Special Issue: “New Trends in Alzheimer’s Disease Research: From Molecular Mechanisms to Therapeutics: 2nd Edition”
Conflicts of Interest
References
- Alzheimer’s Association. 2025 Alzheimer’s disease facts and figures. Alzheimers Dement. 2025, 21, e70235. [Google Scholar] [CrossRef]
- Javaid, S.; Giebel, C.; Khan, M.; Hashim, M. Epidemiology of Alzheimer’s disease and other dementias: Rising global burden and forecasted trends. F1000Research 2025, 10, 425. [Google Scholar] [CrossRef]
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front. Aging Neurosci. 2022, 14, 937486. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Y.; Chen, Y.; Lobanov-Rostovsky, S.; Liu, Y.; Zeng, M.; Bandosz, P.; Xu, D.R.; Wang, X.; Liu, Y.; et al. Projection for dementia burden in China to 2050: A macro-simulation study by scenarios of dementia incidence trends. Lancet Reg. Health West. Pac. 2024, 50, 101158. [Google Scholar] [CrossRef] [PubMed]
- Nasb, M.; Tao, W.; Chen, N. Alzheimer’s Disease Puzzle: Delving into Pathogenesis Hypotheses. Aging Dis. 2024, 15, 43–73. [Google Scholar] [PubMed]
- Dominguez-Gortaire, J.; Ruiz, A.; Porto-Pazos, A.B.; Rodriguez-Yanez, S.; Cedron, F. Alzheimer’s Disease: Exploring Pathophysiological Hypotheses and the Role of Machine Learning in Drug Discovery. Int. J. Mol. Sci. 2025, 26, 1004. [Google Scholar] [CrossRef] [PubMed]
- Milner, M.T.; Maddugoda, M.; Götz, J.; Burgener, S.S.; Schroder, K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr. Opin. Immunol. 2021, 68, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wang, Z.; Zhou, X.; Yu, C.; Wu, J.; Yu, L.; Mi, J.; Ren, F.; Law, B.Y.K.; Pan, H.; et al. Ciliatoside A attenuates neuroinflammation in Alzheimer’s disease by activating mitophagy and inhibiting NLRP3 inflammasome activation. Phytomedicine 2025, 145, 156928. [Google Scholar] [CrossRef] [PubMed]
- Santos-García, I.; Bascuñana, P.; Brackhan, M.; Villa, M.; Eiriz, I.; Brüning, T.; Pahnke, J. The ABC transporter A7 modulates neuroinflammation via NLRP3 inflammasome in Alzheimer’s disease mice. Alzheimers Res. Ther. 2025, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Tantra, T.; Rahaman, T.A.A.; Nandini; Chaudhary, S. Therapeutic role of NLRP3 inflammasome inhibitors against Alzheimer’s disease. Bioorg. Chem. 2024, 153, 107912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Cao, X.C.; Peng, J.Y.; Huang, S.L.; Chen, C.; Jia, S.Z.; Ni, J.Z.; Song, G.L. Reversal of lipid metabolism dysregulation by selenium and folic acid co-supplementation to mitigate pathology in Alzheimer’s disease. Antioxidants 2022, 11, 829. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.L.; Yuan, Y.Q.; Tong, Z.; Liao, M.Q.; Yuan, S.L.; Jian, Y.; Yang, J.L.; Liu, W.F. Reexamining the Causes and Effects of Cholesterol Deposition in the Brains of Patients with Alzheimer’s Disease. Mol. Neurobiol. 2023, 60, 6852–6868. [Google Scholar] [CrossRef] [PubMed]
- Akyol, O.; Akyol, S.; Chou, M.C.; Chen, S.; Liu, C.K.; Selek, S.; Soares, J.C.; Chen, C.H. Lipids and lipoproteins may play a role in the neuropathology of Alzheimer’s disease. Front. Neurosci. 2023, 17, 1275932. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Di Gesù, C.M.; Lee, J.; McCullough, L.D. The contribution of age-related changes in the gut-brain axis to neurological disorders. Gut Microbes 2024, 16, 2302801. [Google Scholar] [CrossRef] [PubMed]
- Nabizadeh, F.; Valizadeh, P.; Fallahi, M.S.; Alzheimer’s disease Neuroimaging Initiative. Bile acid profile associated with CSF and PET biomarkers in Alzheimer’s disease. Aging Clin. Exp. Res. 2024, 36, 62. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, M.C.B.; Kanaan, S.; Geller, M.; Praticò, D.; Daher, J.P.L. Mitochondrial dysfunction in Alzheimer’s disease. Ageing Res. Rev. 2025, 107, 102713. [Google Scholar] [CrossRef] [PubMed]
- Foret, M.K.; Orciani, C.; Welikovitch, L.A.; Huang, C.; Cuello, A.C.; Do Carmo, S. Early oxidative stress and DNA damage in Aβ-burdened hippocampal neurons in an Alzheimer’s-like transgenic rat model. Commun. Biol. 2024, 7, 861. [Google Scholar] [CrossRef] [PubMed]
- Dileep, V.; Boix, C.A.; Mathys, H.; Marco, A.; Welch, G.M.; Meharena, H.S.; Loon, A.; Jeloka, R.; Peng, Z.; Bennett, D.A.; et al. Neuronal DNA double-strand breaks lead to genome structural variations and 3D genome disruption in neurodegeneration. Cell 2023, 186, 4404–4421.e20. [Google Scholar] [CrossRef] [PubMed]
- Goel, P.; Chakrabarti, S.; Goel, K.; Bhutani, K.; Chopra, T.; Bali, S. Neuronal cell death mechanisms in Alzheimer’s disease: An insight. Front. Mol. Neurosci. 2022, 15, 937133. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Kapoor, A.; Gu, Y.; Chow, M.J.; Peng, J.; Zhao, K.; Tang, D. Contributions of DNA damage to Alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 1666. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.E.; Myers, A.J.; Giri, A.; Dutch Alzheimer’s Disease Genome Consortium. Transferability of European-derived Alzheimer’s Disease Polygenic Risk Scores Across Populations. Nat. Genet. 2025, 57, 450–459. [Google Scholar]
- Lee, E.H.; Jo, T.; Development Team. DuAL-Net: A Hybrid Framework for Alzheimer’s Disease Risk Prediction from Whole-Genome Sequencing. arXiv 2025, arXiv:2506.00673. [Google Scholar]
- Wang, H.; Dombroski, B.A.; Cheng, P.-L.; Tucci, A.; Si, Y.-Q.; Farrell, J.J.; Tzeng, J.-Y.; Leung, Y.Y.; Malamon, J.S.; Alzheimer’s Disease Sequencing Project; et al. Structural variation detection and association analysis in 16,543 WGS samples from the Alzheimer’s Disease Sequencing Project. Alzheimers Dement. 2025, 21, e70277. [Google Scholar] [CrossRef] [PubMed]
- Willett, J.D.S.; Waqas, M.; Choi, Y.; Ngai, T.; Mullin, K.; Tanzi, R.E.; Prokopenko, D. Identification of 16 Novel AD Susceptibility Genes Using Multi-Ancestry WGS. Alzheimers Dement. 2025, 21, e14592. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.J.; Chen, S.D.; Wu, B.S.; Zhang, Y.R.; Wang, J.; He, X.Y.; Liu, W.S.; Chen, Y.L.; Ou, Y.N.; Shen, X.N.; et al. Genome-wide meta-analysis identifies ancestry-specific loci for Alzheimer’s disease. Alzheimers Dement. 2024, 20, 6243–6256. [Google Scholar] [CrossRef] [PubMed]
- Naj, A.; Rajabli, F.; Benchek, P.; Tosto, G.; Kushch, N.; Sha, J.; Bazemore, K.; Zhu, C.; Lee, W.P.; Haut, J.; et al. Multi-ancestry genome-wide meta-analysis of 56,241 individuals identifies LRRC4C, LHX5-AS1 and nominates ancestry-specific loci PTPRK, GRB14, and KIAA0825 as novel risk loci for Alzheimer’s disease: The Alzheimer’s Disease Genetics Consortium. medRxiv 2023. [Google Scholar] [CrossRef]
- Jin, Y.; Topaloudi, A.; Shekhar, S.; Chen, G.; Scott, A.N.; Colon, B.D.; Drineas, P.; Rochet, C.; Paschou, P. Neuropathology-based approach reveals novel Alzheimer’s Disease genes and highlights female-specific pathways and causal links to disrupted lipid metabolism: Insights into a vicious cycle. Acta Neuropathol. Commun. 2025, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Mao, C.; Hou, Y.; Luo, Y.; Binder, J.L.; Zhou, Y.; Bekris, L.M.; Shin, J.; Hu, M.; Wang, F.; et al. Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease. Cell Rep. 2022, 41, 111717. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, M.; Marcora, E.M.; Zhang, B.; Goate, A.M. Promoter DNA hypermethylation—Implications for Alzheimer’s disease. Neurosci. Lett. 2019, 711, 134403. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lin, A.; Cai, L.; Huang, W.; Yan, S.; Wei, Y.; Ruan, X.; Fang, W.; Dai, X.; Cheng, J.; et al. ACSS2-dependent histone acetylation improves cognition in mouse model of Alzheimer’s disease. Mol. Neurodegener. 2023, 18, 47. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, J.; Duan, F.; Cong, L.; Qi, X. The role of the microRNA regulatory network in Alzheimer’s disease: A bioinformatics analysis. Arch. Med. Sci. 2021, 18, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Butler, R.R., III; Gyawali, P.K.; Longo, F.M.; He, Z. ScAtt: An Attention based architecture to analyze Alzheimer’s disease at cell type level from single-cell RNA-sequencing data. arXiv 2024, arXiv:2405.17433v1. [Google Scholar]
- Wang, C.; Acosta, D.; McNutt, M.; Bian, J.; Ma, A.; Fu, H.; Ma, Q. ssREAD: A Single-Cell and Spatial Transcriptomic Resource for Alzheimer’s Disease. Nat. Commun. 2024, 15, 4710. [Google Scholar] [CrossRef] [PubMed]
- Nativio, R.; Lan, Y.; Donahue, G.; Sidoli, S.; Berson, A.; Srinivasan, A.R.; Shcherbakova, O.; Amlie-Wolf, A.; Nie, J.; Cui, X.; et al. An Integrated Multi-Omics Approach Identifies Epigenetic Alterations Associated with Alzheimer’s Disease. Nat. Genet. 2020, 52, 1024–1035. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.; Dayon, L.; Masoodi, M.; Bowman, G.L.; Popp, J. Integrative Multi-Omics Reveals Central Nervous System Pathways Altered in Alzheimer’s Disease. Alzheimers Res. Ther. 2021, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Ivanisevic, T.; Sewduth, R.N. Multi-Omics Integration for the Design of Novel Alzheimer’s Therapies and Biomarker Discovery. Proteomes 2023, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Li, X.; Liu, L.-F.; Li, M.; Zhang, W.; Luan, T. Gut microbiota-derived bile acids promote gamma-secretase activity through interactions with nicastrin subunits. arXiv 2023, arXiv:2310.07233v1. [Google Scholar]
- Chen, Y.; Li, Y.; Fan, Y.; Chen, S.; Chen, L.; Chen, Y.; Chen, Y. Gut microbiota-driven metabolic alterations reveal gut-brain communication in Alzheimer’s disease model mice. Gut Microbes 2024, 16, 2302310. [Google Scholar] [CrossRef] [PubMed]
- Sheng, C.; Du, W.; Liang, Y.; Xu, P.; Ding, Q.; Chen, X.; Jia, S.; Wang, X. An Integrated Neuroimaging-Omics Approach for the Gut–Brain Axis in Alzheimer’s Disease. Front. Aging Neurosci. 2023, 15, 1211979. [Google Scholar] [CrossRef] [PubMed]
- Mulak, A. Bile acids as key modulators of the brain-gut-microbiota axis in Alzheimer’s disease. J. Alzheimers Dis. 2021, 84, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, J.R.M.; Resende, R.; Custódio, J.B.A.; Salvador, J.A.R.; Santos, A.E. BACE1 inhibitors for Alzheimer’s disease: Current challenges and future perspectives. J. Alzheimers Dis. 2024, 101 (Suppl. S1), S53–S78. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.A.; Sousa, E. BACE-1 and γ-secretase as therapeutic targets for Alzheimer’s disease. Pharmaceuticals 2019, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.Y. γ-Secretase in Alzheimer’s disease. Exp. Mol. Med. 2022, 54, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Yang, H.; Yang, H.; Yang, J. Small-molecule drugs development for Alzheimer’s disease. Front. Aging Neurosci. 2022, 14, 1019412. [Google Scholar] [CrossRef] [PubMed]
- Ashleigh, T.; Swerdlow, R.H.; Beal, M.F. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimers Dement. 2023, 19, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chen, L.; Liu, J.; Chen, J.; Wang, C.; Guo, Y.; Yu, X.; Zhang, C.; Chu, H.; Ma, H. A class I HDAC inhibitor rescues synaptic damage and neuron loss in APP-transfected cells and APP/PS1 mice through the GRIP1/AMPA pathway. Molecules 2022, 27, 4160. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Iglesias, O.; Naidoo, V.; Carrera, I.; Corzo, L.; Cacabelos, R. Nosustrophine: An Epinutraceutical Bioproduct with Effects on DNA Methylation, Histone Acetylation and Sirtuin Expression in Alzheimer’s Disease. Pharmaceutics 2022, 14, 2447. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. (Ed.) Pharmacoepigenetics, 2nd ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2025; in press. [Google Scholar]
- Xu, Y.; Yang, Y.; Chen, X.; Jiang, D.; Zhang, F.; Guo, Y.; Hu, B.; Xu, G.; Peng, S.; Wu, L.; et al. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors. Transl. Neurodegener. 2023, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- McManus, R.M.; Latz, E. NLRP3 inflammasome signalling in Alzheimer’s disease. Neuropharmacology 2024, 252, 109941. [Google Scholar] [CrossRef] [PubMed]
- Abijo, A.Z.; Olatunji, S.Y.; Adelodun, S.T.; Asamu, M.O.; Omeiza, N.A. Modeling Alzheimer’s disease using cerebral organoids: Current challenges and prospects. Brain Organoid Syst. Neurosci. J. 2024, 2, 53–63. [Google Scholar] [CrossRef]
- Guvenek, A.; Parikshak, N.; Zamolodchikov, D.; Gelfman, S.; Moscati, A.; Dobbyn, L.; Stahl, E.; Shuldiner, A.; Coppola, G. Transcriptional profiling in microglia across physiological and pathological states identifies a transcriptional module associated with neurodegeneration. Commun. Biol. 2024, 7, 1168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Kadamangudi, S.; Marcatti, M.; Zhang, W.R.; Fracassi, A.; Kayed, R.; Limon, A.; Taglialatela, G. Amyloid-β oligomers increase the binding and internalization of tau oligomers in human synapses. Acta Neuropathol. 2024, 149, 2. [Google Scholar] [CrossRef] [PubMed]
- Rudge, J.D. The lipid invasion model: Growing evidence for this new explanation of Alzheimer’s disease. J. Alzheimers Dis. 2023, 94, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int. J. Biol. Sci. 2021, 17, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Yue, S.; Qin, R.; Du, X.; Wu, Y.; Zhangsun, D.; Luo, S. Recent Advances in Drug Development for Alzheimer’s Disease: A Comprehensive Review. Int. J. Mol. Sci. 2025, 26, 3905. [Google Scholar] [CrossRef] [PubMed]
- Kareva, I. The Many Roads to Dementia: A Systems View of Alzheimer’s Disease. arXiv 2025, arXiv:2504.05441. [Google Scholar]
- Digma, L.A.; Winer, J.R.; Greicius, M.D. Substantial Doubt Remains about the Efficacy of Anti-Amyloid Antibodies. J. Alzheimers Dis. 2024, 97, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Perneczky, R.; Dom, G.; Chan, A.; Falkai, P.; Bassetti, C. Anti-Amyloid Antibody Treatments for Alzheimer’s Disease. Eur. J. Neurol. 2024, 3, e16049. [Google Scholar] [CrossRef] [PubMed]
- Villain, N.; Planche, V.; Levy, R. High-clearance Anti-Amyloid Immunotherapies in Alzheimer’s Disease. Part 1: Meta-Analysis and Review of Efficacy and Safety Data. Rev. Neurol. 2022, 178, 1011–1030. [Google Scholar] [CrossRef] [PubMed]
- Tempra, C.; Scollo, F.; Pannuzzo, M.; Lolicato, F.; La Rosa, C. A Unifying Framework for Amyloid-Mediated Membrane Damage: The Lipid-Chaperon Hypothesis. Biochim. Biophys. Acta Proteins Proteom. 2022, 1870, 140767. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Lee, C.; Torres, E.R.S.; Carling, G.; Gan, L. Mechanisms of sex differences in Alzheimer’s disease. Neuron 2024, 112, 1208–1221. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.T.; Mielke, M.M. Sex differences in Alzheimer’s disease. Neurol. Clin. 2023, 41, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Del Hoyo Soriano, L.; Wagemann, O.; Bejanin, A.; Levin, J.; Fortea, J. Sex-related differences in genetically determined Alzheimer’s disease. Front. Aging Neurosci. 2025, 17, 1522434. [Google Scholar] [CrossRef] [PubMed]
- Soudy, M.; Bars, S.L.; Glaab, E. Sex-dependent molecular landscape of Alzheimer’s disease revealed by large-scale single-cell transcriptomics. Alzheimers Dement. 2025, 21, e14476. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Caldwell, J.Z.K.; Lathia, J.D.; Leverenz, J.B.; Pieper, A.A.; Cummings, J.; Cheng, F. Microglial immunometabolism endophenotypes contribute to sex difference in Alzheimer’s disease. Alzheimers Dement. 2024, 20, 1334–1349. [Google Scholar] [CrossRef] [PubMed]
- Vila-Castelar, C.; Akinci, M.; Palpatzis, E.; Aguilar-Dominguez, P.; Operto, G.; Kollmorgen, G.; Quijano-Rubio, C.; Blennow, K.; Zetterberg, H.; Falcon, C.; et al. Sex/gender effects of glial reactivity on preclinical Alzheimer’s disease pathology. Mol. Psychiatry 2025, 30, 1430–1439. [Google Scholar] [CrossRef] [PubMed]
- Bourzac, K. Why women experience Alzheimer’s disease differently from men. Nature 2025, 640, S14–S17. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wu, Y.; Gross, A.L.; Karvonen-Gutierrez, C.; Kobayashi, L.C. Age at menopause and cognitive function and decline among middle-aged and older women in the China Health and Retirement Longitudinal Study, 2011–2018. Alzheimers Dement. 2025, 21, e14580. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-Tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Karikari, T.K.; Ashton, N.J.; Brinkmalm, G.; Brum, W.S.; Benedet, A.L.; Montoliu-Gaya, L.; Lantero-Rodriguez, J.; Pascoal, T.A.; Suárez-Calvet, M.; Rosa-Neto, P.; et al. Blood Phospho-Tau in Alzheimer Disease: Analysis, Interpretation, and Clinical Utility. Nat. Rev. Neurol. 2022, 18, 400–418. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ortiz, F.; Kirsebom, B.-E.; Contador, J.; Tanley, J.E.; Selnes, P.; Gísladóttir, B.; Pålhaugen, L.; Hemminghyth, M.S.; Jarholm, J.; Skogseth, R.; et al. Plasma Brain-Derived Tau Is an Amyloid-Associated Neurodegeneration Biomarker in Alzheimer’s Disease. Nat. Commun. 2024, 15, 2908. [Google Scholar] [CrossRef] [PubMed]
- Abukuri, D.N. Novel biomarkers for Alzheimer’s disease: Plasma neurofilament light and cerebrospinal fluid. Int. J. Alzheimers Dis. 2024, 2024, 6668159. [Google Scholar] [CrossRef] [PubMed]
- Mattsson-Carlgren, N.; Salvadó, G.; Ashton, N.J.; Tideman, P.; Stomrud, E.; Zetterberg, H.; Ossenkoppele, R.; Betthauser, T.J.; Cody, K.A.; Jonaitis, E.M.; et al. Prediction of longitudinal cognitive decline in preclinical Alzheimer disease using plasma biomarkers. JAMA Neurol. 2023, 80, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Pedrini, S.; Doecke, J.D.; Thota, R.; Villemagne, V.L.; Doré, V.; Singh, A.K.; Wang, P.; Rainey-Smith, S.; Fowler, C.; et al. Plasma Aβ42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer’s disease continuum: A cross-sectional and longitudinal study in the AIBL cohort. Alzheimers Dement. 2023, 19, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Harms, R.L.; Ferrari, A.; Meier, I.B.; Martinkova, J.; Santus, E.; Marino, N.; Cirillo, D.; Mellino, S.; Catuara Solarz, S.; Tarnanas, I.; et al. Digital biomarkers and sex impacts in Alzheimer’s disease management—Potential utility for innovative 3P medicine approach. EPMA J. 2022, 13, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Liu, W.; Liu, H.; Shang, Q. Artificial Intelligence-based MRI Images for Brain in Prediction of Alzheimer’s Disease. J. Healthc. Eng. 2021, 2021, 8198552. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, C.E.; Verberk, I.M.W.; Thijssen, E.H.; Vermunt, L.; Hansson, O.; Zetterberg, H.; van der Flier, W.M.; Mielke, M.M.; Del Campo, M. Blood-based biomarkers for Alzheimer’s disease: Towards clinical implementation. Lancet Neurol. 2022, 21, 66–77. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef] [PubMed]
- Lonnemann, N.; Hosseini, S.; Marchetti, C.; Skouras, D.B.; Stefanoni, D.; D’Alessandro, A.; Dinarello, C.A.; Korte, M. The NLRP3 Inflammasome Inhibitor OLT1177 Rescues Cognitive Impairment in a Mouse Model of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2020, 117, 32145–32154. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Wolfe, M.S. Emerging Structures and Dynamic Mechanisms of γ-Secretase for Alzheimer’s Disease. Neural Regen. Res. 2025, 20, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Self, W.K.; Holtzman, D.M. Emerging Diagnostics and Therapeutics for Alzheimer Disease. Nat. Med. 2023, 29, 2187–2199. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Q.; Qi, X.; Gurney, M.; Perry, G.; Volkow, N.D.; Davis, P.B.; Kaelber, D.C.; Xu, R. Associations of Semaglutide with First-Time Diagnosis of Alzheimer’s Disease in Patients with Type 2 Diabetes: Target Trial Emulation Using Nationwide Real-World Data in the US. Alzheimers Dement. 2024, 20, 8661–8672. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, R.; Wang, L.; Dina Kuo, H.C.; Sargsyan, D.; Zheng, X.; Wang, Y.; Su, X.; Kong, A.N. Triterpenoid Ursolic Acid Drives Metabolic Rewiring and Epigenetic Reprogramming in Treatment/Prevention of Human Prostate Cancer. Mol. Carcinog. 2022, 61, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.L.; Zhou, Y.; Lee, G.; Zhong, K.; Fonseca, J.; Leisgang-Osse, A.M.; Cheng, F. Alzheimer’s Disease Drug Development Pipeline: 2025. Alzheimers Dement. 2025, 11, e70098. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R. (Ed.) World Guide for Drug Use and Pharmacogenomics; EuroEspes Publishing: Corunna, Spain, 2012. [Google Scholar]
- Cacabelos, R.; Naidoo, V.; Martínez-Iglesias, O.; Corzo, L.; Cacabelos, N.; Pego, R.; Carril, J.C. Pharmacogenomics of Alzheimer’s Disease: Novel Strategies for Drug Utilization and Development. In Pharmacogenomics in Drug Discovery and Development; Methods in Molecular Biology; Qing, Y., Ed.; Humana Press: New York, NY, USA, 2022; Volume 2547, pp. 275–287. [Google Scholar]
- Cacabelos, R. Pharmacogenetics in Alzheimer’s Disease Drug Discovery and Personalized Treatment. In Alzheimer’s Disease Drug Development: Research and Development Ecosystem; Cummings, J., Kinney, J., Fillit, H., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 404–417. [Google Scholar]
- Cacabelos, R.; Martínez-Iglesias, O.; Cacabelos, N.; Carrera, I.; Corzo, L.; Naidoo, V. Therapeutic options in Alzheimer’s disease: From classic acetylcholinesterase inhibitors to multi-target drugs with pleiotropic activity. Life 2024, 14, 1555. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Cho, K.J.; Kim, G.W. Mitigation of atherosclerotic vascular damage and cognitive improvement through mesenchymal stem cells in an Alzheimer’s disease mouse model. Int. J. Mol. Sci. 2024, 25, 13210. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Orosz, T.; Singh, A.; Laxma, S.P.; Gross, R.E.; Smith, N.; Vroegop, S.; Sudler, S.; Porter, J.T.; Colon, M.; et al. Influence of exercise and genistein to mitigate the deleterious effects of high-fat high-sugar diet on Alzheimer’s disease-related markers in male mice. Int. J. Mol. Sci. 2024, 25, 9019. [Google Scholar] [CrossRef] [PubMed]
- Dakterzada, F.; Cipriani, R.; López-Ortega, R.; Arias, A.; Riba-Llena, I.; Ruiz-Julián, M.; Huerto, R.; Tahan, N.; Matute, C.; Capetillo-Zarate, E.; et al. Assessment of the correlation and diagnostic accuracy between cerebrospinal fluid and plasma Alzheimer’s disease biomarkers: A comparison of the Lumipulse and Simoa platforms. Int. J. Mol. Sci. 2024, 25, 4594. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.F.; Musich, M.; Costa, A.N.; Gonzales, J.; Gonzales, H.; Ferguson, B.J.; Kille, B.; Thomas, A.L.; Wei, X.; Liu, P.; et al. Feasibility and Preliminary Efficacy of American Elderberry Juice for Improving Cognition and Inflammation in Patients with Mild Cognitive Impairment. Int. J. Mol. Sci. 2024, 25, 4352. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Giannelli, S.; Staurenghi, E.; Cecci, R.; Floro, L.; Gamba, P.; Sottero, B.; Leonarduzzi, G. The Emerging Role of PCSK9 in the Pathogenesis of Alzheimer’s Disease: A Possible Target for the Disease Treatment. Int. J. Mol. Sci. 2024, 25, 13637. [Google Scholar] [CrossRef] [PubMed]
- Sighencea, M.G.; Popescu, R.Ș.; Trifu, S.C. From Fundamentals to Innovation in Alzheimer’s Disease: Molecular Findings and Revolutionary Therapies. Int. J. Mol. Sci. 2024, 25, 12311. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Zurdo, D.; Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E. A Comprehensive Analytical Review of Polyphenols: Evaluating Neuroprotection in Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 5906. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacabelos, R. Special Issue: “New Trends in Alzheimer’s Disease Research: From Molecular Mechanisms to Therapeutics: 2nd Edition”. Int. J. Mol. Sci. 2025, 26, 7175. https://doi.org/10.3390/ijms26157175
Cacabelos R. Special Issue: “New Trends in Alzheimer’s Disease Research: From Molecular Mechanisms to Therapeutics: 2nd Edition”. International Journal of Molecular Sciences. 2025; 26(15):7175. https://doi.org/10.3390/ijms26157175
Chicago/Turabian StyleCacabelos, Ramón. 2025. "Special Issue: “New Trends in Alzheimer’s Disease Research: From Molecular Mechanisms to Therapeutics: 2nd Edition”" International Journal of Molecular Sciences 26, no. 15: 7175. https://doi.org/10.3390/ijms26157175
APA StyleCacabelos, R. (2025). Special Issue: “New Trends in Alzheimer’s Disease Research: From Molecular Mechanisms to Therapeutics: 2nd Edition”. International Journal of Molecular Sciences, 26(15), 7175. https://doi.org/10.3390/ijms26157175