Reverse: CTATTCCACCTACTGATCCTG |
BMP2 | Forward: AATGCAAGCAGGTGGGAAAG Reverse: GCTGTGTTCATCTTGGTGCA |
MAPK1 | Forward: TGGAATAGGTTGTTTTTAAATGTTG Reverse: AAACTTTTCCTTAAACAAATCATCC |
ACTB | Forward: TCACCCACACTGTGCCCATCTACGA Reverse: CAGCGGAACCGCTCATTGCCAATGG |
GAPDH | Forward: GGTGAAGGTCGGAGTCAACGGA |
Reverse: GAGGGATCTCGCTCCTGGAAGA |
mRNA | M/U | NCBI Reference Sequence Database (RefSeq) | Primers (5′-3′) |
---|---|---|---|
SKIL | M | NM_005414 | Forward: ATAAGGAGAATTAAAATTAAGTCGT Reverse: AATAAATAAATACAAATACCTATCGTA |
U | Forward: ATAAGGAGAATTAAAATTAAGTTGT Reverse: TAATAAATAAATACAAATACCTATCATA | ||
SMAD1 | M | NM_001003688.1 | Forward: AGGTTTTGAGTTGTTTAGGGTAATC Reverse: ATAACATAAAACAATCCCTTCCGA |
U | Forward: AGGTTTTGAGTTGTTTAGGGTAATT Reverse: C ATAACATAAAACAATCCCTTCCAAT | ||
SMAD3 | M | NM_005902 | Forward: TTTTTAAATTTATTTTCGAATTCGA Reverse: TAAAAAACAACCCTAAACAAAAACG |
U | Forward: TTAGATGGGTTTTTTAAGTATTTGT Reverse: ACATCCACCTCTAAATTTACTCATA | ||
SMAD4 | M | NM_005359 | Forward: TTGGGTTAGGTGTTTTAGTGATTAC Reverse: A ACCGCCTACTACTACATCTATCGAT |
U | Forward: TTTGGGTTAGGTGTTTTAGTGATTAT Reverse: ACCACCTACTACTACATCTATCAAT | ||
BMP2 | M | NM_001200.4 | Forward: ATTTACGAGGAAGGTTGTAATAGTC Reverse: TAAATTTAACTTAATCCAAATCGAT |
U | Forward: TTATGAGGAAGGTTGTAATAGTTGT Reverse: AAATTTAACTTAATCCAAATCAAT | ||
MAPK1 | M | NM_002745.5 | Forward: TATCGTCGAAGTATTATTTAAGTTCGA Reverse: AAAAAAACACCGATATCTAAACACG |
U | Forward: TTGTTGAAGTATTATTTAAGTTTGA Reverse: AAAAACACCAATATCTAAACACATC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skóra, K.; Strojny, D.; Sobański, D.; Staszkiewicz, R.; Gogol, P.; Miller, M.; Rogoziński, P.; Zmarzły, N.; Grabarek, B.O. Multi-Layered Analysis of TGF-β Signaling and Regulation via DNA Methylation and microRNAs in Astrocytic Tumors. Int. J. Mol. Sci. 2025, 26, 7798. https://doi.org/10.3390/ijms26167798
Skóra K, Strojny D, Sobański D, Staszkiewicz R, Gogol P, Miller M, Rogoziński P, Zmarzły N, Grabarek BO. Multi-Layered Analysis of TGF-β Signaling and Regulation via DNA Methylation and microRNAs in Astrocytic Tumors. International Journal of Molecular Sciences. 2025; 26(16):7798. https://doi.org/10.3390/ijms26167798
Chicago/Turabian StyleSkóra, Klaudia, Damian Strojny, Dawid Sobański, Rafał Staszkiewicz, Paweł Gogol, Mateusz Miller, Przemysław Rogoziński, Nikola Zmarzły, and Beniamin Oskar Grabarek. 2025. "Multi-Layered Analysis of TGF-β Signaling and Regulation via DNA Methylation and microRNAs in Astrocytic Tumors" International Journal of Molecular Sciences 26, no. 16: 7798. https://doi.org/10.3390/ijms26167798
APA StyleSkóra, K., Strojny, D., Sobański, D., Staszkiewicz, R., Gogol, P., Miller, M., Rogoziński, P., Zmarzły, N., & Grabarek, B. O. (2025). Multi-Layered Analysis of TGF-β Signaling and Regulation via DNA Methylation and microRNAs in Astrocytic Tumors. International Journal of Molecular Sciences, 26(16), 7798. https://doi.org/10.3390/ijms26167798