Natural Polymorphic Variants in the CYP450 Superfamily: A Review of Potential Structural Mechanisms and Functional Consequences
Abstract
1. Introduction
2. Polymorphisms of CYP450
2.1. Natural Polymorphisms of the CYP450 Family and Their Consequences
Enzyme | Mutation | Literature Information | References |
---|---|---|---|
CYP1A1 | G45D | Novel | [2,18] |
I78T | Novel | [2,18] | |
R93W | Novel | [2] | |
T173R | Novel | [2] | |
R279W | Novel | [19] | |
M331I | 0.8% frequency | [20] | |
I448V | Mutation causing premature stop codone | [21] | |
T461N | May be partially associated with a higher risk of estrogen-induced cancer | [2,18,22,23] | |
I462V | May be partially associated with higher risk of estrogen-induced cancer. Closely linked with lung-cancer-susceptibility genotype in CYP1A1. | [18,22,24] | |
R464C | Novel | [21] | |
R464S | 1.7% frequency | [20] | |
R477W | Novel | [21] | |
V482M | Novel | [2] | |
P492R | Novel | [2,21] | |
CYP1A2 | S18C | Novel | [2,18] |
F21L | The efficiency of liver activity measured in the caffeine test was not significantly higher than mean (3.5% to 3.12%) | [25] | |
P42R | Novel | [26] | |
G73R | - | - | |
T83M | Novel | [27] | |
D104N | - | - | |
L111F | - | - | |
E168Q | Novel | [27] | |
F186L | Novel, suggested to be critical for catalytic activity | [27] | |
F205V | - | - | |
S212C | Novel | [27] | |
R281W | - | - | |
S298R | [2] | ||
G299S | Novel | [27] | |
I314V | [2] | ||
D348N | Novel | [28,29] | |
R377Q | Novel | [26] | |
I386F | Novel | [28,29] | |
C406Y | Novel | [28,29] | |
R431W | Critical for the tertiary structure of the protein (no holoenzyme was detected for this substitution) | [2,28,29] | |
T438I | Novel | [27] | |
R456H | Novel | [26] | |
CYP1B1 | S28W | - | - |
R48G | - | - | |
P52L | - | - | |
W57 * | - | - | |
W57C | - | - | |
P58*(Q) | - | - | |
L59*(P) | - | - | |
G61E | - | - | |
L77P | - | - | |
Y81N | - | - | |
A115P | - | - | |
A119S | - | - | |
M132R | - | - | |
Q144P | - | - | |
Q144R | - | - | |
145 | - | - | |
A179del | - | - | |
Q184S | - | - | |
A189P | - | - | |
D192V | - | - | |
P193L | - | - | |
V198I | - | - | |
N203S | - | - | |
S206N | - | - | |
S215I | - | - | |
E229K | - | - | |
G232R | - | - | |
F261L | - | - | |
R266L | - | - | |
SNF269-271del | - | - | |
FL276-277 * | - | - | |
R290del | - | - | |
V320L | - | - | |
A330S | - | - | |
L343del | - | - | |
L345F | - | - | |
R355del | - | - | |
RV355del | - | - | |
V365M | - | - | |
G365W | - | - | |
R368H | - | - | |
D374N | - | - | |
P379L | - | - | |
E387K | - | - | |
A388T | - | - | |
R390C | - | - | |
R390H | - | - | |
R390S | - | - | |
I399S | - | - | |
T404del | - | - | |
V409F | - | - | |
V422G | - | - | |
N423Y | - | - | |
L432V | - | - | |
P437L | - | - | |
A443G | - | - | |
R444Q | - | - | |
F445C | - | - | |
N453S | - | - | |
G466D | - | - | |
R469W | - | - | |
E499G | - | - | |
S515L | - | - | |
V518A | - | - | |
R523T | - | - | |
D530G | - | - | |
CYP2A6 | G5R | Novel | [2,30] |
M6I | - | - | |
L20F | - | - | |
S29N | Novel | [2,30,31] | |
Q53H | - | - | |
R64H | - | - | |
V68M | - | - | |
V79M | - | - | |
R101Q | - | - | |
E103K | - | - | |
V116M | - | - | |
F118L | Novel | [2,32] | |
R128L | Novel | [32] | |
R128Q | Novel | [2,33] | |
S131A | Novel | [32] | |
R148C | - | - | |
D158E | - | - | |
K194E | Novel | [30] | |
R203C | Reduced activity towards C-oxidation of nicotine, more frequent in non-smokers | [34] | |
CYP2A13 | R25Q | Novel | [35,36] |
R101Q | Novel | [36] | |
T134TT (duplication) | Novel | [36] | |
D158E | Novel | [36,37] | |
R257C | May reduce tobacco-related incidence, however it is uncertain | [35,38] | |
V323L | Higher percentage in small cell carcinoma | [37] | |
F453Y | Novel | [36] | |
R494C | Novel | [36] | |
CYP2B6 | Q21L | Novel | [39] |
R22C | No data on influence | [2,35,40,41,42] | |
T26S | - | - | |
D28G | - | - | |
R29S | - | - | |
M46V | Novel | [39] | |
G99E | Novel | [39] | |
K139E | Completely abolished protein expression | [39,42] | |
R140Q | Novel | [39] | |
P167A | Novel | [35] | |
Q172H | 19.9% frequency in Japanese population, increased V(max) in nonlinear pharmacokinetics | [26,35,40,41,42] | |
S259R | Novel | [40,41] | |
K262R | [40,41] | ||
N289K | - | - | |
T306S | - | - | |
I328T | Novel | [2] | |
I391N | Leads to undetectable enzyme activity | [39] | |
R487C | Significantly reduces CYP2B6 protein expression and S-mephenytoin N-demethylase activity, associated with the lowest enzyme activity in females | [35,40,41,42] | |
CYP2C8 | R139K | Defective in metabolism of paclitaxel (15% turnover) and arachidonic acid | [2,43,44,45,46,47] |
E154D | No influence from the literature | [48] | |
G171S | No effect on affinity or enzymatic activity with paclitaxel as substrate; decreases affinity for amodiaquine; reduces enzymatic activity with amodiaquine as substrate; decreases intrinsic clearance of amodiaquine | [46] | |
R186G | Increases affinity for paclitaxel; reduces enzymatic activity with paclitaxel as substrate; decreases intrinsic clearance of paclitaxel; reduces enzymatic activity with amodiaquine as substrate; decreases intrinsic clearance of amodiaquine | [46] | |
N193K | No influence from the literature | [48] | |
I223M | Reduces enzymatic activity with paclitaxel as substrate; decreases intrinsic clearance of paclitaxel; reduces enzymatic activity with amodiaquine as substrate; decreases intrinsic clearance of amodiaquine | [46] | |
A238P | Reduces enzymatic activity with paclitaxel as substrate; decreases intrinsic clearance of paclitaxel | [46] | |
I244V | - | - | |
K247R | Increases enzymatic activity with paclitaxel as substrate; reduces enzymatic activity with amodiaquine as substrate; decreases intrinsic clearance of amodiaquine | [46] | |
K249R | No influence from the literature | [48] | |
I264M | Activity towards paclitaxel lower, but not significantly | [44,46,49,50] | |
I269F | Lower paclitaxel metabolism | [43,44,46] | |
K383N | Reduces enzymatic activity with paclitaxel as substrate; reduces enzymatic activity with amodiaquine as substrate; decreases intrinsic clearance of amodiaquine | [46] | |
L390S | In a single subject, coexisted with another polymorphism which caused lower paclitaxel metabolism | [44] | |
K399R | Defective in paclitaxel and arachidonic acid metabolism | [2,43,44,45,46,50] | |
H411L | Novel | [48,51] | |
V461del | Increases enzymatic activity with paclitaxel as substrate; reduces enzymatic activity with amodiaquine as substrate; decreases intrinsic clearance of amodiaquine | [46] | |
CYP2C9 | L19I | - | - |
R125L | Patients with this variant require a lower warfarin dosage | [52] | |
R144C | No correlation to phenytoin, tolbutamide, torasemide and diclofenac metabolism | [53,54,55,56] | |
R150H | Novel | [2] | |
N204H | Restricted binding of the coumarine, resulting in lower metabolism | [57] | |
H251R | Novel | [2] | |
E272G | - | - | |
R335W | Novel | [2,58] | |
Y358C | No correlation to phenytoin, tolbutamide, torasemide and diclofenac metabolism | [48,56,59] | |
I359L | No correlation to phenytoin, tolbutamide, torasemide and diclofenac metabolism | [55,56] | |
I359T | Expected to change enzyme activity through ligand binding | [60] | |
D360E | Lower affinity for warfarin, diclofenac and lauric acid | [2,61] | |
L413P | Novel | [2] | |
G417D | - | [48,56,59] | |
I434F | Decrease enzymatic activity in both in vitro and in vivo | [62] | |
P489S | - | - | |
CYP2C19 | L17P | Novel, due to its’ proximity to N-terminus probably do not alter enzyme activity | [63] |
I19L | Novel, due to its’ proximity to N-terminus probably do not alter enzyme activity | [63] | |
S51G | Novel | [64] | |
M74T | Novel | [2] | |
E92D | Responsible for lower mephenytoin metabolism | [65] | |
W120R | Reduction in the metabolism of tolbutamide | [66] | |
E122A | - | - | |
R132Q | Responsible for lower mephenytoin metabolism | [65] | |
R144H | Novel | [2,63] | |
R150H | Novel | [63] | |
A161P | Novel | [64] | |
F168L | Novel | [2] | |
P227L | Reduction in catalytic activity | [63] | |
R329H | Novel | [64] | |
R410C | Novel | [63] | |
R442C | Location close to the heme region, may result in a decrease in catalytic activity | [67] | |
CYP2C18 | T385M | Novel | [49,68] |
CYP2D6 | V11M | Novel | [69] |
R25Q | Novel | [69] | |
R26H | Novel, no impact found | [2,70] | |
R28C | - | - | |
P34S | Reduction in sparteine metabolism | [2,69,71] | |
G42R | Found in poor metabolisers, probable reduction in enzyme function | [72] | |
A85V | - | - | |
L91M | Novel | [2] | |
H94R | Novel | [2] | |
V104A | - | - | |
T107I | Possible contribution to diminished debrisoquine hydroxylase activity in African Bantu populations | [2,73] | |
F120I | Novel | [2] | |
L142S | Reduction in catalytic activity of the enzyme | [69] | |
K147R | Novel, impact on metabolic activity not found | [69] | |
E155K | Novel, impact on metabolic activity not found | [2,70] | |
C161S | Novel | [69] | |
F164L | - | - | |
F164L | Novel | [69] | |
G169R | Reduction in metabolic activity | [74] | |
G212E | Premature termination of translation | [75] | |
E215K | >90% decrease in catalytic activity | [69] | |
F219S | Novel | [69] | |
A237S | Novel | [2] | |
T249P | >90% decrease of monooxygenase activity towards dextromethorphan | [60] | |
K281del | Decreased metabolism of bufuralol and sparteine | [76] | |
R296C | Significantly reduces monooxygenase activity toward anandamide | [2,53,60,69,77,78] | |
I297L | - | - | |
H324P | Decreases sparteine metabolism | [79] | |
V327M | Novel | [69] | |
D336N | Novel | [69] | |
D337G | Novel | [69] | |
V342M | Novel | [69] | |
R343G | - | - | |
R344Q | Novel | [69] | |
I369T | - | - | |
E410K | - | - | |
E418K | Novel | [2] | |
R440C | >90% decrease in catalytic activity | [69] | |
F457L | Novel | [69] | |
H463D | Novel | [69] | |
P469A | Novel | [2] | |
H478Y | Novel | [2] | |
S486T | Associated with lower sparteine metabolism | [2,53,69,70,77,78] | |
R497C | Novel | [69] | |
CYP2E1 | R76H | Causes 37% of the protein expression and 36% of the catalytic activity compared with the wild-type | [80] |
V179I | No significant difference in pharmacokinetics for chlorzoxazone hydroxylation | [2,81] | |
N219D | - | - | |
S366C | - | - | |
V389I | No significant difference in activity | [80] | |
H457L | Novel | [2] | |
CYP3A4 | L15P | Novel, not associated with any change in activity | [82] |
G56D | No change in activity | [83] | |
I118V | The variant can be linked to 60% less of the main metabolites, however probable new metabolites were observed | [84,85] | |
R130Q | No detectable expression found | [83] | |
R162Q | No function detected | [82,86] | |
V170I | No change in activity | [83] | |
D174H | No change in activity | [2,82,83] | |
T185S | Novel | [2,84] | |
F189S | Lower metabolic turnover numbers in Escherichia coli for testosterone and chlorpyrifos | [86] | |
P218R | Suggested reduction in enzyme activity | [85] | |
S222P | lowered intrinsic clearance for nifedipine | [87] | |
S252A | Influence from the literature is unclear | [88] | |
L293P | Higher metabolic turnover numbers in Escherichia coli for testosterone and chlorpyrifos | [2,86] | |
I301T | May be associated with increased metabolism of 1,25-dihydroxyvitamin D, leading to vitamin-D deficiency rickets infections | [89] | |
T363M | Lower expression | [83] | |
L373F | Altered testosterone hydroxylase metabolite profile | [82,83] | |
P416L | No detectable expression found | [83] | |
I431T | The connection between the variant and the literature is unclear | [90,91] | |
M445T | Metabolic turnover numbers in Escherichia coli for testosterone and chlorpyrifos not significantly different from the wild variant | [84,85] | |
P467S | Metabolic turnover numbers in Escherichia coli for testosterone and chlorpyrifos not significantly different from the wild variant | [86] | |
CYP3A5 | R28C | 42–64% lower V(max) for nifedipine oxidation than CYP3A5*1 | [91] |
H30Y | Novel | [2] | |
Q200R | Novel | [92] | |
D277E | Novel | [2] | |
A337T | 42–64% lower V(max) for nifedipine oxidation than CYP3A5*1 | [2,91] | |
T398N | Novel | [2,92] | |
F446S | >95% decrease in the intrinsic clearance for both 6β-hydroxytestosterone and nifedipine oxidation | [90] | |
CYP7A1 | F100S | Novel | [93] |
N233S | Novel | [93] | |
D347S | The influence is unclear in the literature | [35,94] |
2.2. The CYP3A4 Variations in the Context of Clinical and In Vitro Data
Allele (*) | Mutation Code | Relevance (with Respect to Table 1) | Lidocaine Fang et al. [7] | Loperamide Lin et al. [105] | Imatinib Chen et al. [106] | Sildenafil Tang et al. [4] | Abemaciclib Xu et al. [107] |
---|---|---|---|---|---|---|---|
1 | Wild type | + | model | model | Model | model | model |
2 | S222P | + | ↓ V(max) ↑ KM ↓ Cl | ↓ V(max) ↑ KM ↓ Cl | ↓ V(max) ↕ KM ↓Cl | ↑ V(max) ↑ KM | No data |
3 | M445T | + | ↑ V(max) ↑ KM ↕ Cl | ↕ V(max) ↑ KM ↓ Cl | ↓ V(max) ↕ KM ↕ Cl | ↑ V(max) ↕ KM | ↑ V(max) ↑ KM ↑Cl |
4 | I118V | + | No effect | ↓ V(max) ↑ KM ↓ Cl | ↓ V(max) ↑ KM ↓ Cl | ↑ V(max) ↕ KM | No data |
5 | P218R | + | ↓ V(max) ↑ KM ↓ Cl | ↕ V(max) ↑ KM ↓ Cl | ↓ V(max) ↑ KM ↓ Cl | ↓ V(max) ↑ KM | No data |
7 | G56D | - | Not mentioned | ↑ V(max) ↑ KM ↓ Cl | ↓ V(max) ↕ KM ↓ Cl | No data | No data |
8 | R130Q | - | Not mentioned | ↑ V(max) ↑ KM ↓ Cl | ↓ V(max) ↑ KM ↓ Cl | No data | No data |
9 | V170I | - | ↕ V(max) ↑ KM ↓ Cl | ↓ V(max) ↕ KM ↓ Cl | ↓ V(max) ↑ KM ↓ Cl | ↑ V(max) ↑ KM | No data |
10 | D174H | - | No effect | ↓ V(max) ↕ KM ↓ Cl | ↓ V(max) ↑ KM ↓ Cl | ↑ V(max) ↕ KM | No data |
11 | T363M | + | ↑ Cl | ↑ V(max) ↑ KM ↓ Cl | ↓ V(max) ↕ KM ↓ Cl | ↑ V(max) ↑ KM | No data |
12 | L373F | + | Not mentioned | ↓ V(max) ↑ KM ↓ Cl | ↓ V(max) ↑ KM ↓ Cl | No data | No data |
13 | P416L | + | Not mentioned | ↓ V(max) ↑ KM ↓Cl | ↓ V(max) ↑ KM ↓ Cl | No data | No data |
14 | L15P | - | ↑ Cl | ↑ V(max) ↑ KM ↓Cl | ↑ V(max) ↑ KM ↑ Cl | ↑ V(max) ↓ KM | No data |
15 | R126Q | - | ↑ Cl | ↓ V(max) ↑ KM ↓Cl | ↕ V(max) ↑ KM ↓ Cl | ↑ V(max) ↕ KM | ↑ V(max) ↑ KM ↑ Cl |
16 | T185S | - | ↓ V(max) ↑ KM ↓ Cl | ↑ V(max) ↑ KM ↓ Cl | ↓ V(max) ↑ KM ↓ Cl | No data | No data |
17 | F189S | + | Extremely lower activity | No data | ↓ V(max) ↑ KM ↓ Cl | No data | No data |
18 | L293P | + | ↑ V(max) ↑ Cl | ↑ V(max) ↑ KM ↓ Cl | ↓ V(max) ↑ KM ↓ Cl | No data | ↑ V(max) ↑ KM ↑ Cl |
19 | P467S | + | ↑ Cl | ↓ V(max) ↕ KM ↓ Cl | ↓ V(max) ↑ KM ↓ Cl | ↑ V(max) ↕ KM | No data |
2.3. Analysis of Existing Variants in the Context of Enzyme Structures
- The region of the transmembrane helix (HAU = 40–50);
- The loop closing the entrance to the ligand binding cavity (HAU ≈ 120);
- The loop in contact with the heme molecule and involved in the catalytic reaction with CYP450 protein partners (HAU ≈ 516);
- Other regions of the CYP450 molecule that interact with the protein partner but are not part of region (C) (HAU ≈ 150, 303, 318, 390, 485, 523);
- Regions that may interact with larger ligands and are located on alpha-helices adjacent to the binding pocket (HAU ≈ 205 and 320).
2.3.1. Transmembrane Helix
2.3.2. Substrate/Product Entry/Exit Channels
2.3.3. Heme Pocket Region
2.3.4. P450/Redox Partner Contact Interface
2.3.5. Helices near the Binding Pocket
2.4. Variants of Confirmed Relevance
- Two mutations in region A (transmembrane helix) occurring in CYP1A2 and CYP3A5;
- Four mutations in region B (substrate/product entry/exit channels) for CYP3A4, CYP2D6, CYP2C8, and CYP2E1;
- Frequent (>8) mutations in region C (heme pocket) observed in CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP1A1, CYP3A4, and CYP3A5;
- Equally frequent mutations, in terms of number of proteins and more frequent in terms of number of mutations, in region D (P450/redox partner contact interface) for CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP1A1, CYP3A4, and CYP3A5; partly, this group overlaps with the group from point (3);
- Numerous mutations in region E (helices and other regions near the ligand binding pocket) for CYP2C6, CYP2C9, CYP2D6, CYP2A6, and CYP3A4;
- Mutations in other regions of the protein, not directly associated with intuitively key structural elements for the enzyme’s mechanism of action but potentially influencing its dynamic structure, for example, mutations in short loops connecting adjacent helices or substituting amino acids with drastically different properties; examples correspond to enzymes CYP2A13, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP1A2, and CYP3A4.
2.5. Perspectives of Molecular Modeling-Based Studies
3. Summary
- Mutations within the transmembrane helix, which affect the orientation of the CYP450 molecule relative to the membrane and its redox partners;
- Mutations within the migration channels of ligands (reaction substrates and products) to and from the binding site, which alter the kinetic characteristics of the functioning enzyme;
- Mutations at the contact interface between the CYP450 molecule and its redox partner, including those located in the immediate vicinity of the catalytic heme group.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cruz-Hurtado, M.; López-González, M.D.L.; Mondragón, V.; Sierra-Santoyo, A. In vitro phase I metabolism of vinclozolin by human liver microsomes. Xenobiotica 2019, 49, 895–904. [Google Scholar] [CrossRef]
- Solus, J.F.; Arietta, B.J.; Harris, J.R.; Sexton, D.P.; Steward, J.Q.; McMunn, C.; Ihrie, P.; Mehall, J.M.; Edwards, T.L.; Dawson, E.P. Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics 2004, 5, 895–931. [Google Scholar] [CrossRef]
- Xin, X.L.; Dong, P.P.; Sun, X.H.; Deng, S.; Zhang, N.; Wang, C.; Huo, X.K.; Li, Y.; Lan, R.; Chen, L.; et al. Identification of the hydroxylated derivatives of bufalin: Phase I metabolites in rats. J. Asian Nat. Prod. Res. 2016, 18, 239–247. [Google Scholar] [CrossRef]
- Tang, P.F.; Zheng, X.; Hu, X.X.; Yang, C.C.; Chen, Z.; Qian, J.C.; Cai, J.P.; Hu, G.X. Functional Measurement of CYP2C9 and CYP3A4 Allelic Polymorphism on Sildenafil Metabolism. Drug Des. Dev. Ther. 2020, 14, 5129–5141. [Google Scholar] [CrossRef]
- Xu, R.; Gu, E.M.; Zhou, Q.; Yuan, L.J.; Hu, X.X.; Cai, J.P.; Hu, G. Effects of 22 Novel CYP2D6 Variants Found in Chinese Population on the Metabolism of Dapoxetine. Drug Des. Dev. Ther. 2016, 10, 687–696. [Google Scholar] [CrossRef]
- Silvado, C.E.; Terra, V.C.; Twardowschy, C.A. CYP2C9 Polymorphisms in Epilepsy: Influence on Phenytoin Treatment. Pharmacogenom. Pers. Med. 2018, 11, 51–58. [Google Scholar] [CrossRef]
- Fang, P.; Tang, P.F.; Xu, R.A.; Zheng, X.; Wen, J.; Bao, S.S.; Cai, J.P.; Hu, G.X. Functional Assessment of CYP3A4 Allelic Variants on Lidocaine Metabolism in Vitro. Drug Des. Dev. Ther. 2017, 11, 3503–3510. [Google Scholar] [CrossRef]
- Mahli, A.; Erwin Thasler, W.; Hellerbrand, C. Establishment of a P-Nitrophenol Oxidation-Based Assay for the Analysis of CYP2E1 Activity in Intact Hepatocytes in Vitro. Toxicol. Mech. Methods 2019, 29, 219–223. [Google Scholar] [CrossRef]
- Atasayar, G.; Eryilmaz, I.E.; Karli, N.; Egeli, U.; Zarifoglu, M.; Cecener, G.; Taskapilioglu, O.; Tunca, B.; Yildirim, O.; Ak, S.; et al. Association of MDR1, CYP2D6, and CYP2C19 gene polymorphisms with prophylactic migraine treatment response. J. Neurol. Sci. 2016, 366, 149–154. [Google Scholar] [CrossRef]
- Batty, J.A.; Hall, A.S.; White, H.L.; Wikstrand, J.; De Boer, R.A.; Van Veldhuisen, D.J.; Van Der Harst, P.; Waagstein, F.; Hjalmarson, Å.; Kjekshus, J.; et al. An investigation of CYP2D6 genotype and response to metoprolol CR/XL during dose titration in patients with heart failure: A MERIT-HF substudy. Clin. Pharmacol. Ther. 2014, 95, 321–330. [Google Scholar] [CrossRef]
- Susce, M.T.; Murray-Carmichael, E.; de Leon, J. Response to hydrocodone, codeine and oxycodone in a CYP2D6 poor metabolizer. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2006, 30, 1356–1358. [Google Scholar] [CrossRef]
- Puangpetch, A.; Vanwong, N.; Nuntamool, N.; Hongkaew, Y.; Chamnanphon, M.; Sukasem, C. CYP2D6 Polymorphisms and Their Influence on Risperidone Treatment. Pharmacogenom. Pers. Med. 2016, 9, 131–147. [Google Scholar] [CrossRef]
- Cooper-DeHoff, R.M.; Niemi, M.; Ramsey, L.B.; Luzum, J.A.; Tarkiainen, E.K.; Straka, R.J.; Gong, L.; Tuteja, S.; Wilke, R.A.; Wadelius, M.; et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1, ABCG2, and CYP2C9 Genotypes and Statin-Associated Musculoskeletal Symptoms. Clin. Pharmacol. Ther. 2022, 111, 1007–1021. [Google Scholar] [CrossRef]
- Bousman, C.A.; Stevenson, J.M.; Ramsey, L.B.; Sangkuhl, K.; Hicks, J.K.; Strawn, J.R.; Singh, A.B.; Ruaño, G.; Mueller, D.J.; Tsermpini, E.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin. Pharmacol. Ther. 2023, 114, 51–68. [Google Scholar] [CrossRef]
- Saruwatari, J.; Nakashima, H.; Tsuchimine, S.; Nishimura, M.; Ogusu, N.; Yasui-Furukori, N. Possible Impact of the CYP2D6*10 Polymorphism on the Nonlinear Pharmacokinetic Parameter Estimates of Paroxetine in Japanese Patients with Major Depressive Disorders. Pharmacogenom. Pers. Med. 2014, 7, 121–127. [Google Scholar] [CrossRef]
- Charoenchokthavee, W.; Areepium, N.; Panomvana, D.; Sriuranpong, V. Effects of CYP2D6 and CYP3A5 Polymorphisms on Tamoxifen and Its Metabolites in Thai Breast Cancer Patients. Breast Cancer Targets Ther. 2017, 9, 249–256. [Google Scholar] [CrossRef]
- Caruso, A.; Bellia, C.; Pivetti, A.; Agnello, L.; Bazza, F.; Scazzone, C.; Bivona, G.; Lo Sasso, B.; Ciaccio, M. Effects of EPHX1 and CYP3A4 Polymorphisms on Carbamazepine Metabolism in Epileptic Patients. Pharmacogenom. Pers. Med. 2014, 7, 117–120. [Google Scholar] [CrossRef]
- Jiang, Z.; Dalton, T.P.; Jin, L.; Wang, B.; Tsuneoka, Y.; Shertzer, H.G.; Deka, R.; Nebert, D.W. Toward the Evaluation of Function in Genetic Variability: Characterizing Human SNP Frequencies and Establishing BAC-transgenic Mice Carrying the Human CYP1A1_CYP1A2 Locus. Hum. Mutat. 2005, 25, 196–206. [Google Scholar] [CrossRef]
- Smart, J.; Daly, A.K. Variation in Induced CYP1A1 Levels: Relationship to CYP1A1, Ah Receptor and GSTM1 Polymorphisms. Pharmacogenet. Genom. 2000, 10, 11–24. [Google Scholar] [CrossRef]
- Chevalier, D.; Allorge, D.; Lo-Guidice, J.M.; Cauffiez, C.; Lhermitte, M.; Lafitte, J.J.; Broly, F. Detection of known and two novel (M331I and r464s) missense mutations in the human CYP1A1 gene in a French Caucasian population. Hum. Mutat. 2001, 17, 355. [Google Scholar] [CrossRef]
- Saito, T.; Egashira, M.; Kiyotani, K.; Fujieda, M.; Yamazaki, H.; Kiyohara, C.; Kunitoh, H.; Kamataki, T. Novel Nonsynonymous Polymorphisms of the CYP1A1 Gene in Japanese. Drug Metab. Pharmacokinet. 2003, 18, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Kisselev, P.; Schunck, W.-H.; Roots, I.; Schwarz, D. Association of CYP1A1 Polymorphisms with Differential Metabolic Activation of 17B-Estradiol and Estrone. Cancer Res. 2005, 65, 2972–2978. [Google Scholar] [CrossRef] [PubMed]
- Cascorbi, I.; Brockmöller, J.; Roots, I. A C4887A polymorphism in exon 7 of human CYP1A1: Population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res. 1996, 56, 4965–4969. [Google Scholar]
- Hayashi, S.; Watanabe, J.; Nakachi, K.; Kawajiri, K. Genetic Linkage of Lung Cancer-Associated Mspl Polymorphisms with Amino Acid Replacement in the Heme Binding Region of the Human Cytochrome P450IA1 Gene. J. Biochem. 1991, 110, 407–411. [Google Scholar] [CrossRef]
- Huang, J.D.; Guo, W.C.; Lai, M.D.; Guo, Y.L.; Lambert, G.H. Detection of a novel cytochrome P-450 1A2 polymorphism (F21L) in Chinese. Drug Metab. Dispos. 1999, 27, 98–101. [Google Scholar] [CrossRef]
- Ariyoshi, N.; Miyazaki, M.; Toide, K.; Sawamura, Y.; Kamataki, T. A Single Nucleotide Polymorphism of CYP2B6 Found in Japanese Enhances Catalytic Activity by Autoactivation. Biochem. Biophys. Res. Commun. 2001, 281, 1256–1260. [Google Scholar] [CrossRef]
- Murayama, N.; Soyama, A.; Saito, Y.; Nakajima, Y.; Komamura, K.; Ueno, K.; Kamakura, S.; Kitakaze, M.; Kimura, H.; Goto, Y.; et al. Six Novel Nonsynonymous CYP1A2 Gene Polymorphisms: Catalytic Activities of the Naturally Occurring Variant Enzymes. J. Pharmacol. Exp. Ther. 2004, 308, 300–306. [Google Scholar] [CrossRef]
- Chevalier, D.; Cauffiez, C.; Allorge, D.; Lo-Guidice, J.M.; Lhermitte, M.; Lafitte, J.J.; Broly, F. Five novel natural allelic variants-951A>C, 1042G>A (D348N), 1156A>T (I386F), 1217G>A (C406Y) and 1291C>T (C431Y)-of the human CYP1A2 gene in a French Caucasian population. Hum. Mutat. 2001, 17, 355–356. [Google Scholar] [CrossRef]
- Zhou, H.; Josephy, P.D.; Kim, D.; Guengerich, F.P. Functional Characterization of Four Allelic Variants of Human Cytochrome P450 1A2. Arch. Biochem. Biophys. 2004, 422, 23–30. [Google Scholar] [CrossRef]
- Kiyotani, K.; Fujieda, M.; Yamazaki, H.; Shimada, T.; Guengerich, F.P.; Parkinson, A.; Nakagawa, K.; Ishizaki, T.; Kamataki, T. Twenty One Novel Single Nucleotide Polymorphisms (SNPs) of the CYP2A6 Gene in Japanese and Caucasians. Drug Metab. Pharmacokinet. 2002, 17, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.S.; Bickmore, W.; Brook, J.D.; McLaren, A.W.; Meehan, R.; Wolf, C.R. Close linkage of the human cytochrome P450IIA and P450IIB gene subfamilies: Implications for the assignment of substrate specificity. Nucleic Acids Res. 1989, 17, 2907–2917. [Google Scholar] [CrossRef]
- Mwenifumbo, J.C.; Al Koudsi, N.; Ho, M.K.; Zhou, Q.; Hoffmann, E.B.; Sellers, E.M.; Tyndale, R.F. Novel and Established CYP2A6 Alleles Impair in Vivo Nicotine Metabolism in a Population of Black African Descent. Hum. Mutat. 2008, 29, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, K.; Kunugita, N.; Kitagawa, M.; Kawamoto, T. CYP2A6*6, a Novel Polymorphism in Cytochrome P450 2A6, Has a Single Amino Acid Substitution (R128Q) That Inactivates Enzymatic Activity. J. Biol. Chem. 2001, 276, 17830–17835. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.K.; Mwenifumbo, J.C.; Zhao, B.; Gillam, E.M.J.; Tyndale, R.F. A Novel CYP2A6 Allele, CYP2A6*23, Impairs Enzyme Function in Vitro and in Vivo and Decreases Smoking in a Population of Black-African Descent. Pharmacogenet. Genom. 2008, 18, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Iida, A.; Sekine, A.; Kawauchi, S.; Higuchi, S.; Ogawa, C.; Nakamura, Y. Catalog of 680 Variations among Eight Cytochrome P450 (CYP) Genes, Nine Esterase Genes, and Two Other Genes in the Japanese Population. J. Hum. Genet. 2003, 48, 249–270. [Google Scholar] [CrossRef]
- Fujieda, M.; Yamazaki, H.; Kiyotani, K.; Muroi, A.; Kunitoh, H.; Dosaka-Akita, H.; Sawamura, Y.; Kamataki, T. Eighteen Novel Polymorphisms of the CYP2A13 Gene in Japanese. Drug Metab. Pharmacokinet. 2003, 18, 86–90. [Google Scholar] [CrossRef]
- Cauffiez, C.; Lo-Guidice, J.-M.; Quaranta, S.; Allorge, D.; Chevalier, D.; Cenée, S.; Hamdan, R.; Lhermitte, M.; Lafitte, J.-J.; Libersa, C.; et al. Genetic Polymorphism of the Human Cytochrome CYP2A13 in a French Population: Implication in Lung Cancer Susceptibility. Biochem. Biophys. Res. Commun. 2004, 317, 662–669. [Google Scholar] [CrossRef]
- Zhang, X.; Su, T.; Zhang, Q.-Y.; Gu, J.; Caggana, M.; Li, H.; Ding, X. Genetic Polymorphisms of the Human CYP2A13 Gene: Identification of Single-Nucleotide Polymorphisms and Functional Characterization of an Arg257Cys Variant. J. Pharmacol. Exp. Ther. 2002, 302, 416–423. [Google Scholar] [CrossRef]
- Lang, T.; Klein, K.; Richter, T.; Zibat, A.; Kerb, R.; Eichelbaum, M.; Schwab, M.; Zanger, U.M. Multiple Novel Nonsynonymous CYP2B6 Gene Polymorphisms in Caucasians: Demonstration of Phenotypic Null Alleles. J. Pharmacol. Exp. Ther. 2004, 311, 34–43. [Google Scholar] [CrossRef]
- Lang, T.; Klein, K.; Fischer, J.; Nussler, A.K.; Neuhaus, P.; Hofmann, U.; Eichelbaum, M.; Schwab, M.; Zanger, U.M. Extensive Genetic Polymorphism in the Human CYP2B6 Gene with Impact on Expression and Function in Human Liver. Pharmacogenetics 2001, 11, 399–415. [Google Scholar] [CrossRef]
- Jinno, H.; Tanaka-Kagawa, T.; Ohno, A.; Makino, Y.; Matsushima, E.; Hanioka, N.; Ando, M. Functional Characterization of Cytochrome P450 2B6 Allelic Variants. Drug Metab. Dispos. 2003, 31, 398–403. [Google Scholar] [CrossRef]
- Lamba, V.; Lamba, J.; Yasuda, K.; Strom, S.; Davila, J.; Hancock, M.L.; Fackenthal, J.D.; Rogan, P.K.; Ring, B.; Wrighton, S.A.; et al. Hepatic CYP2B6 Expression: Gender and Ethnic Differences and Relationship to CYP2B6 Genotype and CAR (Constitutive Androstane Receptor) Expression. J. Pharmacol. Exp. Ther. 2003, 307, 906–922. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Zeldin, D.C.; Blaisdell, J.A.; Chanas, B.; Coulter, S.J.; Ghanayem, B.I.; Goldstein, J.A. Polymorphisms in Human CYP2C8 Decrease Metabolism of the Anticancer Drug Paclitaxel and Arachidonic Acid. Pharmacogenet. Genom. 2001, 11, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, N.; Leathart, J.B.; Mutch, E.; Steimel-Crespi, D.; Dunn, S.A.; Gilissen, R.; Bohets, H.; Williams, F.M.; Armstrong, M.; Crespi, C.L.; et al. CYP2C8 Polymorphisms in Caucasians and Their Relationship with Paclitaxel 6a-Hydroxylase Activity in Human Liver Microsomes. Biochem. Pharmacol. 2002, 64, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Ota, T.; Suzuki, Y.; Nishikawa, T.; Otsuki, T.; Sugiyama, T.; Irie, R.; Wakamatsu, A.; Hayashi, K.; Sato, H.; Nagai, K.; et al. Complete Sequencing and Characterization of 21,243 Full-Length Human cDNAs. Nat. Genet. 2004, 36, 40–45. [Google Scholar] [CrossRef]
- Tsukada, C.; Saito, T.; Maekawa, M.; Mano, N.; Oda, A.; Hirasawa, N.; Hiratsuka, M. Functional Characterization of 12 Allelic Variants of CYP2C8 by Assessment of Paclitaxel 6α-Hydroxylation and Amodiaquine N-Deethylation. Drug Metab. Pharmacokinet. 2015, 30, 366–373. [Google Scholar] [CrossRef]
- Shephard, E.A.; Phillips, I.R.; Santisteban, I.; Palmer, C.N.A.; Povey, S. Cloning, expression and chromosomal localization of a member of the human cytochrome P450IIC gene sub-family. Ann. Hum. Genet. 1989, 53, 23–31. [Google Scholar] [CrossRef]
- Ged, C.; Umbenhauer, D.R.; Bellew, T.M.; Bork, R.W.; Srivastava, P.K.; Shinriki, N.; Lloyd, R.S.; Guengerich, F.P. Characterization of cDNAs, mRNAs, and Proteins Related to Human Liver Microsomal Cytochrome P-450 (S)-Mephenytoin 4′-Hydroxylase. Biochemistry 1988, 27, 6929–6940. [Google Scholar] [CrossRef]
- Romkes, M.; Faletto, M.B.; Blaisdell, J.A.; Raucy, J.L.; Goldstein, J.A. Cloning and Expression of Complementary DNAs for Multiple Members of the Human Cytochrome P450IIC Subfamily. Biochemistry 1991, 30, 3247–3255. [Google Scholar] [CrossRef]
- Okino, S.T.; Quattrochi, L.C.; Pendurthi, U.R.; McBride, O.W.; Tukey, R.H. Characterization of multiple human cytochrome P-450 1 cDNAs. The chromosomal localization of the gene and evidence for alternate RNA splicing. J. Biol. Chem. 1987, 262, 16072–16079. [Google Scholar] [CrossRef]
- Zeldin, D.C.; DuBois, R.N.; Falck, J.R.; Capdevila, J.H. Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch. Biochem. Biophys. 1995, 322, 76–86. [Google Scholar] [CrossRef]
- Ciccacci, C.; Falconi, M.; Paolillo, N.; Oteri, F.; Forte, V.; Novelli, G.; Desideri, A.; Borgiani, P. Characterization of a Novel CYP2C9 Gene Mutation and Structural Bioinformatic Protein Analysis in a Warfarin Hypersensitive Patient. Pharmacogenet. Genom. 2011, 21, 344–346. [Google Scholar] [CrossRef]
- MGC Project Team. The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC). Genome Res. 2004, 14, 2121–2127. [Google Scholar] [CrossRef]
- Kimura, S.; Pastewka, J.; Gelboin, H.V.; Gonzalez, F.J. cDNA and Amino Acid Sequences of Two Members of the Human P450IIC Gene Subfamily. Nucleic Acids Res. 1987, 15, 10053–10054. [Google Scholar] [CrossRef] [PubMed]
- Stubbins, M.J.; Harries, L.W.; Smith, G.; Tarbit, M.H.; Wolf, C.R. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 1996, 6, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Bhasker, C.R.; Miners, J.O.; Coulter, S.; Birkett, D.J. Allelic and functional variability of cytochrome P4502C9. Pharmacogenetic 1997, 7, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Nahar, R.; Dube, D.; Parakh, R.; Deb, R.; Saxena, R.; Singh, T.P.; Verma, I.C. Implication of Novel CYP2C9*57 (p.Asn204His) Variant in Coumarin Hypersensitivity. Thromb. Res. 2013, 131, 535–539. [Google Scholar] [CrossRef]
- Higashi, M.K. Association Between CYP2C9 Genetic Variants and Anticoagulation-Related Outcomes During Warfarin Therapy. JAMA 2002, 287, 1690. [Google Scholar] [CrossRef]
- Umbenhauer, D.R.; Lloyd, R.S.; Guengerich, F.P. Cloning and Sequence Determination of a Complementary DNA Related to Human Liver Microsomal Cytochrome P-450 S-Mephenytoin 4-Hydroxylaset. Biochemistry 1987, 26, 1094–1099. [Google Scholar] [CrossRef]
- Imai, J.; Ieiri, I.; Mamiya, K.; Miyahara, S.; Furuumi, H.; Nanba, E.; Yamane, M.; Fukumaki, Y.; Ninomiya, H.; Tashiro, N.; et al. Polymorphism of the Cytochrome P450 (CYP) 2C9 Gene in Japanese Epileptic Patients: Genetic Analysis of the CYP2C9 Locus. Pharmacogenet. Genom. 2000, 10, 85–89. [Google Scholar] [CrossRef]
- Dickmann, L.J.; Rettie, A.E.; Kneller, M.B.; Kim, R.B.; Wood, A.J.; Stein, C.M.; Wilkinson, G.R.; Schwarz, U.I. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol. Pharmacol. 2001, 60, 382–387. [Google Scholar] [CrossRef]
- Dai, D.-P.; Wang, S.-H.; Li, C.-B.; Geng, P.-W.; Cai, J.; Wang, H.; Hu, G.-X.; Cai, J.-P. Identification and Functional Assessment of a New CYP2C9 Allelic Variant CYP2C9*59. Drug Metab. Dispos. 2015, 43, 1246–1249. [Google Scholar] [CrossRef]
- Blaisdell, J.; Mohrenweiser, H.; Jackson, J.; Ferguson, S.; Coulter, S.; Chanas, B.; Xi, T.; Ghanayem, B.; Goldstein, J.A. Identification and Functional Characterization of New Potentially Defective Alleles of Human CYP2C19. Pharmacogenet. Genom. 2002, 12, 703–711. [Google Scholar] [CrossRef]
- Fukushima-Uesaka, H.; Saito, Y.; Maekawa, K.; Ozawa, S.; Hasegawa, R.; Kajio, H.; Kuzuya, N.; Yasuda, K.; Kawamoto, M.; Kamatani, N.; et al. Genetic Variations and Haplotypes of CYP2C19 in a Japanese Population. Drug Metab. Pharmacokinet. 2005, 20, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Ibeanu, G.C.; Goldstein, J.A.; Meyer, U.R.S.; Benhamou, S.; Bouchardy, C.; Dayer, P.; Ghanayem, B.I.; Blaisdell, J. Identification of new human CYP2C19 alleles (CYP2C19*6 and CYP2C19*2B) in a Caucasian poor metabolizer of mephenytoin. J. Pharmacol. Exp. Ther. 1998, 286, 1490–1495. [Google Scholar] [CrossRef] [PubMed]
- Ibeanu, G.C.; Blaisdell, J.; Ferguson, R.J.; Ghanayem, B.I.; Brosen, K.; Benhamou, S.; Bouchardy, C.; Wilkinson, G.R.; Dayer, P.; Goldstein, J.A. A novel transversion in the intron 5 donor splice junction of CYP2C19 and a sequence polymorphism in exon 3 contribute to the poor metabolizer phenotype for the anticonvulsant drug S-mephenytoin. J. Pharmacol. Exp. Ther. 1999, 290, 635–640. [Google Scholar] [CrossRef]
- Morita, J.; Kobayashi, K.; Wanibuchi, A.; Kimura, M.; Irie, S.; Ishizaki, T.; Chiba, K. A Novel Single Nucleotide Polymorphism (SNP) of the CYP2C19 Gene in a Japanese Subject with Lowered Capacity of Mephobarbital 4′-Hydroxylation. Drug Metab. Pharmacokinet. 2004, 19, 236–238. [Google Scholar] [CrossRef]
- Demorais, S.M.; Schweikl, H.; Blaisdell, J.; Goldstein, J.A. Gene structure and upstream regulatory regions of human CYP2C9 and CYP2C18. Biochem. Biophys. Res. Commun. 1993, 194, 194–201. [Google Scholar] [CrossRef]
- Dai, D.; Geng, P.; Wang, S.; Cai, J.; Hu, L.; Nie, J.; Hu, J.; Hu, G.; Cai, J. In Vitro Functional Assessment of 22 Newly Identified CYP2D6 Allelic Variants in the Chinese Population. Basic Clin. Pharmacol. Toxicol. 2015, 117, 39–43. [Google Scholar] [CrossRef]
- Gaedigk, A.; Bhathena, A.; Ndjountché, L.; Pearce, R.E.; Abdel-Rahman, S.M.; Alander, S.W.; DiAnne Bradford, L.; Steven Leeder, J. Identification and Characterization of Novel Sequence Variations in the Cytochrome P4502D6 (CYP2D6) Gene in African Americans. Pharmacogenom. J. 2005, 5, 173–182. [Google Scholar] [CrossRef]
- Yokota, H.; Tamura, S.; Furuya, H.; Kimura, S.; Watanabe, M.; Kanazawa, I.; Kondo, I.; Gonzalez, F.J. Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteine metabolism. Pharmacogenetics 1993, 3, 256–263. [Google Scholar] [CrossRef]
- Genet, H. An Additional Allelic Variant of the CYP2D6 Gene Causing Impaired Metabolism of Sparteine. Hum. Genet. 1996, 97, 668–670. [Google Scholar] [CrossRef]
- Masimirembwa, C.; Persson, I.; Bertilsson, L.; Hasler, J.; Ingelman-Sundberg, M. A Novel Mutant Variant of the CYP2D6 Gene (CYP2D617) Common in a Black African Population: Association with Diminished Debrisoquine Hydroxylase Activity. Br. J. Clin. Pharmacol. 1996, 42, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Lai, M.D.; Huang, J.D. G169R mutation diminishes the metabolic activity of CYP2D6 in Chinese. Drug Metab. Dispos. 1999, 27, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.K.; Leathart, J.B.; Idle, J.R.; London, S.J. An Inactive Cytochrome P450 CYP2D6 Allele Containing a Deletion and a Base Substitution. Hum. Genet. 1995, 95, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Tyndale, R.; Aoyama, T.; Broly, F.; Matsunaga, T.; Inaba, T.; Kalow, W.; Gelboin, H.V.; Meyer, U.A.; Gonzalez, F.J. Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: Possible association with the poor metabolizer phenotype. Pharmacogenetics 1991, 1, 26–32. [Google Scholar] [CrossRef]
- Dunham, I.; Shimizu, N.; Roe, B.A.; Chissoe, S. The DNA Sequence of Human Chromosome 22. Nature 1999, 402, 489–495. [Google Scholar] [CrossRef]
- Sridar, C.; Snider, N.T.; Hollenberg, P.F. Anandamide Oxidation by Wild-Type and Polymorphically Expressed CYP2B6 and CYP2D6. Drug Metab. Dispos. 2011, 39, 782–788. [Google Scholar] [CrossRef]
- Evert, B.; Griese, E.-U.; Eichelbaum, M. A Missense Mutation in Exon 6 of the CYP2D6 Gene Leading to a Histidine 324 to Proline Exchange Is Associated with the Poor Metabolizer Phenotype of Sparteine. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1994, 350, 434–439. [Google Scholar] [CrossRef]
- Hu, Y.; Oscarson, M.; Johansson, I.; Yue, Q.Y.; Dahl, M.L.; Tabone, M.; Arincò, S.; Albano, E.; Ingelman-Sundberg, M. Genetic polymorphism of human CYP2E1: Characterization of two variant alleles. Mol. Pharmacol. 1997, 51, 370–376. [Google Scholar] [CrossRef]
- Fairbrother, K.S.; Grove, J.; de Waziers, I.; Steimel, D.T.; Day, C.P.; Crespi, C.L.; Daly, A.K. Detection and characterization of novel polymorphisms in the CYP2E1 gene. Pharmacogenetics 1998, 8, 543–552. [Google Scholar] [CrossRef]
- Lamba, J.K.; Lin, Y.S.; Thummel, K.; Daly, A.; Watkins, P.B.; Strom, S.; Zhang, J.; Schuetz, E.G. Common Allelic Variants of Cytochrome P4503A4 and Their Prevalence in Different Populations. Pharmacogenet. Genom. 2002, 12, 121–132. [Google Scholar] [CrossRef]
- Eiselt, R.; Domanski, T.L.; Zibat, A.; Mueller, R.; Presecan-Siedel, E.; Hustert, E.; Zanger, U.M.; Klenk, H.-P.; Meyer, U.A.; Khan, K.K.; et al. Identification and Functional Characterization of Eight CYP3A4 Protein Variants. Pharmacogenetics 2001, 11, 447–458. [Google Scholar] [CrossRef]
- Pratt-Hyatt, M.; Zhang, H.; Snider, N.T.; Hollenberg, P.F. Effects of a Commonly Occurring Genetic Polymorphism of Human CYP3A4 (I118V) on the Metabolism of Anandamide. Drug Metab. Dispos. 2010, 38, 2075–2082. [Google Scholar] [CrossRef]
- Hsieh, K.P.; Lin, Y.Y.; Cheng, C.L.; Lai, M.L.; Lin, M.S.; Siest, J.P.; Huang, J.D. Novel mutations of CYP3A4 in Chinese. Drug Metab. Dispos. 2001, 29, 268–273. [Google Scholar]
- Dai, D.; Tang, J.; Rose, R.; Hodgson, E.; Bienstock, R.J.; Mohrenweiser, H.W.; Goldstein, J.A. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J. Pharmacol. Exp. Ther. 2001, 299, 825–831. [Google Scholar] [CrossRef]
- Sata, F. CYP3A4 Allelic Variants with Amino Acid Substitutions in Exons 7 and 12: Evidence for an Allelic Variant with Altered Catalytic Activity. Clin. Pharmacol. Ther. 2000, 67, 48–56. [Google Scholar] [CrossRef]
- Molowa, D.T.; Schuetz, E.G.; Wrighton, S.A.; Watkins, P.B.; Kremers, P.; Mendez-Picon, G.; Parker, G.A.; Guzelian, P.S. Complete cDNA Sequence of a Cytochrome P-450 Inducible by Glucocorticoids in Human Liver. Proc. Natl. Acad. Sci. USA 1986, 83, 5311–5315. [Google Scholar] [CrossRef]
- Roizen, J.D.; Li, D.; O’Lear, L.; Javaid, M.K.; Shaw, N.J.; Ebeling, P.R.; Nguyen, H.H.; Rodda, C.P.; Thummel, K.E.; Thacher, T.D.; et al. CYP3A4 mutation causes vitamin D-dependent rickets type 3. J. Clin. Investig. 2018, 128, 1913–1918. [Google Scholar] [CrossRef]
- Beaune, P.H.; Umbenhauer, D.R.; Bork, R.W.; Lloyd, R.S.; Guengerich, F.P. Isolation and Sequence Determination of a cDNA Clone Related to Human Cytochrome P-450 Nifedipine Oxidase. Proc. Natl. Acad. Sci. USA 1986, 83, 8064–8068. [Google Scholar] [CrossRef]
- Bork, R.W.; Muto, T.; Beaune, P.H.; Srivastava, P.K.; Lloyd, R.S.; Guengerich, F.P. Characterization of mRNA species related to human liver cytochrome P-450 nifedipine oxidase and the regulation of catalytic activity. J. Biol. Chem. 1989, 264, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Chou, F.C.; Tzeng, S.J.; Huang, J.D. Genetic polymorphism of cytochrome P450 3A5 in Chinese. Drug Metab. Dispos. 2001, 29, 1205–1209. [Google Scholar] [PubMed]
- Karam, G.; Chiang, J.Y. Polymorphisms of human cholesterol 7 alpha-hydroxylase. Biochem. Biophys. Res. Commun. 1992, 185, 588–595. [Google Scholar] [CrossRef]
- Noshiro, M.; Okuda, K. Molecular cloning and sequence analysis of cDNA encoding human cholesterol 7 alpha-hydroxylase. FEBS Lett. 1990, 268, 137–140. [Google Scholar] [CrossRef]
- Hu, G.-X.; Dai, D.-P.; Wang, H.; Huang, X.-X.; Zhou, X.-Y.; Cai, J.; Chen, H.; Cai, J.-P. Systematic Screening for CYP3A4 Genetic Polymorphisms in a Han Chinese Population. Pharmacogenomics 2017, 18, 369–379. [Google Scholar] [CrossRef]
- Drögemöller, B.; Plummer, M.; Korkie, L.; Agenbag, G.; Dunaiski, A.; Niehaus, D.; Koen, L.; Gebhardt, S.; Schneider, N.; Olckers, A.; et al. Characterization of the Genetic Variation Present in CYP3A4 in Three South African Populations. Front. Gene 2013, 4, 17. [Google Scholar] [CrossRef]
- Musyoka, K.; Chan, C.W.; Gutiérrez Rico, E.M.; Omondi, P.; Kijogi, C.; Okai, T.; Kongere, J.; Ngara, M.; Kagaya, W.; Kanoi, B.N.; et al. Genetic Variation Present in the CYP3A4 Gene in Ni-Vanuatu and Kenyan Populations in Malaria Endemicity. Drug Metab. Pharmacokinet. 2024, 57, 101029. [Google Scholar] [CrossRef]
- Alessandrini, M.; Asfaha, S.; Dodgen, T.M.; Warnich, L.; Pepper, M.S. Cytochrome P450 Pharmacogenetics in African Populations. Drug Metab. Rev. 2013, 45, 253–275. [Google Scholar] [CrossRef]
- Fohner, A.; Muzquiz, L.I.; Austin, M.A.; Gaedigk, A.; Gordon, A.; Thornton, T.; Rieder, M.J.; Pershouse, M.A.; Putnam, E.A.; Howlett, K.; et al. Pharmacogenetics in American Indian Populations: Analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes. Pharmacogenet. Genom. 2013, 23, 403–414. [Google Scholar] [CrossRef]
- Lee, J.S.; Cheong, H.S.; Kim, L.H.; Kim, J.O.; Seo, D.W.; Kim, Y.H.; Chung, M.W.; Han, S.Y.; Shin, H.D. Screening of Genetic Polymorphisms of CYP3A4 and CYP3A5 Genes. Korean J. Physiol. Pharmacol. 2013, 17, 479. [Google Scholar] [CrossRef]
- Anderson, G.D. Chapter 1 Gender Differences in Pharmacological Response. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2008; Volume 83, pp. 1–10. [Google Scholar] [CrossRef]
- Cummins, C.L.; Wu, C.; Benet, L.Z. Sex-related Differences in the Clearance of Cytochrome P450 3A4 Substrates May Be Caused by P-glycoprotein. Clin. Pharma Ther. 2002, 72, 474–489. [Google Scholar] [CrossRef]
- Gorski, J.C.; Jones, D.R.; Haehner-Daniels, B.D.; Hamman, M.A.; O’Mara, E.M., Jr.; Hall, S.D. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin. Pharmacol. Ther. 1998, 64, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Greenblatt, D.J.; Harmatz, J.S.; Gouthro, T.A.; Locke, J.; Shader, R.I. Distinguishing a benzodiazepine agonist (triazolam) from a nonagonist anxiolytic (buspirone) by electroencephalography: Kinetic-dynamic studies. Clin. Pharmacol. Ther. 1994, 56, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.M.; Li, Y.H.; Liu, Q.; Pang, N.H.; Xu, R.A.; Cai, J.P.; Hu, G.X. Functional characteristics of CYP3A4 allelic variants on the metabolism of loperamide in vitro. Infect. Drug Resist. 2019, 12, 2809–2817. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, Y.; Hu, J.; Ye, Z.; Lin, Q.; Cai, J.; Hu, G.; Xu, R. Effect of Recombinant CYP3A4 Variants and Interaction on Imatinib Metabolism in Vitro. Biomed. Pharmacother. 2024, 180, 117511. [Google Scholar] [CrossRef]
- Xu, X.; Chen, J.; Chen, Z.; Zhang, Z.; Jin, L.; Luo, J.; Zhong, Y.; Zhou, Q.; Qian, J. CYP3A4 Activity Variations Can Lead to Stratified Metabolism of Abemaciclib. Int. J. Biol. Macromol. 2025, 304, 140836. [Google Scholar] [CrossRef]
- Šrejber, M.; Navrátilová, V.; Paloncýová, M.; Bazgier, V.; Berka, K.; Anzenbacher, P.; Otyepka, M. Membrane-Attached Mammalian Cytochromes P450: An Overview of the Membrane’s Effects on Structure, Drug Binding, and Interactions with Redox Partners. J. Inorg. Biochem. 2018, 183, 117–136. [Google Scholar] [CrossRef]
- Baylon, J.L.; Lenov, I.L.; Sligar, S.G.; Tajkhorshid, E. Characterizing the Membrane-Bound State of Cytochrome P450 3A4: Structure, Depth of Insertion, and Orientation. J. Am. Chem. Soc. 2013, 135, 8542–8551. [Google Scholar] [CrossRef]
- Mustafa, G.; Nandekar, P.P.; Bruce, N.J.; Wade, R.C. Differing Membrane Interactions of Two Highly Similar Drug-Metabolizing Cytochrome P450 Isoforms: CYP 2C9 and CYP 2C19. Int. J. Mol. Sci. 2019, 20, 4328. [Google Scholar] [CrossRef]
- Prade, E.; Mahajan, M.; Im, S.; Zhang, M.; Gentry, K.A.; Anantharamaiah, G.M.; Waskell, L.; Ramamoorthy, A. A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs. Angew. Chem. 2018, 130, 8594–8598. [Google Scholar] [CrossRef]
- Berka, K.; Paloncýová, M.; Anzenbacher, P.; Otyepka, M. Behavior of Human Cytochromes P450 on Lipid Membranes. J. Phys. Chem. B 2013, 117, 11556–11564. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.R.; Ramamoorthy, A. Direct Interaction between the Transmembrane Helices Stabilize Cytochrome P450 2B4 and Cytochrome B5 Redox Complex. Biophys. Chem. 2023, 301, 107092. [Google Scholar] [CrossRef] [PubMed]
- Monk, B.C.; Tomasiak, T.M.; Keniya, M.V.; Huschmann, F.U.; Tyndall, J.D.A.; O’Connell, J.D., III; Cannon, R.D.; McDonald, J.G.; Rodriguez, A.; Finer-Moore, J.S.; et al. Architecture of a Single Membrane Spanning Cytochrome P450 Suggests Constraints That Orient the Catalytic Domain Relative to a Bilayer. Proc. Natl. Acad. Sci. USA 2014, 111, 3865–3870. [Google Scholar] [CrossRef] [PubMed]
- Günther, J.; Schuler, G.; Teppa, E.; Fürbass, R. Charged Amino Acids in the Transmembrane Helix Strongly Affect the Enzyme Activity of Aromatase. Int. J. Mol. Sci. 2024, 25, 1440. [Google Scholar] [CrossRef]
- Mustafa, G.; Nandekar, P.P.; Camp, T.J.; Bruce, N.J.; Gregory, M.C.; Sligar, S.G.; Wade, R.C. Influence of Transmembrane Helix Mutations on Cytochrome P450-Membrane Interactions and Function. Biophys. J. 2019, 116, 419–432. [Google Scholar] [CrossRef]
- Urban, P.; Lautier, T.; Pompon, D.; Truan, G. Ligand Access Channels in Cytochrome P450 Enzymes: A Review. Int. J. Mol. Sci. 2018, 19, 1617. [Google Scholar] [CrossRef]
- Benkaidali, L.; André, F.; Moroy, G.; Tangour, B.; Maurel, F.; Petitjean, M. Four Major Channels Detected in the Cytochrome P450 3A4: A Step toward Understanding Its Multispecificity. Int. J. Mol. Sci. 2019, 20, 987. [Google Scholar] [CrossRef]
- Fishelovitch, D.; Shaik, S.; Wolfson, H.J.; Nussinov, R. Theoretical Characterization of Substrate Access/Exit Channels in the Human Cytochrome P450 3A4 Enzyme: Involvement of Phenylalanine Residues in the Gating Mechanism. J. Phys. Chem. B 2009, 113, 13018–13025. [Google Scholar] [CrossRef]
- Su, K.-H.; Wu, C.-T.; Lin, S.-W.; Mori, S.; Liu, W.-M.; Yang, H.-C. Calculation of CYP450 Protein–Ligand Binding and Dissociation Free Energy Paths. J. Chem. Phys. 2021, 155, 025101. [Google Scholar] [CrossRef]
- Ducassou, L.; Dhers, L.; Jonasson, G.; Pietrancosta, N.; Boucher, J.-L.; Mansuy, D.; André, F. Membrane-Bound Human Orphan Cytochrome P450 2U1: Sequence Singularities, Construction of a Full 3D Model, and Substrate Docking. Biochimie 2017, 140, 166–175. [Google Scholar] [CrossRef]
- Waskell, L.; Kim, J.-J.P. Electron Transfer Partners of Cytochrome P450. In Cytochrome P450: Structure, Mechanism, and Biochemistry; Springer International Publishing: Cham, Switzerland, 2015; pp. 33–68. [Google Scholar] [CrossRef]
- Mahajan, M.; Ravula, T.; Prade, E.; Anantharamaiah, G.M.; Ramamoorthy, A. Probing Membrane Enhanced Protein–Protein Interactions in a Minimal Redox Complex of Cytochrome-P450 and P450-Reductase. Chem. Commun. 2019, 55, 5777–5780. [Google Scholar] [CrossRef]
- Sevrioukova, I.F.; Li, H.; Zhang, H.; Peterson, J.A.; Poulos, T.L. Structure of a Cytochrome P450–Redox Partner Electron-Transfer Complex. Proc. Natl. Acad. Sci. USA 1999, 96, 1863–1868. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.; Jahr, N.; Im, S.-C.; Vivekanandan, S.; Popovych, N.; Le Clair, S.V.; Huang, R.; Soong, R.; Xu, J.; Yamamoto, K.; et al. A Model of the Membrane-Bound Cytochrome B5-Cytochrome P450 Complex from NMR and Mutagenesis Data. J. Biol. Chem. 2013, 288, 22080–22095. [Google Scholar] [CrossRef] [PubMed]
- Sellner, M.; Fischer, A.; Don, C.G.; Smieško, M. Conformational Landscape of Cytochrome P450 Reductase Interactions. Int. J. Mol. Sci. 2021, 22, 1023. [Google Scholar] [CrossRef]
- Sevrioukova, I.F.; Poulos, T.L. Structural Biology of Redox Partner Interactions in P450cam Monooxygenase: A Fresh Look at an Old System. Arch. Biochem. Biophys. 2011, 507, 66–74. [Google Scholar] [CrossRef]
- Gricman, Ł.; Weissenborn, M.J.; Hoffmann, S.M.; Borlinghaus, N.; Hauer, B.; Pleiss, J. Redox Partner Interaction Sites in Cytochrome P450 Monooxygenases:In SilicoAnalysis and Experimental Validation. ChemistrySelect 2016, 1, 1243–1251. [Google Scholar] [CrossRef]
- Liu, X.; Li, F.; Sun, T.; Guo, J.; Zhang, X.; Zheng, X.; Du, L.; Zhang, W.; Ma, L.; Li, S. Three Pairs of Surrogate Redox Partners Comparison for Class I Cytochrome P450 Enzyme Activity Reconstitution. Commun. Biol. 2022, 5, 791. [Google Scholar] [CrossRef]
- Zhang, W.; Du, L.; Li, F.; Zhang, X.; Qu, Z.; Han, L.; Li, Z.; Sun, J.; Qi, F.; Yao, Q.; et al. Mechanistic Insights into Interactions between Bacterial Class I P450 Enzymes and Redox Partners. ACS Catal. 2018, 8, 9992–10003. [Google Scholar] [CrossRef]
- Campelo, D.; Lautier, T.; Urban, P.; Esteves, F.; Bozonnet, S.; Truan, G.; Kranendonk, M. Correction: The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength. Front. Pharmacol. 2018, 9, 175. [Google Scholar] [CrossRef]
Enzyme | Relevant Mutations | Mutations Overall | No. of Relevant Mutations | % of Relevant Mutations |
---|---|---|---|---|
CYP1A1 | T461N, I462V | 14 | 2 | 14.3 |
CYP1A2 | F21L, R431W | 22 | 2 | 9.1 |
CYP1B1 | Not considered | |||
CYP2A6 | R203C | 19 | 1 | 5.3 |
CYP2A13 | R257C | 8 | 1 | 12.5 |
CYP2B6 | K139E, Q172H, I391N, R487C | 18 | 4 | 22.2 |
CYP2C8 | R139K, G171S, R186G, I223M, A238P, K247R, I264M, I269F, K383N, L390S, K399R, V461del | 17 | 12 | 70.5 |
CYP2C9 | R125L, N204H, I359T, D360E, I434F | 16 | 5 | 31.3 |
CYP2C19 | E92D, W120R, R132Q, P227L, R442C | 16 | 5 | 31.3 |
CYP2C18 | - | 1 | 0 | 0.0 |
CYP2D6 | P34S, G42R, T107I, L142S, G169R, G212E, E215K, T249P, K281del, R296C, H324P, R440C, S486T | 44 | 13 | 29.6 |
CYP2E1 | R76H | 6 | 1 | 16.7 |
CYP3A4 | I118V, F189S, P218R, S222P, L293P, I301T, T363M, L373F, P416L, I431T, M445T, P467S | 20 | 12 | 60.0 |
CYP3A5 | R28C, A337T, F446S | 7 | 3 | 42.9 |
CYP7A1 | 0 | 3 | 0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prost, R.; Płaziński, W. Natural Polymorphic Variants in the CYP450 Superfamily: A Review of Potential Structural Mechanisms and Functional Consequences. Int. J. Mol. Sci. 2025, 26, 7797. https://doi.org/10.3390/ijms26167797
Prost R, Płaziński W. Natural Polymorphic Variants in the CYP450 Superfamily: A Review of Potential Structural Mechanisms and Functional Consequences. International Journal of Molecular Sciences. 2025; 26(16):7797. https://doi.org/10.3390/ijms26167797
Chicago/Turabian StyleProst, Rafał, and Wojciech Płaziński. 2025. "Natural Polymorphic Variants in the CYP450 Superfamily: A Review of Potential Structural Mechanisms and Functional Consequences" International Journal of Molecular Sciences 26, no. 16: 7797. https://doi.org/10.3390/ijms26167797
APA StyleProst, R., & Płaziński, W. (2025). Natural Polymorphic Variants in the CYP450 Superfamily: A Review of Potential Structural Mechanisms and Functional Consequences. International Journal of Molecular Sciences, 26(16), 7797. https://doi.org/10.3390/ijms26167797