Purgative Effect, Acute Toxicity, and Quantification of Phorbol-12-Myristate-13-Acetate and Crotonic Acid in Croton tiglium L. Seeds Before and After Treatment by Thai Traditional Detoxification Process
Abstract
1. Introduction
2. Results
2.1. Acute Toxicity: Sighting Study
2.2. Acute Toxicity: Main Study
2.2.1. Physical Examination
2.2.2. Hematological and Serum Biochemical Parameters
2.3. Purgative Activity
2.3.1. General Data
2.3.2. Data of Feces
2.3.3. Pathological Examination
2.4. HPLC Chromatogram of CB and CA Extracts
2.5. Determination of the Amounts of Crotonic Acid and PMA
2.6. Identification of Di-(2-ethylhexyl)phthalate (DEHP)
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals and Reagents
4.3. Treatment of C. tiglium Seeds by Thai Traditional Detoxification Process (TDP)
4.4. Preparation of Croton Seeds
4.4.1. For Acute Toxicity Test and Purgative Activity
4.4.2. For Determination of Phorbol-12-Myristate-13-Acetate (PMA)
4.5. Acute Toxicity
4.5.1. Animals
4.5.2. Acute Toxicity Test
4.5.3. Sighting Study
4.5.4. Main Study
4.6. Purgative Activity
4.6.1. Animals
4.6.2. Purgative Activity Test
4.7. Determination of Toxic Compounds in the Seed Extracts
4.7.1. Determination of Crotonic Acid and PMA
4.7.2. Validation Method
Linearity
Limit of Detection (LOD) and Limit of Quantitation (LOQ)
Precision
Accuracy
4.8. Isolation of Di-(2-ethylhexyl)phthalate (DEHP)
4.9. Structure Elucidation of DEHP
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RSD | Relative standard deviation |
ALP | Alkaline phosphatase |
ALT | Alanine transaminase |
AST | Aspartate Aminotransferase |
(BW) | Body weight |
BUN | Blood Urea Nitrogen |
CB | C. tiglium seeds before treatment. |
CA | C. tiglium seeds after treatment. |
C. tiglium | Croton tiglium L. |
HTC | Hematocrit |
HGB | Hemoglobin |
HPLC. | High performance liquid chromatography |
LOD | Limit of Detection |
LOQ | Limit of Quantitation |
MCH | Mean Corpuscular Hemoglobin |
MCHC | Mean Corpuscular Hemoglobin Concentration |
MCV | Mean Corpuscular Volume |
MPV | Mean Platelet Volume |
OECD | Organization for Economic Co-operation and Development |
ANOVA | One-way analysis of variance |
PMA | Phorbol-12-myristate-13-acetate |
PLT | Platelets |
RBC | Red Blood Cells |
RDW-SD | Red Cell Distribution Width–Standard Deviation |
TB | Total Bilirubin |
TDP | Thai traditional detoxification process |
TP | Total Protein |
WBC | White Blood Cells |
PC | Castor oil or positive control |
NMR | Nuclear magnetic resonance |
MS | Mass spectrometry |
DEHP | Di-(2-ethylhexyl) phthalate |
References
- Beyer, J.; Esser, H.-J.; Eurlings, M.; Vanwelzen, P. A revision of the genus Croton (Euphorbiaceae) in sumatra (Indonesia). Blumea 2023, 68, 1–25. [Google Scholar] [CrossRef]
- Wang, X.; Lan, M.; Wu, H.P.; Shi, Y.Q.; Lu, J.; Ding, J.; Wu, K.C.; Jin, J.P.; Fan, D.M. Direct effect of croton oil on intestinal epithelial cells and colonic smooth muscle cells. World J. Gastroenterol. 2002, 8, 103–107. [Google Scholar] [CrossRef]
- Morimura, K.-i. The role of special group article in ancient chinese medical prescription. Hist Sci. 2003, 13, 1–12. [Google Scholar]
- Tsai, J.C.; Tsai, S.; Chang, W.C. Effect of ethanol extracts of three Chinese medicinal plants with laxative properties on ion transport of the rat intestinal epithelia. Biol. Pharm. Bull. 2004, 27, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Riaz, M.; Malik, A.; Shahid, M. Effect of seed extracts of Withania somnifera, Croton tiglium and Hygrophila auriculata on behavior and physiology of Odontotermes obesus (Isoptera, Termitidae). Biologia 2007, 62, 770–773. [Google Scholar] [CrossRef]
- Salatino, A.; Salatino, M.L.F.; Negri, G. Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae). J. Braz. Chem. Soc. 2007, 18, 11–33. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W.; Zhang, J.; Hu, J. Antinociceptive and smooth muscle relaxant activity of Croton tiglium L seed: An in-vitro and in-vivo study. Iran. J. Pharm. Res. 2012, 11, 611–620. [Google Scholar]
- Wang, J.F.; Yang, S.H.; Liu, Y.Q.; Li, D.X.; He, W.J.; Zhang, X.X.; Liu, Y.H.; Zhou, X.J. Five new phorbol esters with cytotoxic and selective anti-inflammatory activities from Croton tiglium. Bioorg. Med. Chem. Lett. 2015, 25, 1986–1989. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, X.; Sun, R.; Zhao, P.; Liu, F.; Zhang, C. Croton tiglium extract induces apoptosis via Bax/Bcl-2 pathways in human lung cancer A549 cells. Asian Pac. J. Cancer Prev. 2016, 17, 4893–4898. [Google Scholar] [PubMed]
- Zhang, X.-L.; Khan, A.-A.; Wang, L.; Yu, K.; Li, F.; Wang, M.-K. Four new phorbol diesters from Croton tiglium and their cytotoxic activities. Phytochem. Lett. 2016, 16, 82–86. [Google Scholar] [CrossRef]
- Mudium, R.; Kolasani, B. Anticonvulsant effect of hydroalcoholic seed extract of Croton tiglium in rats and mice. J. Clin. Diagn. Res. 2014, 8, 24. [Google Scholar] [CrossRef]
- Pal, P.K.; Nandi, M.K.; Singh, N.K. Detoxification of Croton tiglium L. seeds by Ayurvedic process of Śodhana. Anc. Sci. Life 2014, 33, 157–161. [Google Scholar] [CrossRef]
- Madrigales-Ahuatzi, D.; Perez-Gutierrez, R.M. Evaluation of anti-inflammatory activity of seeds of Phalaris canariensis. Drug Res. 2016, 66, 23–27. [Google Scholar] [CrossRef]
- Aboulthana, W.M.; Youssef, A.M.; El-Feky, A.M.; Ibrahim, N.E.-S.; Seif, M.M.; Hassan, A.K. Evaluation of antioxidant efficiency of Croton tiglium L. seeds extracts after incorporating silver nanoparticles. Egypt. J. Chem. 2019, 62, 181–200. [Google Scholar]
- Chang, S.N.; Dey, D.K.; Oh, S.T.; Kong, W.H.; Cho, K.H.; Al-Olayan, E.M.; Hwang, B.S.; Kang, S.C.; Park, J.G. Phorbol 12-myristate 13-acetate induced toxicity study and the role of tangeretin in abrogating HIF-1alpha-NF-kappaB crosstalk in vitro and In vivo. Int. J. Mol. Sci. 2020, 21, 9261. [Google Scholar] [CrossRef] [PubMed]
- Fürstenberger, G.; Berry, D.L.; Sorg, B.; Marks, F. Skin tumor promotion by phorbol esters is a two-stage process. Proc. Natl. Acad. Sci. USA 1981, 78, 7722–7726. [Google Scholar] [CrossRef] [PubMed]
- Department for Development of Thai Traditional and Alternative Medicine Ministry of Public Health. Handbook in Thai Traditional Pharmacy for Preparing Herbal Ingredient (Prasa-Satu-Kharith), 1st ed.; War Veterans Organization of Thailand Under Royal Patronage of His majesty the King: Bangkok, Thailand, 2014; pp. 43–58. [Google Scholar]
- Bunreungthong, K.; Boonyarat, C.; Welbat, J.U.; Nillert, N.; Pannangrong, W. Total phenolic and flavonoid contents, antioxidant activity of Antidesma velutinosum extract and effect of the extract on spatial memory in rats. Sri Med. J. 2023, 38, 409–415. [Google Scholar]
- Kerdsiri, J.; Wisuitiprot, W.; Boonnoun, P.; Chantakul, R.; Netsopa, S.; Nuengchamnong, N.; Waranuch, N. Effect of extraction methods on biological activities of Thai rice bran extracts. Songklanakarin J. Sci. Technol. 2020, 42, 1007–1015. [Google Scholar]
- Delwatta, S.L.; Gunatilake, M.; Baumans, V.; Seneviratne, M.D.; Dissanayaka, M.L.B.; Batagoda, S.S.; Udagedara, A.H.; Walpola, P.B. Reference values for selected hematological, biochemical and physiological parameters of Sprague-Dawley rats at the Animal House, Faculty of Medicine, University of Colombo, Sri Lanka. Anim. Model. Exp. Med. 2018, 1, 250–254. [Google Scholar] [CrossRef]
- Rajamanikyam, M.; Vadlapudi, V.; Parvathaneni, S.P.; Koude, D.; Sripadi, P.; Misra, S.; Amanchy, R.; Upadhyayula, S.M. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest. EXCLI J. 2017, 16, 375–387. [Google Scholar]
- Wang, X.; Zhang, F.; Liu, Z.; Feng, H.; Yu, Z.B.; Lu, Y.; Zhai, H.; Bai, F.; Shi, Y.; Lan, M.; et al. Effects of essential oil from Croton tiglium L. on intestinal transit in mice. J. Ethnopharmacol. 2008, 117, 102–107. [Google Scholar] [CrossRef]
- Pillai, N.R. Gastro intestinal effects of Croton tiglium in experimental animals. Anc. Sci. Life 1999, 18, 205–209. [Google Scholar] [PubMed]
- Chandrasekar, R.; Chandrasekar, S. Laxative a herbal remedy for relieving constipation. World J. Pharm. Pharm. Sci. 2016, 5, 2278–4357. [Google Scholar]
- Bong Eun, L.; Tae Hee, L.; Seong Eun, K.; Kyung Sik, P.; Seon Young, P.; Jeong Eun, S.; Kee Wook, J.; Suck Chei, C.; Kyoung Sup, H.; Sung Noh, H. Conventional laxatives. Korean J. Med. 2015, 88, 1–8. [Google Scholar] [CrossRef]
- Hajji, N.; Wanes, D.; Jabri, M.A.; Rtibi, K.; Tounsi, H.; Abdellaoui, A.; Sebai, H. Purgative/laxative actions of Globularia alypum aqueous extract on gastrointestinal-physiological function and against loperamide-induced constipation coupled to oxidative stress and inflammation in rats. Neurogastroenterol. Motil. 2020, 32, 13858. [Google Scholar] [CrossRef]
- Li, T.; Hu, M.; Jiang, C.; Zhang, D.; Gao, M.; Xia, J.; Miao, M.; Shi, G.; Li, H.; Zhang, J.; et al. Laxative effect and mechanism of tiantian capsule on loperamide-induced constipation in rats. J. Ethnopharmacol. 2021, 266, 113411. [Google Scholar] [CrossRef]
- Kim, J.E.; Go, J.; Koh, E.K.; Song, S.H.; Sung, J.E.; Lee, H.A.; Lee, Y.H.; Hong, J.T.; Hwang, D.Y. Gallotannin-enriched extract isolated from galla rhois May be a functional candidate with laxative effects for treatment of loperamide-induced constipation of SD rats. PLoS ONE 2016, 11, e0161144. [Google Scholar] [CrossRef]
- Harshavardhan, B.; Ashwin, K.S.; Ravishankar, B.; Ashutosh, C.; Ravi, M. An experimental study to assess toxic potential of jayapala (Croton tiglium) beeja in relation to gastrointestinal tract. Int. J. Health Sci. Res. 2015, 5, 346–351. [Google Scholar]
- Yun, J.W.; Kwon, E.; Kim, Y.S.; Kim, S.H.; You, J.R.; Kim, H.C.; Park, J.S.; Che, J.H.; Lee, S.K.; Jang, J.J.; et al. Assessment of acute, 14-day, and 13-week repeated oral dose toxicity of tiglium seed extract in rats. BMC Complement. Altern. Med. 2018, 18, 251. [Google Scholar] [CrossRef] [PubMed]
- El-Kamali, H.; Omran, A.; Abdalla, M. Biochemical and haematological assessment of Croton tiglium seeds mixed with animal diet in male albino rats. Ann. Res. Rev. Biol. 2015, 8, 1–7. [Google Scholar] [CrossRef]
- Berry, D.L.; Bracken, W.M.; Fischer, S.M.; Viaje, A.; Slaga, T.J. Metabolic conversion of 12-O-tetradecanoylphorbol-13-acetate in adult and newborn mouse skin and mouse liver microsomes. Cancer Res. 1978, 38, 2301–2306. [Google Scholar]
- Mentlein, R. The tumor promoter 12-O-tetradecanoyl phorbol 13-acetate and regulatory diacylglycerols are substrates for the same carboxylesterase. J. Biol. Chem. 1986, 261, 7816–7818. [Google Scholar] [CrossRef] [PubMed]
- Shoyab, M.; Warren, T.C.; Todaro, G.J. Isolation and characterization of an ester hydrolase active on phorbol diesters from murine liver. J. Biol. Chem. 1981, 256, 12529–12534. [Google Scholar] [CrossRef] [PubMed]
- Jamadagni, P.; Ranade, A.; Bharsakale, S.; Chougule, S.; Jamadagni, S.; Pawar, S.; Prasad, G.P.; Gaidhani, S.; Gurav, A. Impact of shodhana an ayurvedic purification process on cytotoxicity and mutagenicity of Croton tiglium linn. J. Ayurveda Integr. Med. 2023, 14, 100710. [Google Scholar] [CrossRef]
- Kim, J.Y.; Yun, J.W.; Kim, Y.S.; Kwon, E.; Choi, H.J.; Yeom, S.C.; Kang, B.C. Mutagenicity and tumor-promoting effects of tiglium seed extract via PKC and MAPK signaling pathways. Biosci. Biotechnol. Biochem. 2015, 79, 374–383. [Google Scholar] [CrossRef]
- Van Duuren, B.L. Tumor-promoting agents in two-stage carcinogenesis. Prog. Exp. Tumor Res. 1969, 11, 31–68. [Google Scholar] [PubMed]
- Matsukura, N.; Kawachi, T.; Sano, T.; Sasajima, K.; Sugimura, T. Promoting action of croton oil on gastrocarcinogenesis by N-methyl-N′-nitro-N-nitrosoguanidine in rats. J. Cancer Res. Clin. Oncol. 1979, 93, 323–327. [Google Scholar] [CrossRef]
- Thomas, J.A.; Thomas, M.J. Biological effects of di-(2-ethylhexyl) phthalate and other phthalic acid esters. Crit. Rev. Toxicol. 1984, 13, 283–317. [Google Scholar] [CrossRef]
- Olufunke, M.D. Essential oils from aerial, seed and root of Nigerian Asystasia gangetica (L). J. Essent. Oil-Bear. Plants 2011, 14, 582–589. [Google Scholar] [CrossRef]
- Zhu, X.Z.; Guo, J.; Shao, H.; Yang, G.Q. Effects of allelochemicals from Ageratina adenophora (Spreng.) on its own autotoxicity. Allelopath. J. 2014, 34, 253–264. [Google Scholar]
- Jian-Ping, M.; Zhi-Bing, G.; Ling, J.; Ying-Dong, L. Phytochemical progress made in investigations of Angelica sinensis (Oliv.) Diels. Chin. J. Nat. Med. 2015, 13, 241–249. [Google Scholar] [CrossRef]
- Shafaghat, A. Omega-3 content, antimicrobial and antioxidant activities of hexanic extract from seed and leaf of Hypericum scabrum from northwestern Iran. Afr. J. Microbiol. Res. 2012, 6, 904–908. [Google Scholar] [CrossRef]
- Amade, P.; Mallea, M.; Bouaicha, N. Isolation, structural identification and biological activity of two metabolites produced by Penicillium olsonii Bainier and Sartory. J. Antibiot. 1994, 47, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Al-Bari, M.A.A.; Bhuiyan, M.S.A.; Flores, M.E.; Petrosyan, P.; García-Varela, M.; Islam, M.A.U. Streptomyces bangladeshensis sp. nov., isolated from soil, which produces bis-(2-ethylhexyl) phthalate. Int. J. Syst. Evol. Microbiol. 2005, 55, 1973–1977. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, X.; Zhou, S.; Cheng, Z.; Shi, K.; Zhang, C.; Shao, H. Phthalic acid esters: Natural sources and biological activities. Toxins 2021, 13, 495. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y. Biosynthesis of di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) from red alga—Bangia atropurpurea. Water Res. 2004, 38, 1014–1018. [Google Scholar] [CrossRef]
- Namikoshi, M.; Fujiwara, T.; Nishikawa, T.; Ukai, K. Natural abundance 14C content of dibutyl phthalate (DBP) from three marine algae. Mar. Drugs 2006, 4, 290–297. [Google Scholar] [CrossRef]
- Shanmugapriya, P.; Austin, A.; Thamodharan, S.; Jiji, M.V.; Jeeva, D.R.; Ramamurthy, M.; Christian, G. Standardization and validation of traditional siddha purification process for detoxifying Croton tiglium seeds by modern analytical methods. Int. J. Herb. Med. 2019, 7, 27–32. [Google Scholar]
- Zhang, T.; Liu, Z.; Sun, X.; Liu, Z.; Zhang, L.; Zhang, Q.; Peng, W.; Wu, C. Botany, traditional uses, phytochemistry, pharmacological and toxicological effects of Croton tiglium Linn.: A comprehensive review. J. Pharm. Pharmacol. 2022, 74, 1061–1084. [Google Scholar] [CrossRef]
- Van Duuren, B.L.; Sivak, A. Tumor-promoting agents from Croton tiglium L. and their mode of action. Cancer Res. 1968, 28, 2349–2356. [Google Scholar]
- Wang, Y.; Tang, C.; Yao, S.; Lai, H.; Li, R.; Xu, J.; Wang, Q.; Fan, X.X.; Wu, Q.B.; Leung, E.L.; et al. Discovery of a novel protein kinase C activator from Croton tiglium for inhibition of non-small cell lung cancer. Phytomedicine 2019, 65, 153100. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.S.; Bang, O.S. Ethanol extract of kilkyung-baeksan, a traditional herbal formula, induces G0/G1 cell cycle arrest in human lung cancer cell lines. Integr. Med. Res. 2015, 4, 178–184. [Google Scholar] [CrossRef]
- Polliack, A. 12-0-tetradecanoyl phorbol-13-acetate (TPA) and Its effect on leukaemic cells, in-vitro-a review. Leuk. Lymphoma 1990, 3, 173–182. [Google Scholar] [CrossRef]
- OECD. Test No. 420: Acute Oral Toxicity—Fixed Dose Procedure; OECD: Paris, France, 2002. [Google Scholar]
- Lillie, L.E.; Temple, N.J.; Florence, L.Z. Reference values for young normal sprague-dawley rats: Weight gain, hematology and clinical chemistry. Hum. Exp. Toxicol. 1996, 15, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Wolford, S.T.; Schroer, R.A.; Gallo, P.P.; Gohs, F.X.; Brodeck, M.; Falk, H.B.; Ruhren, R. Age-related changes in serum chemistry and hematology values in normal sprague-dawley rats. Fundam. Appl. Toxicol. 1987, 8, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Meite, S.; Bahi, C.; Yeo, D.; Datte, J.Y.; Djaman, J.A.; N’Guessan, D.J. Laxative activities of Mareya micrantha (Benth.) Müll. Arg. (Euphorbiaceae) leaf aqueous extract in rats. BMC Complement. Altern. Med. 2010, 10, 7. [Google Scholar] [CrossRef] [PubMed]
Group | Dose (mg/kg) | Body Weight (BW) (g) | Food Consumption (g) | Water Intake (g) | ||||
---|---|---|---|---|---|---|---|---|
Day 0 | Week 1 | Week 2 | Week 1 | Week 2 | Week 1 | Week 2 | ||
1 (CB) | 300 | 203.12 ± 2.54 | 221.12 ± 3.14 | 234.53 ± 3.40 | 65.12 ± 2.81 | 115.42 ± 2.91 | 200.25 ± 4.35 | 448.35 ± 4.35 |
2 (CA) | 300 | 194.38 ± 2.41 | 214.38 ± 2.44 | 230.39 ± 3.21 | 68.24 ± 1.51 | 121.52 ± 1.35 | 214.55 ± 7.05 | 454.25 ± 3.35 |
3 (CB) | 2000 | 208.54 ± 3.54 | 225.10 ± 3.54 | 235.22 ± 2.41 | 65.35 ± 1.21 | 113.12 ± 3.11 | 156.25 ± 7.05 | 360.65 ± 2.15 |
4 (CA) | 2000 | 195.02 ± 1.54 | 215.28 ± 3.41 | 222.22 ± 4.41 | 68.14 ± 1.11 | 85.22 ± 2.35 | 144.55 ± 6.25 | 340.85 ± 6.75 |
5 (Control) | 202.11 ± 3.54 | 220.02 ± 2.51 | 234.80 ± 2.81 | 60.04 ± 1.91 | 125.82 ± 4.05 | 220.15 ± 4.15 | 480.25 ± 4.50 |
Group | BW (g) | BW Change (g) | ||
---|---|---|---|---|
Day 0 | Week 1 | Week 2 | ||
1 (CB) | 230.31 ± 5.05 a | 231.04 ± 3.60 a | 241.10 ± 5.02 a | 10.79 ± 0.54 b |
2 (CA) | 232.71 ± 5.17 a | 239.80 ± 4.35 a | 246.97 ± 4.85 a | 14.26 ± 2.12 b |
3 (Control) | 224.49 ± 4.78 a | 233.77 ± 6.25 a | 244.89 ± 5.42 a | 20.40 ± 2.39 a |
Group | Food Consumption (g) | Water Intake (g) | ||
---|---|---|---|---|
Week 1 | Week 2 | Week 1 | Week 2 | |
1 (CB) | 14.00 ± 0.53 a | 17.02 ± 0.46 a | 33.31 ± 5.76 a | 33.11 ± 3.26 a |
2 (CA) | 17.00 ± 2.42 a | 17.00 ± 1.27 a | 34.10 ± 8.14 a | 30.31 ± 2.30 a |
3 (Control) | 17.71 ± 0.61 a | 17.88 ± 0.41 a | 29.51 ± 3.21 a | 28.86 ± 2.21 a |
Hematological Parameters | Group | ||
---|---|---|---|
1 (CB) | 2 (CA) | Control | |
WBC (103/μL) | 2.66 ± 0.34 a | 2.52 ± 0.21 a | 3.16 ± 0.32 a |
RBC (106/μL) | 7.43 ± 0.11 a | 7.15 ± 0.15 a | 7.27 ± 0.11 a |
HGB (g/dL) | 13.40 ± 0.13 a | 13.00 ± 0.33 a | 13.46 ± 0.27 a |
HCT (%) | 38.78 ± 0.48 a | 37.97 ± 0.67 a | 39.16 ± 0.75 a |
PLT (103/μL) | 976.20 ± 49.92 a | 1018.10 ± 140.88 b | 907.40 ± 41.49 a |
MCV (fL) | 52.20 ± 0.54 b | 53.05 ± 0.75 a | 53.84 ± 0.27 a |
MCH (pg) | 18.04 ± 0.11 b | 18.15 ± 0.18 a | 18.50 ± 0.11 a |
MCHC (g/dL) | 34.56 ± 0.22 a | 34.22 ± 0.37 a | 34.36 ± 0.09 a |
RDW-SD (%) | 25.90 ± 0.44 a | 26.35 ± 0.43 a | 26.68 ± 0.66 a |
MPV (fL) | 8.28 ± 0.18 a | 8.55 ± 0.30 a | 7.96 ± 0.12 a |
Neutrophils (%) | 9.16 ± 2.06 a | 9.47 ± 0.87 a | 11.20 ± 1.14 a |
Eosinophils (%) | 1.84 ± 0.46 a | 1.70 ± 0.57 a | 2.22 ± 0.48 a |
Lymphocytes (%) | 86.84 ± 3.11 a | 85.30 ± 4.81 a | 84.46 ± 1.70 a |
Monocytes (%) | 2.16 ± 0.65 a | 2.32 ± 0.57 a | 2.12 ± 0.40 a |
Biochemical Parameters | Group | ||
---|---|---|---|
1 (CB) | 2 (CA) | Control | |
BUN (mg/dL) | 21.20 ± 1.24 a | 25.00 ± 2.85 a | 21.80 ± 0.91 a |
Uric Acid (mg/dL) | 1.42 ± 0.13 a | 1.37 ± 0.17 a | 1.20 ± 0.08 a |
TP (g/dL) | 6.04 ± 0.16 a | 5.62 ± 0.07 a | 5.80 ± 0.19 a |
Albumin (g/dL) | 4.62 ± 0.19 a | 4.07 ± 0.13 a | 4.40 ± 0.13 a |
TB (mg/dL) | 0.10 ± 0.00 a | 0.10 ± 0.00 a | 0.10 ± 0.00 a |
ALP (IU/L) | 72.20 ± 5.13 a | 81.50 ± 12.55 a | 79.60 ± 8.29 a |
AST (IU/L) | 77.20 ± 2.35 a | 91.00 ± 7.90 a | 76.20 ± 5.34 a |
ALT (IU/L) | 27.60 ± 2.97 a | 22.00 ± 1.22 a | 26.60 ± 1.69 a |
Glucose (mg/dL) | 174.40 ± 6.40 a | 176.75 ± 6.35 a | 176.60 ± 4.54 a |
Group | Number of Feces (Mean ± SEM) | Amount of Wet Feces (Mean ± SE) (g) | Amount of Dry Feces (Mean ± SE) (g) | % of Feces Water Content (Mean ± SE) |
---|---|---|---|---|
Vehicle | 16.67 ± 0.80 | 3.57 ± 0.17 | 2.15 ± 0.06 | 34.81 ± 2.97 |
CB-10 | 16.50 ± 1.73 | 4.05 ± 0.45 | 2.26 ± 0.26 | 44.28 ± 2.47 |
CB-50 | 17.50 ± 2.57 | 4.57 ± 0.48 | 2.34 ± 0.19 | 44.30 ± 2.23 |
CB-100 | 18.17 ± 1.33 * | 5.31 ± 0.29 * | 2.40 ± 0.15 | 54.63 ± 2.39 ** |
CA-10 | 15.67 ± 1.28 | 3.62 ± 0.33 | 2.14 ± 0.29 | 41.72 ± 3.72 |
CA-50 | 16.50 ± 0.67 | 3.81 ± 0.36 | 2.24 ± 0.31 | 42.48 ± 4.58 |
CA-100 | 15.67 ± 1.02 | 4.07 ± 0.29 | 2.25 ± 0.24 | 46.00 ± 4.32 |
Castor oil | 19.83 ± 0.87 * | 4.66 ± 0.25 * | 2.33 ± 0.10 | 49.61 ± 2.75 * |
Parameters | Crotonic Acid | PMA |
---|---|---|
Linearity range (µg/mL) | 1–100 | 1–500 |
Precision (% RSD) | ||
| 0.98–1.95 | 1.34–5.68 |
| 1.03–1.91 | 3.89–4.82 |
Accuracy (% recovery) | 99.79–104.08 | 101.09–102.08 |
LOD (µg/mL) | 0.98 | 0.94 |
LOQ (µg/mL) | 3.27 | 3.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poowanna, R.; Pulbutr, P.; Kijjoa, A.; Nualkaew, S. Purgative Effect, Acute Toxicity, and Quantification of Phorbol-12-Myristate-13-Acetate and Crotonic Acid in Croton tiglium L. Seeds Before and After Treatment by Thai Traditional Detoxification Process. Int. J. Mol. Sci. 2025, 26, 7714. https://doi.org/10.3390/ijms26167714
Poowanna R, Pulbutr P, Kijjoa A, Nualkaew S. Purgative Effect, Acute Toxicity, and Quantification of Phorbol-12-Myristate-13-Acetate and Crotonic Acid in Croton tiglium L. Seeds Before and After Treatment by Thai Traditional Detoxification Process. International Journal of Molecular Sciences. 2025; 26(16):7714. https://doi.org/10.3390/ijms26167714
Chicago/Turabian StylePoowanna, Ronnachai, Pawitra Pulbutr, Anake Kijjoa, and Somsak Nualkaew. 2025. "Purgative Effect, Acute Toxicity, and Quantification of Phorbol-12-Myristate-13-Acetate and Crotonic Acid in Croton tiglium L. Seeds Before and After Treatment by Thai Traditional Detoxification Process" International Journal of Molecular Sciences 26, no. 16: 7714. https://doi.org/10.3390/ijms26167714
APA StylePoowanna, R., Pulbutr, P., Kijjoa, A., & Nualkaew, S. (2025). Purgative Effect, Acute Toxicity, and Quantification of Phorbol-12-Myristate-13-Acetate and Crotonic Acid in Croton tiglium L. Seeds Before and After Treatment by Thai Traditional Detoxification Process. International Journal of Molecular Sciences, 26(16), 7714. https://doi.org/10.3390/ijms26167714