DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions
Abstract
1. Introduction
2. Results
2.1. Responses to Thermal Exposure
2.2. Epigenetic Variation Between MED and AsiaII3 After Thermal Exposure
2.3. Expression of Dnmts Across Tagmata, Development, and Sex
2.4. Expression of Dnmts in MED and AsiaII3 After Thermal Exposure
2.5. Expression of Dnmt Proteins in MED and AsiaII3 After Thermal Exposure
3. Discussion
4. Materials and Methods
4.1. Insect Materials
4.2. Thermal Stress
4.3. Tagmata and Developmental Sample Collection
4.4. Thermal Tolerance Analysis
4.5. DNA Extraction and F-MSAP Analysis
4.6. Total RNA Isolation and Quantitative Real-Time PCR
4.7. Western Blot Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cortes, P.A.; Puschel, H.; Acuna, P.; Bartheld, J.L.; Bozinovic, F. Thermal ecological physiology of native and invasive frog species: Do invaders perform better? Conserv. Physiol. 2016, 4, cow056. [Google Scholar] [CrossRef]
- McClelland, G.T.W.; Altwegg, R.; van Aarde, R.J.; Ferreira, S.; Burger, A.E.; Chown, S.L. Climate change leads to increasing population density and impacts of a key island invader. Ecol. Appl. 2018, 28, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Biancolini, D.; Pacifici, M.; Falaschi, M.; Bellard, C.; Blackburn, T.M.; Ficetola, G.F.; Rondinini, C. Global distribution of alien mammals under climate change. Glob. Change Biol. 2024, 30, e17560. [Google Scholar] [CrossRef] [PubMed]
- Knop, E.; Reusser, N. Jack-of-all-trades: Phenotypic plasticity facilitates the invasion of an alien slug species. Proc. R. Soc. B Biol. Sci. 2012, 279, 4668–4676. [Google Scholar] [CrossRef] [PubMed]
- Colautti, R.I.; Lau, J.A. Contemporary evolution during invasion: Evidence for differentiation, natural selection, and local adaptation. Mol. Ecol. 2015, 24, 1999–2017. [Google Scholar] [CrossRef]
- Oskyrko, O.; Mi, C.R.; Du, W.G. Integrating the thermal dependence of sex ratio into distribution models to predict suitable habitats for the invasive freshwater pond slider turtle, Trachemys scripta. Mar. Life Sci. Technol. 2025, 1–13. [Google Scholar] [CrossRef]
- Chown, S.L.; Slabber, S.; McGeouch, M.; Janion, C.; Leinaas, H.P. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc. R. Soc. B Biol. Sci. 2007, 274, 2531–2537. [Google Scholar] [CrossRef]
- Lopez-Maury, L.; Marguerat, S.; Bahler, J. Tuning gene expression to changing environments: From rapid responses to evolutionary adaptation. Nat. Rev. Genet. 2008, 9, 583–593. [Google Scholar] [CrossRef]
- Gaitan-Espitia, J.D.; Arias, M.B.; Lardies, M.A.; Nespolo, R.F. Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: Lessons from the land snail Cornu aspersum. PLoS ONE 2013, 8, e70662. [Google Scholar] [CrossRef]
- Pertierra, L.R.; Escribano-Lvarez, P.; Olalla-Tárraga, M.A. Cold tolerance is similar but heat tolerance is higher in the alien insect Trichocera maculipennis than in the native Parochlus steinenii in Antarctica. Polar Biol. 2021, 44, 1203–1208. [Google Scholar] [CrossRef]
- Kress, A.; Oppold, A.M.; Kuch, U.; Oehlmann, J.; Muller, R. Cold tolerance of the Asian tiger mosquito Aedes albopictus and its response to epigenetic alterations. J. Insect Physiol. 2017, 99, 113–121. [Google Scholar] [CrossRef]
- Stuart, K.C.; Sherwin, W.; Cardilini, A.P.A.; Rollins, L. Genetics and plasticity are responsible for ecogeographical patterns in a recent invasion. Front. Genet. 2022, 13, 824424. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Zhang, X. DNA methylation on c5-cytosine and n6-adenine in the Bursaphelenchus xylophilus genome. BMC Genom. 2023, 24, 671. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.M.; Jennions, M.; Nicotra, A.B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 2011, 14, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Cordeschi, G.; Costantini, D.; Canestrelli, D. Plastic aliens: Developmental plasticity and the spread of invasive species. In Development Strategies and Biodiversity; Costantini, D., Marasco, V., Eds.; Springer: Cham, Switzerland, 2022; pp. 267–282. [Google Scholar]
- Pérez, J.E.; Alfonsi, C.; Ramos, C.; Gómez, J.A.; Muñoz, C.; Salazar, S.K. How some alien species become invasive. Some ecological, genetic and epigenetic basis for bioinvasions. Interciencia 2012, 37, 91–116. [Google Scholar]
- Nwanade, C.F.; Wang, Z.; Bai, R.; Wang, R.; Zhang, T.; Liu, J.; Yu, Z. DNA methylation variation is a possible mechanism in the response of Haemaphysalis longicornis to low-temperature stress. Int. J. Mol. Sci. 2022, 23, 15207. [Google Scholar] [CrossRef]
- Quan, P.Q.; Guo, P.L.; He, J.; Liu, X.D. Heat-stress memory enhances the acclimation of a migratory insect pest to global warming. Mol. Ecol. 2024, 33, e17493. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2012, 38, 23–38. [Google Scholar] [CrossRef]
- Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 2000, 9, 2395–2402. [Google Scholar] [CrossRef]
- Goll, M.G.; Bestor, T.H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 2005, 74, 481–514. [Google Scholar] [CrossRef]
- Goll, M.G.; Kirpekar, F.; Maggert, K.A.; Yoder, J.A.; Hsieh, C.-L.; Zhang, X.; Golic, K.G.; Jacobsen, S.E.; Bestor, T.H. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 2006, 311, 395–398. [Google Scholar] [CrossRef]
- Tang, Y.H.; Zhang, H.F.; Zhu, H.Q.; Bi, S.Y.; Wang, X.D.; Ji, S.X.; Ji, J.H.; Ma, D.F.; Huang, C.; Zhang, G.H. DNA methylase 1 influences temperature responses and development in the invasive pest Tuta absoluta. Insect Mol. Biol. 2024, 33, 503–515. [Google Scholar] [CrossRef]
- Campos, C.; Valente, L.M.; Fernandes, J.M. Molecular evolution of zebrafish dnmt3 genes and thermal plasticity of their expression during embryonic development. Gene 2012, 500, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Lyko, F.; Maleszka, R. Insects as innovative models for functional studies of DNA methylation. Trends Genet. 2011, 27, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Nasrullah; Hussain, A.; Ahmed, S.; Rasool, M.; Shah, A.J. DNA methylation across the tree of life, from micro to macro-organism. Bioengineered 2022, 13, 1666–1685. [Google Scholar] [CrossRef] [PubMed]
- Länger, Z.M.; Israel, E.; Engelhardt, J.; Kalita, A.I.; Valsecchi, C.I.K.; Kurtz, J.; Prohaska, S.J. Multiomics reveal associations between CpG methylation, histone modifications and transcription in a species that has lost Dnmt3, the Colorado potato beetle. J. Exp. Zool. Part B 2025, 1–16. [Google Scholar] [CrossRef]
- Werren, J.H.; Richards, S.; Desjardins, C.A.; Niehuis, O.; Gadau, J.; Colbourne, J.K.; Beukeboom, L.W.; Desplan, C.; Elsik, C.G.; Grimmelikhuijzen, C.J.P. Functional and evolutionary insights from the genomes of three parasitoid nasonia species. Science 2010, 327, 343–348. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, Y.; Li, Y.; Yin, C.; Ge, C.; Li, F. DNA methyltransferases have an essential role in female fecundity in brown planthopper, Nilaparvata lugens. Biochem. Biophys. Res. Commun. 2015, 464, 83–88. [Google Scholar] [CrossRef]
- Oliveira, M.R.V.; Henneberry, T.J.; Anderson, P. History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot. 2001, 20, 709–723. [Google Scholar] [CrossRef]
- De Barro, P.J.; Liu, S.S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 2011, 56, 1–19. [Google Scholar] [CrossRef]
- Wang, X.W.; Yang, N.W. The Whitefly Bemisia tabaci (Gennadius), Springer, Cham, Switzerland. Biol. Invasions Its Manag. China 2017, 11, 159–182. [Google Scholar]
- Chu, D.; Zhang, Y.J.; Cong, B.; Xu, B.Y.; Wu, Q.J. Identification for Yunnan Q-biotype Bemisia tabaci population. Chin. Bull. Entomol. 2005, 42, 54–56. [Google Scholar]
- Hu, J.; De Barro, P.; Zhao, H.; Wang, J.; Nardi, F.; Liu, S.S. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS ONE 2011, 6, e16061. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q. Species status of Bemisia tabaci complex and their distributions in China. J. Biosaf. 2012, 21, 247–255. [Google Scholar]
- Yu, H.; Wan, F.H.; Guo, J.Y. Different thermal tolerance and hsp gene expression in invasive and indigenous sibling species of Bemisia tabaci. Biol. Invasions 2012, 14, 1587–1595. [Google Scholar] [CrossRef]
- Lü, Z.C.; Wang, Y.M.; Zhu, S.G.; Yu, H.; Guo, J.Y.; Wan, F.H. Trade-offs between survival, longevity, and reproduction, and variation of survival tolerance in Mediterranean Bemisia tabaci after temperature stress. J. Insect Sci. 2014, 14, 489–492. [Google Scholar] [CrossRef]
- Ma, F.Z.; Lü, Z.C.; Wang, R.; Wan, F.H. Heritability and evolutionary potential in thermal tolerance traits in the invasive mediterranean cryptic species of Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE 2014, 9, e103279. [Google Scholar] [CrossRef]
- Xiao, N.; Pan, L.L.; Zhang, C.R.; Shan, H.W.; Liu, S.S. Differential tolerance capacity to unfavourable low and high temperatures between two invasive whiteflies. Sci. Rep. 2016, 6, 24306. [Google Scholar] [CrossRef]
- Wei, J.; Lü, Z.C.; Wang, R.; Wan, F. Comparative analysis of the copy numbers of hsp70 and hsp90 in Trialeurodes vaporariorum and three cryptic species of Bemisia tabaci complex (Hemiptera: Aleyrodidae). Acta Entomol. Sin. 2014, 57, 647–655. [Google Scholar]
- Ji, S.X.; Shen, X.N.; Liang, L.; Wang, X.D.; Liu, W.X.; Wan, F.H.; Lü, Z.C. Molecular characteristics and temperature tolerance function of the transient receptor potential in the native Bemisia tabaci AsiaII3 cryptic species. J. Integr. Agric. 2020, 19, 2746–2757. [Google Scholar] [CrossRef]
- Brumin, M.; Kontsedalov, S.; Ghanim, M. Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci. 2011, 18, 57–66. [Google Scholar] [CrossRef]
- Pusag, J.C.; Hemayet Jahan, S.M.; Lee, K.S.; Lee, S.; Lee, K.Y. Upregulation of temperature susceptibility in Bemisia tabaci upon acquisition of tomato yellow leaf curl virus (TYLCV). J. Insect Physiol. 2012, 58, 1343–1348. [Google Scholar] [CrossRef]
- Shen, X.N.; Guo, J.Y.; Wan, F.H.; Lü, Z.C.; Guo, J.Y.; Liu, W.X. Characterization and functions of temperature stress-associated microRNAs in invasive insect Bemisia tabaci Mediterranean cryptic species. J. Integr. Agric. 2025, 24, 2719–2731. [Google Scholar] [CrossRef]
- Jablonka, E.; Raz, G. Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 2009, 84, 131–176. [Google Scholar] [CrossRef] [PubMed]
- Valiente, A.; Juanes, F.; Nunez, P.; Garcia-Vazquez, E. Brown trout (Salmo trutta) invasiveness: Plasticity in life-history is more important than genetic variability. Biol. Invasions 2010, 12, 451–462. [Google Scholar] [CrossRef]
- Dai, T.M.; Lü, Z.C.; Liu, W.X.; Wan, F.H.; Hong, X.Y. The homology gene BtDnmt1 is essential for temperature tolerance in invasive Bemisia tabaci Mediterranean cryptic species. Sci. Rep. 2017, 7, 3040. [Google Scholar] [CrossRef]
- Dai, T.M.; Lü, Z.C.; Wang, Y.S.; Liu, W.X.; Hong, X.Y.; Wan, F.H. Molecular characterizations of DNA methyltransferase 3 and its roles in temperature tolerance in the whitefly, Bemisia tabaci Mediterranean. Insect Mol. Biol. 2017, 27, 123–132. [Google Scholar] [CrossRef]
- Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, D.M.; Molofsky, J.; With, K.A.; Baughman, S.; Cabin, R.J.; Cohen, J.E.; Ellstrand, N.C. The population biology of invasive species. Annu. Rev. Ecol. Syst. 2001, 32, 305–332. [Google Scholar] [CrossRef]
- Kingsolver, J.G.; Woods, H.A.; Buckley, L.B.; Potter, K.A.; MacLean, H.J.; Higgins, J.K. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 2011, 51, 719–732. [Google Scholar] [CrossRef]
- Brown, J.K.; Coats, S.A.; Bedford, I.D.; Markham, P.G.; Bird, J.; Frohlich, D.R. Characterization and distribution of esterase electromorphs in the whitefly, Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae). Biochem. Genet. 1995, 33, 205–214. [Google Scholar] [CrossRef]
- Guirao, P.; Beitia, F.; Cenis, J.L. Biotype determination of Spanish populations of Bemisia tabaci (Hemiptera: Aleyrodidae). Bull. Entomol. Res. 1997, 87, 587–593. [Google Scholar] [CrossRef]
- Bonato, O.; Lurette, A.; Vidal, C.; Fargues, J. Modelling temperature-dependent bionomics of Bemisia tabaci (Q-biotype). Physiol. Entomol. 2007, 32, 50–55. [Google Scholar] [CrossRef]
- Xue, Y.T.; Wang, Y.S.; Chen, J.Q.; Zhang, G.F.; Liu, W.X.; Wan, F.H.; Zhang, Y.B. Disparities in genetic diversity drive the population displacement of two invasive cryptic species of the Bemisia tabaci complex in China. Int. J. Mol. Sci. 2024, 25, 7966. [Google Scholar] [CrossRef] [PubMed]
- Flores, K.B.; Wolschin, F.; Amdam, G.V. The role of methylation of DNA in environmental adaptation. Integr. Comp. Biol. 2013, 53, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Salmon, A.; Ainouche, M.L.; Wendel, J.F. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol. Ecol. 2005, 14, 1163–1175. [Google Scholar] [CrossRef]
- Sabaris, G.; Fitz-James, M.H.; Cavalli, G. Epigenetic inheritance in adaptive evolution. Ann. N. Y. Acad. Sci. 2023, 1524, 22–29. [Google Scholar] [CrossRef]
- Stillwell, R.C.; Blanckenhorn, W.U.; Teder, T.; Davidowitz, G.; Fox, C.W. Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: From physiology to evolution. Annu. Rev. Entomol. 2010, 55, 227–245. [Google Scholar] [CrossRef]
- Punyavathi; Manjunatha, H.B. Comprehensive analysis of differentially expressed proteins in the male and female Bombyx mori larval instars exposed to thermal stress. Arch. Insect Biochem. 2020, 105, e21719. [Google Scholar] [CrossRef]
- Rivera-Rincon, N.; Altindag, U.H.; Amin, R.; Graze, R.M.; Appel, A.G.; Stevison, L.S. A comparison of thermal stress response between Drosophila melanogaster and Drosophila pseudoobscura reveals differences between species and sexes. J. Insect Physiol. 2024, 153, 104616. [Google Scholar] [CrossRef]
- Andersen, J.P.; Schwartz, A.; Gramsbergen, J.B.; Loeschcke, V. Dopamine levels in the mosquito Aedes aegypti during adult development, following blood feeding and in response to heat stress. J. Insect Physiol. 2006, 52, 1163–1170. [Google Scholar] [CrossRef]
- Campos, C.; Valente, L.M.; Conceicao, L.E.; Engrola, S.; Fernandes, J.M. Temperature affects methylation of the myogenin putative promoter, its expression and muscle cellularity in Senegalese sole larvae. Epigenetics 2013, 8, 389–397. [Google Scholar] [CrossRef]
- Goodisman, M.; Du, J.; McCaw, B.A.; Leonard, A.M.; Stevenson, T.J.; Lancaster, L.T. A role of epigenetic mechanisms in regulating female reproductive responses to temperature in a pest beetle. Insect Mol. Biol. 2024, 33, 516–533. [Google Scholar] [CrossRef]
- Richards, C.L.; Schrey, A.W.; Pigliucci, M.; Vellend, M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 2012, 15, 1016–1025. [Google Scholar] [CrossRef]
- Schrey, A.W.; Coon, C.A.; Grispo, M.T.; Awad, M.; Imboma, T.; McCoy, E.D.; Mushinsky, H.R.; Richards, C.L.; Martin, L.B. Epigenetic variation may compensate for decreased genetic variation with introductions: A case study using house sparrows (Passer domesticus) on two continents. Genet. Res. Int. 2012, 2012, 979751. [Google Scholar] [CrossRef] [PubMed]
- Liebl, A.L.; Schrey, A.W.; Richards, C.L.; Martin, L.B. Patterns of DNA methylation throughout a range expansion of an introduced songbird. Integr. Comp. Biol. 2013, 53, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Ardura, A.; Zaiko, A.; Moran, P.; Planes, S.; Garcia-Vazquez, E. Epigenetic signatures of invasive status in populations of marine invertebrates. Sci. Rep. 2017, 7, 42193. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, K.J.F.; van Gurp, T.P. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion. PLoS ONE 2012, 7, e38605. [Google Scholar] [CrossRef]
- Ni, J.Z.; Kalinava, N.; Chen, E.; Huang, A.; Trinh, T.; Gu, S.G. A transgenerational role of the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. elegans. Epigenet. Chromatin 2016, 9, 3. [Google Scholar] [CrossRef]
- Kay, S.; Skowronski, D.; Hunt, B.G. Developmental DNA methyltransferase expression in the fire ant Solenopsis invicta. Insect Sci. 2018, 25, 57–65. [Google Scholar] [CrossRef]
- Yoon, K.; Williams, S.; Duncan, E.J. DNA methylation machinery is involved in development and reproduction in the viviparous pea aphid (Acyrthosiphon pisum). Insect Mol. Biol. 2024, 33, 534–549. [Google Scholar] [CrossRef]
- Zwier, M.V.; Verhulst, E.C.; Zwahlen, R.D.; Beukeboom, L.W.; Zande, L.V.D. DNA methylation plays a crucial role during early nasonia development. Insect Mol. Biol. 2012, 21, 129–138. [Google Scholar] [CrossRef]
- Washington, J.T.; Cavender, K.R.; Amukamara, A.U.; McKinney, E.C.; Schmitz, R.J.; Moore, P.J. The essential role of Dnmt1 in gametogenesis in the large milkweed bug Oncopeltus fasciatus. Elife 2021, 10, e62202. [Google Scholar] [CrossRef] [PubMed]
- Shelby, E.A.; McKinney, E.C.; Cunningham, C.B.; Simmons, A.M.; Moore, A.J.; Moore, P.J. The role of Dnmt1 in oocyte development. J. Insect Physiol. 2023, 147, 104507. [Google Scholar] [CrossRef] [PubMed]
- Daxinger, L.; Whitelaw, E. Transgenerational epigenetic inheritance: More questions than answers. Genome Res. 2010, 20, 1623–1628. [Google Scholar] [CrossRef] [PubMed]
- Loughland, I.; Little, A.; Seebacher, F. DNA methyltransferase 3a mediates developmental thermal plasticity. BMC Biol. 2021, 19, 11. [Google Scholar] [CrossRef]
- Glastad, K.M.; Hunt, B.G.; Yi, S.V.; Goodisman, M.A. DNA methylation in insects: On the brink of the epigenomic era. Insect Mol. Biol. 2011, 20, 553–565. [Google Scholar] [CrossRef]
- Gibert, P.; Moreteau, B.; Petavy, G.; Karan, D.; David, J.R. Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution 2001, 55, 1063–1068. [Google Scholar] [CrossRef]
- Mitchell, K.A.; Hoffmann, A.A. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Funct. Ecol. 2010, 24, 694–700. [Google Scholar] [CrossRef]
- Dai, T.M.; Lü, Z.C.; Wan, F.H. Comparison of four methods for whole genomic DNA extraction from Bemisia tabaci. Biotechnol. Bull. 2014, 8, 70–75. (In Chinese) [Google Scholar]
- Xiong, L.; Xu, C.; Maroof, M.S.; Zhang, Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol. Gen. Genet. 1999, 261, 439–446. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, M.J.; Niu, W.P.; Yang, R.J.; Zhang, Y.H.; Qiu, Z.Y.; Sun, B.X.; Zhao, Z.H. Analysis of DNA methylation in various swine tissues. PLoS ONE 2011, 6, e16229. [Google Scholar] [CrossRef] [PubMed]
- Fulneček, J.; Kovařík, A. How to interpret methylation sensitive amplified polymorphism (MSAP) profiles. BMC Genet. 2014, 15, 2. [Google Scholar] [CrossRef]
- Pérez-Figueroa, A. msap: A tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Mol. Ecol. Resour. 2013, 13, 522–527. [Google Scholar] [CrossRef]
Temperature Treatment | Species and Gender | Types | Hemi-Methylation Ratio 1 | Full Methylation Ratio 2 | Total Methylation Ratio 3 | |||
---|---|---|---|---|---|---|---|---|
I (1/1) | II (1/0) | III (0/1) | IV (0/0) | |||||
21 °C | MED♀ | 771 | 291 | 307 | 2087 | 21.26% | 22.43% | 43.69% |
MED♂ | 779 | 346 | 233 | 2098 | 25.48% | 17.16% | 42.64% | |
26 °C | MED♀ | 628 | 358 | 450 | 2020 | 24.95% | 31.33% | 56.28% |
MED♂ | 684 | 214 | 325 | 2233 | 17.49% | 26.59% | 44.08% | |
31 °C | MED♀ | 669 | 266 | 244 | 2277 | 22.56% | 20.70% | 43.26% |
MED♂ | 634 | 425 | 284 | 2113 | 31.65% | 21.15% | 52.80% | |
21 °C | AsiaII3♀ | 516 | 322 | 324 | 2294 | 27.70% | 27.87% | 55.57% |
AsiaII3♂ | 689 | 416 | 259 | 2091 | 30.51% | 18.99% | 49.50% | |
26 °C | AsiaII3♀ | 584 | 304 | 356 | 2212 | 24.44% | 28.62% | 53.06% |
AsiaII3♂ | 606 | 278 | 394 | 2178 | 21.75% | 30.83% | 52.58% | |
31 °C | AsiaII3♀ | 821 | 237 | 251 | 2146 | 18.13% | 19.17% | 37.30% |
AsiaII3♂ | 603 | 377 | 440 | 2036 | 26.57% | 30.97% | 57.54% |
Temperature Treatment | Species and Gender | Shannon’s Diversity Index | ΦST 4 | W 3 | ||
---|---|---|---|---|---|---|
MSL 1 | NML 2 | MSL 1 | NML 2 | |||
21 °C | MED♀ vs. MED♂ | 0.643 ± 0.056 | 0.450 ± 0.161 | −0.015 (p = 0.722) | −0.044 (p = 1.000) | 9013 (p < 0.001) |
26 °C | MED♀ vs. MED♂ | 0.663 ± 0.040 | 0.365 ± 0.134 | 0.023 (p = 0.170) | 0.099 (p < 0.001) | 10,850 (p < 0.001) |
31 °C | MED♀ vs. MED♂ | 0.631 ± 0.076 | 0.439 ± 0.164 | 0.017 (p = 0.234) | −0.040 (p = 1.000) | 8842 (p < 0.001) |
21 °C | AsiaII3♀ vs. AsiaII3♂ | 0.654 ± 0.058 | 0.385 ± 0.158 | 0.001 (p = 0.455) | −0.041 (p = 1.000) | 10,073 (p < 0.001) |
26 °C | AsiaII3♀ vs. AsiaII3♂ | 0.646 ± 0.059 | 0.373 ± 0.140 | 0.096 (p = 0.001) | 0.015 (p = 0.078) | 10,470 (p <0.001) |
31 °C | AsiaII3♀ vs. AsiaII3♂ | 0.643 ± 0.067 | 0.371 ± 0.155 | 0.015 (p = 0.269) | −0.045 (p = 1.000) | 9372 (p < 0.001) |
21 °C | MED♀ vs. AsiaII3♀ | 0.653 ± 0.060 | 0.437 ± 0.160 | 0.005 (p = 0.3903) | −0.004 (p = 0.645) | 10,078 (p < 0.001) |
26 °C | MED♀ vs. AsiaII3♀ | 0.647 ± 0.056 | 0.394 ± 0.141 | 0.040 (p = 0.064) | 0.027 (p = 0.007) | 10,519 (p < 0.001) |
31 °C | MED♀ vs. AsiaII3♀ | 0.644 ± 0.072 | 0.413 ± 0.160 | 0.093 (p = 0.002) | 0.019 (p = 0.023) | 10,337 (p < 0.001) |
21 °C | MED♂ vs. AsiaII3♂ | 0.644 ± 0.063 | 0.426 ± 0.153 | 0.063 (p = 0.020) | 0.014 (p = 0.079) | 10,147 (p < 0.001) |
26 °C | MED♂ vs. AsiaII3♂ | 0.657 ± 0.046 | 0.338 ± 0.141 | 0.105 (p < 0.001) | 0.089 (p < 0.001) | 10,059 (p < 0.001) |
31 °C | MED♂ vs. AsiaII3♂ | 0.655 ± 0.053 | 0.409 ± 0.145 | 0.050 (p = 0.022) | 0.019 (p = 0.041) | 10,533 (p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, T.; Wang, Y.; Shen, X.; Lü, Z.; Wan, F.; Liu, W. DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions. Int. J. Mol. Sci. 2025, 26, 7466. https://doi.org/10.3390/ijms26157466
Dai T, Wang Y, Shen X, Lü Z, Wan F, Liu W. DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions. International Journal of Molecular Sciences. 2025; 26(15):7466. https://doi.org/10.3390/ijms26157466
Chicago/Turabian StyleDai, Tianmei, Yusheng Wang, Xiaona Shen, Zhichuang Lü, Fanghao Wan, and Wanxue Liu. 2025. "DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions" International Journal of Molecular Sciences 26, no. 15: 7466. https://doi.org/10.3390/ijms26157466
APA StyleDai, T., Wang, Y., Shen, X., Lü, Z., Wan, F., & Liu, W. (2025). DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions. International Journal of Molecular Sciences, 26(15), 7466. https://doi.org/10.3390/ijms26157466