Fungal Laccases with High and Medium Redox Potential: Is the T1 Center Potential a Key Characteristic of Catalytic Efficiency in Heterogeneous and Homogeneous Reactions?
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Laccases
3.3. Fabrication of Laccase-Modified MWCNT Electrodes
3.4. Kinetic Studies of the Laccases
3.5. Electrochemical Measurements
3.6. Enzyme Structure Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCO | Multicopper oxidase |
TNC | Trinuclear copper cluster |
MWCNT | Multi-walled carbon nanotube |
NHE | Normal hydrogen electrode |
ABTS | Diammonium salt of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
ThL | Trametes hirsuta laccase |
CcL | Coriolopsis caperata laccase |
SmL | Steccherinum murashkinskyi laccase |
AfL | Antrodiella faginea laccase |
TvL | Trametes versicolor laccase |
ToL | Trametes ochracea laccase |
CtL | Coriolopsis trogii laccase |
CgL | Coriolopsis gallica laccase |
SoL | Steccherinum ochraceum laccase |
AcL | Antrodiella citronella laccase |
References
- Baldrian, P. Fungal laccases—Occurrence and properties. FEMS Microbiol. Rev. 2006, 30, 215–242. [Google Scholar] [CrossRef]
- Morozova, O.V.; Shumakovich, G.P.; Gorbacheva, M.A.; Shleev, S.V.; Yaropolov, A.I. Blue laccases. Biochemistry 2007, 72, 1136–1150. [Google Scholar] [CrossRef]
- Martin, E.; Dubessay, P.; Record, E.; Audonnet, F.; Michaud, P. Recent advances in laccase activity assays: A crucial challenge for applications on complex substrates. Enzyme Microb. Technol. 2024, 173, 110373. [Google Scholar] [CrossRef]
- Solomon, E.I.; Sundaram, U.M.; Machonkin, T.E. Multicopper Oxidases and Oxygenases. Chem. Rev. 1996, 96, 2563–2606. [Google Scholar] [CrossRef]
- Jones, S.M.; Solomon, E.I. Electron transfer and reaction mechanism of laccases. Cell. Mol. Life Sci. 2015, 72, 869–883. [Google Scholar] [CrossRef]
- Aza, P.; Camarero, S. Fungal Laccases: Fundamentals, Engineering and Classification Update. Biomolecules 2023, 13, 1716. [Google Scholar] [CrossRef]
- Bassanini, I.; Ferrandi, E.E.; Riva, S.; Monti, D. Biocatalysis with Laccases: An Updated Overview. Catalysts 2021, 11, 26. [Google Scholar] [CrossRef]
- Chaudhary, S.; Singh, A.; Varma, A.; Porwal, S. Recent Advancements in Biotechnological Applications of Laccase as a Multifunctional Enzyme. J. Pure Appl. Microbiol. 2022, 16, 1479–1491. [Google Scholar] [CrossRef]
- Berezin, I.V.; Bogdanovskaya, V.A.; Varfolomeev, S.D.; Tarasevich, M.R.; Yaropolov, A.I. Bioelectrocatalysis. The equilibrium oxygen potential in the presence of laccase. Docl. AN SSSR (Rep. USSR Acad. Sci.) 1978, 240, 615–617. [Google Scholar]
- Tarasevich, M.R.; Yaropolov, A.I.; Bogdanovskaya, V.A.; Varfolomeev, S.D. Electrocatalysis of a cathodic oxygen reduction by laccase. Bioelectrochem. Bioenerg. 1979, 6, 393–403. [Google Scholar] [CrossRef]
- Shleev, S.; Jarosz-Wilkolazka, A.; Khalunina, A.; Morozova, O.; Yaropolov, A.; Ruzgas, T.; Gorton, L. Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry 2005, 67, 115–124. [Google Scholar] [CrossRef]
- Thuesen, M.H.; Farver, O.; Reinhammar, B.; Ulstrup, J. Cyclic voltammetry and electrocatalysis of the blue copper oxidase Polyporus versicolor laccase. Acta Chem. Scand. 1998, 52, 555–562. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, H.; Dhoke, G.V.; Zou, Z.; Sauer, D.F.; Davari, M.D.; Schwaneberg, U. Engineering of Laccase CueO for Improved Electron Transfer in Bioelectrocatalysis by Semi-Rational Design. Chem. Eur. J. 2020, 26, 4974–4979. [Google Scholar] [CrossRef]
- Atalah, J.; Zhou, Y.; Espina, G.; Blamey, J.M.; Ramasamy, R.P. Improved stability of multicopper oxidase-carbon nanotube conjugates using a thermophilic laccase. Catal. Sci. Technol. 2018, 8, 1272–1276. [Google Scholar] [CrossRef]
- Moro, G.; Brissos, V.; Zanardi, C.H.; Martins, L.O.; Conzuelo, F. Electrochemical investigations of the multicopper oxidase from Aquifex aeolicus under direct electron transfer with carbon electrodes. Electrochim. Acta 2023, 468, 143199. [Google Scholar] [CrossRef]
- Yaropolov, A.; Malovik, V.; Varfolomeev, S. Electroreduction of hydrogen peroxide on the electrode with immobilized peroxidase. Dokl. AN SSSR (Rep. USSR Acad. Sci.) 1979, 249, 1399–1401. [Google Scholar]
- Ruzgas, T.; Csöregi, E.; Emnéus, J.; Gorton, L.; Marko-Varga, G. Peroxidase-modified electrodes: Fundamentals and application. Anal. Chim. Acta 1996, 330, 123–138. [Google Scholar] [CrossRef]
- Morozov, S.V.; Karyakina, E.E.; Zorin, N.A.; Varfolomeyev, S.D.; Cosnier, S.; Karyakin, A.A. Direct and electrically wired bioelectrocatalysis by hydrogenase from Thiocapsa roseopersicina. Bioelectrochemistry 2002, 55, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Tsygankov, A.A.; Zorin, N.A.; Starodubov, A.; Khasimov, M.K.; Melnikova, M.S.; Doronin, I.A.; Vasilov, R.G. A simple method for oriented immobilization of HydSL hydrogenase of Thiocapsa bogorovii on carbon electrodes. Int. J. Hydrogen Energy 2023, 48, 39989–39999. [Google Scholar] [CrossRef]
- Marchianó, V.; Tricase, A.; Ditaranto, N.; Macchia, E.; d’Ingeo, S.; Di Franco, C.; Scamarcio, G.; Torsi, L.; Bollella, P. High voltage flexible glucose/O2 fully printed hydrogel-based enzymatic fuel cell. J. Phys. D Appl. Phys. 2024, 57, 135503. [Google Scholar] [CrossRef]
- Suzuki, Y.; Makino, F.; Miyata, T.; Tanaka, H.; Namba, K.; Kano, K.; Sowa, K.; Kitazumi, Y.; Shirai, O. Essential Insight of Direct Electron Transfer-Type Bioelectrocatalysis by Membrane-Bound D-Fructose Dehydrogenase with Structural Bioelectrochemistry. ACS Catal. 2023, 13, 13828–13837. [Google Scholar] [CrossRef]
- Komkova, M.A.; Alexandrovich, A.S.; Karyakin, A.A. Polyazine nanoparticles as anchors of PQQ glucose dehydrogenase for its most efficient bioelectrocatalysis. Talanta 2024, 267, 125219. [Google Scholar] [CrossRef]
- Andoralov, V.; Shleev, S.; Dergousova, N.; Kulikova, O.; Popov, V.; Tikhonova, T. Octaheme nitrite reductase: The mechanism of intramolecular electron transfer and kinetics of nitrite bioelectroreduction. Bioelectrochemistry 2021, 138, 107699. [Google Scholar] [CrossRef]
- Brocato, S.; Lau, C.; Atanassov, P. Mechanistic study of direct electron transfer in bilirubin oxidase. Electrochim. Acta 2012, 61, 44–49. [Google Scholar] [CrossRef]
- Larsson, T.; Lindgren, A.; Ruzgas, T.; Lindquist, S.-E.; Gorton, L. Bioelectrochemical characterisation of cellobiose dehydrogenase modified graphite electrodes: Ionic strength and pH dependences. J. Electroanal. Chem. 2000, 482, 1–10. [Google Scholar] [CrossRef]
- Stoica, L.; Ludwig, R.; Haltrich, D.; Gorton, L. Third-Generation Biosensor for Lactose Based on Newly Discovered Cellobiose Dehydrogenase. Anal. Chem. 2006, 78, 393–398. [Google Scholar] [CrossRef]
- den Boer, D.; de Heer, H.C.; Buda, F.; Hetterscheid, D.G.H. Challenges in Elucidating the Free Energy Scheme of the Laccase Catalyzed Reduction of Oxygen. ChemCatChem 2023, 15, e202200878. [Google Scholar] [CrossRef]
- Sekretareva, A.; Tian, S.; Gounel, S.; Mano, N.; Solomon, E.I. Electron Transfer to the Trinuclear Copper Cluster in Electrocatalysis by the Multicopper Oxidases. J. Am. Chem. Soc. 2021, 143, 17236–17249. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.L.; Liu, J.; Hu, D.; Zhang, X.H.; Chen, J.H. Immobilization of laccase onto 1-aminopyrene functionalized carbon nanotubes and their electrocatalytic activity for oxygen reduction. Electrochim. Acta 2010, 55, 6611–6616. [Google Scholar] [CrossRef]
- Opallo, M.; Bilewicz, R. Recent Developments of Nanostructured Electrodes for Bioelectrocatalysis of Dioxygen Reduction. Adv. Phys. Chem. 2011, 2011, 947637. [Google Scholar] [CrossRef]
- Wei, W.; Li, P.; Li, Y.; Cao, X.; Liu, S. Nitrogen-doped carbon nanotubes enhanced laccase enzymatic reactivity towards oxygen reduction and its application in biofuel cell. Electrochem. Commun. 2012, 22, 181–184. [Google Scholar] [CrossRef]
- Tominaga, M.; Sasaki, A.; Togami, M. Laccase Bioelectrocatalyst at a Steroid-Type Biosurfactant-Modified Carbon Nanotube Interface. Anal. Chem. 2015, 87, 5417–5421. [Google Scholar] [CrossRef]
- Dagys, M.; Laurynėnas, A.; Ratautas, D.; Kulys, J.; Vidžiūnaitė, R.; Talaikis, M.; Niaura, G.; Marcinkevičienė, L.; Meškys, R.; Shleev, S. Oxygen Electroreduction Catalysed by Laccase Wired to Gold Nanoparticles via the Trinuclear Copper Cluster. Energy Environ. Sci. 2017, 10, 498–502. [Google Scholar] [CrossRef]
- Gentil, S.; Rousselot-Pailley, P.; Sancho, F.; Robert, V.; Mekmouche, Y.; Guallar, V.; Tron, T.; Le Goff, A. Efficiency of site-specific clicked laccase-carbon nanotubes biocathodes towards O2 reduction. Chem. Eur. J. 2020, 26, 4798–4804. [Google Scholar] [CrossRef]
- Lim, K.; Sima, M.; Stewart, R.J.; Minteer, S.D. Direct bioelectrocatalysis by redox enzymes immobilized in electrostatically condensed oppositely charged polyelectrolyte electrode coatings. Analyst 2020, 145, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Savinova, O.S.; Moiseenko, K.V.; Vavilova, E.A.; Chulkin, A.M.; Fedorova, T.V.; Tyazhelova, T.V.; Vasina, D.V. Evolutionary Relationships Between the Laccase Genes of Polyporales: Orthology-Based Classification of Laccase Isozymes and Functional Insight From Trametes hirsuta. Front. Microbiol. 2019, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Moiseenko, K.V.; Maloshenok, L.G.; Vasina, D.V.; Bruskin, S.A.; Tyazhelova, T.V.; Koroleva, O.V. Laccase multigene families in Agaricomycetes. J. Basic. Microbiol. 2016, 56, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Vasina, D.V.; Mustafaev, O.N.; Moiseenko, K.V.; Sadovskaya, N.S.; Glazunova, O.A.; Tyurin, A.A.; Fedorova, T.V.; Pavlov, A.R.; Tyazhelova, T.V.; Goldenkova-Pavlova, I.V.; et al. The Trametes hirsuta 072 laccase multigene family: Genes identification and transcriptional analysis under copper ions induction. Biochimie 2015, 116, 154–164. [Google Scholar] [CrossRef]
- Justo, A.; Miettinen, O.; Floudas, D.; Ortiz-Santana, B.; Sjökvist, E.; Lindner, D.; Nakasone, K.; Niemelä, T.; Larsson, K.-H.; Ryvarden, L.; et al. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 2017, 121, 798–824. [Google Scholar] [CrossRef]
- Glazunova, O.A.; Shakhova, N.V.; Psurtseva, N.V.; Moiseenko, K.V.; Kleimenov, S.Y.; Fedorova, T.V. White-rot basidiomycetes Junghuhnia nitida and Steccherinum bourdotii: Oxidative potential and laccase properties in comparison with Trametes hirsuta and Coriolopsis caperata. PLoS ONE 2018, 13, e0197667. [Google Scholar] [CrossRef]
- Glazunova, O.A.; Polyakov, K.M.; Moiseenko, K.V.; Kurzeev, S.A.; Fedorova, T.V. Structure-function study of two new middle-redox potential laccases from basidiomycetes Antrodiella faginea and Steccherinum murashkinskyi. Int. J. Biol. Macromol. 2018, 118, 406–418. [Google Scholar] [CrossRef]
- Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S. Earth-Abundant Nanomaterials for Oxygen Reduction. Angew. Chem. Int. Ed. Engl. 2016, 55, 2650–2676. [Google Scholar] [CrossRef]
- Batchelor-McAuley, C. Defining the onset potential. Curr. Opin. Electrochem. 2023, 37, 101176. [Google Scholar] [CrossRef]
- Zhou, X.; Qiao, J.; Yang, L.; Zhang, J. A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. Adv. Energy Mater. 2014, 4, 1301523. [Google Scholar] [CrossRef]
- Gorbacheva, M.; Morozova, O.; Shumakovich, G.; Streltsov, A.; Shleev, S.; Yaropolov, A. Enzymatic oxidation of manganese ions catalysed by laccase. Bioorg. Chem. 2009, 37, 1–5. [Google Scholar] [CrossRef]
- Taniguchi, V.T.; Malmström, B.G.; Anson, F.C.; Gray, H.B. Temperature dependence of the reduction potential of blue copper in fungal laccase. Proc. Natl. Acad. Sci. USA 1982, 79, 3387–3389. [Google Scholar] [CrossRef] [PubMed]
- Bourbonnais, R.; Leech, D.; Paice, M.G. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim. Biophys. Acta Gen. Subj. 1998, 1379, 381–390. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, J.E. Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim. Biophys. Acta Bioenerg. 1973, 292, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Xu, F. Oxidation of Phenols, Anilines, and Benzenethiols by Fungal Laccases: Correlation between Activity and Redox Potentials as Well as Halide Inhibition. Biochemistry 1996, 35, 7608–7614. [Google Scholar] [CrossRef]
- Xu, F.; Kulys, J.J.; Duke, K.; Li, K.; Krikstopaitis, K.; Deussen, H.J.; Abbate, E.; Galinyte, V.; Schneider, P. Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds. Appl. Environ. Microbiol. 2000, 66, 2052–2056. [Google Scholar] [CrossRef]
- Olbrich, A.C.; Schild, J.N.; Urlacher, V.B. Correlation between the T1 copper reduction potential and catalytic activity of a small laccase. J. Inorg. Biochem. 2019, 201, 110843. [Google Scholar] [CrossRef]
- Glazunova, O.A.; Trushkin, N.A.; Moiseenko, K.V.; Filimonov, I.S.; Fedorova, T.V. Catalytic Efficiency of Basidiomycete Laccases: Redox Potential versus Substrate-Binding Pocket Structure. Catalysts 2018, 8, 152. [Google Scholar] [CrossRef]
- Frasconi, M.; Favero, G.; Boer, H.; Koivula, A.; Mazzei, F. Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochim. Biophys. Acta Proteins Proteomics 2010, 1804, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Shleev, S.V.; Morozova, O.V.; Nikitina, O.V.; Gorshina, E.S.; Rusinova, T.V.; Serezhenkov, V.A.; Burbaev, D.S.; Gazaryan, I.G.; Yaropolov, A.I. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie 2004, 86, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Muschiol, J.; Meyer, A.S.; Kepp, K.P. A structural-chemical explanation of fungal laccase activity. Sci. Rep. 2018, 8, 17285. [Google Scholar] [CrossRef] [PubMed]
- Orlando, C.; Bellei, M.; Zampolli, J.; Mangiagalli, M.; Di Gennaro, P.; Lotti, M.; De Gioia, L.; Marino, T.; Di Rocco, G.; Greco, C.; et al. Comparative analysis of Polyethylene-Degrading Laccases: Redox Properties and Enzyme-Polyethylene Interaction Mechanism. ChemSusChem 2025, 18, e202402253. [Google Scholar] [CrossRef]
- Biswas, A.; Radhakrishna, M. Exploring Catechol Binding to Laccase with Insights into Enzyme Dynamics for Biosensing Applications. J. Phys. Chem. B 2025, 129, 3761–3775. [Google Scholar] [CrossRef]
- Koroljova-Skorobogat’ko, O.V.; Stepanova, E.V.; Gavrilova, V.P.; Morozova, O.V.; Lubimova, N.V.; Dzchafarova, A.N.; Jaropolov, A.I.; Makower, A. Purification and characterization of the constitutive form of laccase from the basidiomycete Coriolus hirsutus and effect of inducers on laccase synthesis. Biotechnol. Appl. Biochem. 1998, 28, 47–54. [Google Scholar] [CrossRef]
- Ehresmann, B.; Imbault, P.; Well, J.H. Spectrophotometric determination of protein concentration in cell extracts containing tRNA’s and rRNA’s. Analyt. Biochem. 1973, 54, 454–463. [Google Scholar] [CrossRef]
- Bourbonnais, R.; Paice, M.G. Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990, 267, 99–102. [Google Scholar] [CrossRef]
- Dennis, C.R.; van Zyl, G.J.; Fourie, E.; Basson, S.S.; Swarts, J.C. A kinetic study of the oxidation of the tetrakisoxalatouranate(IV) ion by the octacyanotungstate (V) and the octacyanomolybdate (V) ions in an acidic oxalate buffer medium. Reac. Kinet. Mech. Cat. 2021, 134, 615–627. [Google Scholar] [CrossRef]
- Murton, P.D.F.; Timmel, C.R.; Mackenzie, S.R.; Rodríguez-Maciá, P. Blue-light photodegradation of ferricyanide under protein relevant conditions. Dalton Trans. 2025, 54, 4735–4742. [Google Scholar] [CrossRef] [PubMed]
- Krissinel, E.; Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef] [PubMed]
Laccase | Mw, kDa | pI | Carbohydrate Content, % | E0T1, mV * | Copper Content | Ref. |
---|---|---|---|---|---|---|
CcL | 63 | 3.5 | 16 | 780 ± 10 | 4 | [40] |
ThL | 66 | 4.0 | 12 | 780 ± 10 | 4 | [40] |
SmL | 63 | 3.0 | 9 | 650 ± 20 | 4 | [41] |
AfL | 65 | 4.5 | 17 | 620 ± 50 | 4 | [41] |
Laccase | Γ, pmol cm−2 | Ess, * mV | Eonset, * mV | E½, * mV | Δi/ΔE, μA mV−1 |
---|---|---|---|---|---|
CcL | 1.86 ± 0.31 | 856 ± 16 a | 843 ± 11 a | 818 ± 9 a | 1.65 |
ThL | 1.67 ± 0.23 | 830 ± 18 ab | 818 ± 14 ab | 789 ± 11 a | 1.43 |
SmL | 1.58 ± 0.25 | 809 ± 19 ab | 787 ± 13 bc | 742 ± 10 b | 0.54 |
AfL | 1.81 ± 0.20 | 792 ± 18 b | 776 ± 10 c | 747 ± 7 b | 0.66 |
Laccase | K4Mo(CN)8 E0 = 782 mV [46] | ABTS E0 = 682 mV [47] | K4Fe(CN)6 E0 = 412 mV [48] | ||||||
---|---|---|---|---|---|---|---|---|---|
kcat, s−1 | KM, μM | kcat/KM, s−1 μM−1 | kcat, s−1 | KM, μM | kcat/KM, s−1 μM−1 | kcat, s−1 | KM, μM | kcat/KM, s−1 μM−1 | |
CcL | 74.6 ± 3.3 | 334.7 ± 19.4 | 0.223 | 73.2 ± 3.9 | 11.8 ± 0.5 | 6.20 | 81.8 ± 3.3 | 50.4 ± 2.8 | 1.62 |
ThL | 23.7 ± 2.4 | 1685.0 ± 56.9 | 0.014 | 74.7 ± 3.1 | 16.7 ± 0.2 | 4.47 | 65.6 ± 3.2 | 245.1 ± 7.2 | 0.27 |
SmL | 9.3 ± 0.3 | 1270.3 ± 48.6 | 0.007 | 33.3 ± 1.4 | 71.7 ± 2.9 | 0.46 | 62.7 ± 1.9 | 90.0 ± 2.7 | 0.70 |
AfL | 20.6 ± 0.4 | 480.0 ± 22.1 | 0.043 | 32.7 ± 1.1 | 4.9 ± 0.4 | 6.67 | 57.2 ± 1.6 | 88.1 ± 6.4 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, O.; Khlupova, M.; Vasil’eva, I.; Yaropolov, A.; Fedorova, T. Fungal Laccases with High and Medium Redox Potential: Is the T1 Center Potential a Key Characteristic of Catalytic Efficiency in Heterogeneous and Homogeneous Reactions? Int. J. Mol. Sci. 2025, 26, 7488. https://doi.org/10.3390/ijms26157488
Morozova O, Khlupova M, Vasil’eva I, Yaropolov A, Fedorova T. Fungal Laccases with High and Medium Redox Potential: Is the T1 Center Potential a Key Characteristic of Catalytic Efficiency in Heterogeneous and Homogeneous Reactions? International Journal of Molecular Sciences. 2025; 26(15):7488. https://doi.org/10.3390/ijms26157488
Chicago/Turabian StyleMorozova, Olga, Maria Khlupova, Irina Vasil’eva, Alexander Yaropolov, and Tatyana Fedorova. 2025. "Fungal Laccases with High and Medium Redox Potential: Is the T1 Center Potential a Key Characteristic of Catalytic Efficiency in Heterogeneous and Homogeneous Reactions?" International Journal of Molecular Sciences 26, no. 15: 7488. https://doi.org/10.3390/ijms26157488
APA StyleMorozova, O., Khlupova, M., Vasil’eva, I., Yaropolov, A., & Fedorova, T. (2025). Fungal Laccases with High and Medium Redox Potential: Is the T1 Center Potential a Key Characteristic of Catalytic Efficiency in Heterogeneous and Homogeneous Reactions? International Journal of Molecular Sciences, 26(15), 7488. https://doi.org/10.3390/ijms26157488