Special Issue “Advances in Targeted Cancer Therapy and Mechanisms of Resistance—2nd Edition”
1. Drug Resistance
2. Novel Therapeutics
3. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions
- Bera, A.; Radhakrishnan, S.; Puthillathu, N.; Subramanian, M.; Gana, N.; Russ, E.; Pollard, H.B.; Srivastava, M. Role of Annexin 7 (ANXA7) as a Tumor Suppressor and a Regulator of Drug Resistance in Thyroid Cancer. Int. J. Mol. Sci. 2024, 25, 13217.
- Akhtar, J.; Imran, M.; Wang, G. CRISPR/Cas9-Mediated CtBP1 Gene Editing Enhances Chemosensitivity and Inhibits Metastatic Potential in Esophageal Squamous Cell Carcinoma Cells. Int. J. Mol. Sci. 2023, 24, 14030.
- Gonzalez-Woge, M.; Contreras-Espinosa, L.; Garcia-Gordillo, J.A.; Aguilar-Villanueva, S.; Bargallo-Rocha, E.; Cabrera-Galeana, P.; Vasquez-Mata, T.; Cervantes-López, X.; Vargas-Lías, D.S.; Montiel-Manríquez, R.; et al. The Expression Profiles of lncRNAs Are Associated with Neoadjuvant Chemotherapy Resistance in Locally Advanced, Luminal B-Type Breast Cancer. Int. J. Mol. Sci. 2024, 25, 8077.
- Urushihara, Y.; Hashimoto, T.; Fujishima, Y.; Hosoi, Y. AMPK/FOXO3a Pathway Increases Activity and/or Expression of ATM, DNA-PKcs, Src, EGFR, PDK1, and SOD2 and Induces Radioresistance under Nutrient Starvation. Int. J. Mol. Sci. 2023, 24, 12828.
- Mouhssine, S.; Maher, N.; Matti, B.F.; Alwan, A.F.; Gaidano, G. Targeting BTK in B Cell Malignancies: From Mode of Action to Resistance Mechanisms. Int. J. Mol. Sci. 2024, 25, 3234.
- Stocchero, M.; Corallo, D.; Bresolin, S.; et al. A Multi-Omics Approach Reveals Enrichment in Metabolites Involved in the Regulation of the Glutathione Pathway in LIN28B-Dependent Cancer Cells. Int. J. Mol. Sci. 2024, 25, 1602.
- Zhou, J.; Zhao, D.; Tan, H.; Lan, J.; Bao, Y. CHI3L1 as a Prognostic Biomarker and Therapeutic Target in Glioma. Int. J. Mol. Sci. 2024, 25, 7094.
- Bashraheel, S.S.; Al-Sulaiti, H.; Goda, S.K. Generation of Novel Tumour-Selective SEA Superantigen-Based Peptides with Improved Safety and Efficacy for Precision Cancer Immunotherapy. Int. J. Mol. Sci. 2024, 25, 9423.
- Sellner, F.; Comperat, E.; Klimpfinger, M. Genetic and Epigenetic Characteristics in Isolated Pancreatic Metastases of Clear-Cell Renal Cell Carcinoma. Int. J. Mol. Sci. 2023, 24, 16292.
References
- Konieczkowski, D.J.; Johannessen, C.M.; Garraway, L.A. A Convergence-Based Framework for Cancer Drug Resistance. Cancer Cell. 2018, 33, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, Q.; Wang, C.; Guo, H.; Mukwaya, V.; Chen, R.; Xu, Y.; Wei, X.; Chen, X.; Zhang, S.; et al. Single-Cell Diagnosis of Cancer Drug Resistance through the Differential Endocytosis of Nanoparticles between Drug-Resistant and Drug-Sensitive Cancer Cells. ACS Nano 2023, 17, 19372–19386. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, B.; Zhang, Z. Accelerating the understanding of cancer biology through the lens of genomics. Cell 2023, 186, 1755–1771. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.C.T.; Chung, J.Y.F.; Liao, J.; Chan, M.K.K.; Chan, A.S.W.; Cheng, G.; Li, C.; Huang, X.R.; Ng, C.S.H.; Lam, E.W.; et al. Single-cell RNA sequencing uncovers a neuron-like macrophage subset associated with cancer pain. Sci. Adv. 2022, 8, eabn5535. [Google Scholar] [CrossRef] [PubMed]
- Irie, T.; Matsuda, T.; Hayashi, Y.; Matsuda-Ito, K.; Kamiya, A.; Masuda, T.; Prinz, M.; Isobe, N.; Kira, J.I.; Nakashima, K. Direct neuronal conversion of microglia/macrophages reinstates neurological function after stroke. Proc. Natl. Acad. Sci. USA 2023, 120, e2307972120. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.C.T.; Chan, M.K.K.; Chung, J.Y.F.; Chan, A.S.W.; Zhang, D.; Li, C.; Leung, K.T.; Ng, C.S.H.; Wu, Y.; To, K.F.; et al. Hematopoietic Transcription Factor RUNX1 is Essential for Promoting Macrophage-Myofibroblast Transition in Non-Small-Cell Lung Carcinoma. Adv. Sci. 2023, 11, e2302203. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Nakano, M.; Ariyama, H.; Yamaguchi, K.; Tanaka, R.; Semba, Y.; Sugio, T.; Miyawaki, K.; Kikushige, Y.; Mizuno, S.; et al. Macrophages are primed to transdifferentiate into fibroblasts in malignant ascites and pleural effusions. Cancer Lett. 2022, 532, 215597. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.M.; Wang, S.; Huang, X.R.; Yang, C.; Xiao, J.; Zhang, Y.; To, K.F.; Nikolic-Paterson, D.J.; Lan, H.Y. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis. 2016, 7, e2495. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.Y.F.; Tang, P.C.T.; Chan, M.K.K.; Xue, V.W.; Huang, X.R.; Ng, C.S.H.; Zhang, D.; Leung, K.T.; Wong, C.K.; Lee, T.L.; et al. Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma. Nat. Commun. 2023, 14, 1794. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Nepovimova, E.; Adam, V.; Sivak, L.; Heger, Z.; Valko, M.; Wu, Q.; Kuca, K. Neutrophils in Cancer immunotherapy: Friends or foes? Mol. Cancer 2024, 23, 107. [Google Scholar] [CrossRef] [PubMed]
- Rys, R.N.; Calcinotto, A. Senescent neutrophils: A hidden role in cancer progression. Trends Cell Biol. 2025, 35, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Coan, M.; Haefliger, S.; Ounzain, S.; Johnson, R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat. Rev. Genet. 2024, 25, 578–595. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Weiswald, L.B.; Poulain, L.; Denoyelle, C.; Meryet-Figuiere, M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: Cytoskeleton and ECM crosstalk. J. Exp. Clin. Cancer Res. 2023, 42, 173. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhao, H.; Lu, S.; Cheng, Y.; Liu, Y.; Zhao, M.; Yu, Z.; Hu, C.; Zhang, L.; Yang, F.; et al. Consensus on the lung cancer management after third-generation EGFR-TKI resistance. Lancet Reg. Health West Pac. 2024, 53, 101260. [Google Scholar] [CrossRef] [PubMed]
- Alsaafeen, B.H.; Ali, B.R.; Elkord, E. Resistance mechanisms to immune checkpoint inhibitors: Updated insights. Mol. Cancer 2025, 24, 20. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Sharma, G.; Karmakar, S.; Banerjee, S. Multi-OMICS approaches in cancer biology: New era in cancer therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167120. [Google Scholar] [CrossRef] [PubMed]
- Omran, M.M.; Emam, M.; Gamaleldin, M.; Abushady, A.M.; Elattar, M.A.; El-Hadidi, M. Comparative analysis of statistical and deep learning-based multi-omics integration for breast cancer subtype classification. J. Transl. Med. 2025, 23, 709. [Google Scholar] [CrossRef] [PubMed]
- Grossi, B.; Barati, S.; Ramella, A.; Migliavacca, F.; Matas, J.F.R.; Dubini, G.; Chakfé, N.; Heim, F.; Cozzi, O.; Condorelli, G.; et al. Validation evidence with experimental and clinical data to establish credibility of TAVI patient-specific simulations. Comput. Biol. Med. 2024, 182, 109159. [Google Scholar] [CrossRef] [PubMed]
- Goldsack, J.C.; Coravos, A.; Bakker, J.P.; Bent, B.; Dowling, A.V.; Fitzer-Attas, C.; Godfrey, A.; Godino, J.G.; Gujar, N.; Izmailova, E.; et al. Verification, analytical validation, and clinical validation (V3): The foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). NPJ Digit. Med. 2020, 3, 55. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, P.M.-K.; Xian, Y.-F.; Zhang, D. Special Issue “Advances in Targeted Cancer Therapy and Mechanisms of Resistance—2nd Edition”. Int. J. Mol. Sci. 2025, 26, 7173. https://doi.org/10.3390/ijms26157173
Tang PM-K, Xian Y-F, Zhang D. Special Issue “Advances in Targeted Cancer Therapy and Mechanisms of Resistance—2nd Edition”. International Journal of Molecular Sciences. 2025; 26(15):7173. https://doi.org/10.3390/ijms26157173
Chicago/Turabian StyleTang, Patrick Ming-Kuen, Yan-Fang Xian, and Dongmei Zhang. 2025. "Special Issue “Advances in Targeted Cancer Therapy and Mechanisms of Resistance—2nd Edition”" International Journal of Molecular Sciences 26, no. 15: 7173. https://doi.org/10.3390/ijms26157173
APA StyleTang, P. M.-K., Xian, Y.-F., & Zhang, D. (2025). Special Issue “Advances in Targeted Cancer Therapy and Mechanisms of Resistance—2nd Edition”. International Journal of Molecular Sciences, 26(15), 7173. https://doi.org/10.3390/ijms26157173