Review of Recent Medicinal Applications of Rhenium(I) Tricarbonyl Complexes
Abstract
1. Introduction
2. Medical Applications of Re(I)Tricarbonyl Complexes
2.1. Antibacterial Applications
2.2. Antifungal Activities
2.3. Antimalarial Activities
2.4. Antichagasic Activities
2.5. Anticancer Activities
3. Rhenium Labelling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fokunang, E.T.; Fokunang, C.N. Overview of the Advancement in the Drug Discovery and Contribution in the Drug Development Process. J. Adv. Med. Pharm. Sci. 2022, 24, 10–32. [Google Scholar] [CrossRef]
- Segura, N.A.; Muñoz, A.L.; Losada-Barragán, M.; Torres, O.; Rodríguez, A.K.; Rangel, H.; Bello, F. Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Pathog. Dis. 2021, 79, ftab043. [Google Scholar] [CrossRef] [PubMed]
- Kateb, B.; Chiu, K.; Black, K.L.; Yamamoto, V.; Khalsa, B.; Ljubimova, J.Y.; Ding, H.; Patil, R.; Portilla-Arias, J.A.; Modo, M. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy? Neuroimage 2011, 54, S106–S124. [Google Scholar] [CrossRef] [PubMed]
- Peña, Q.; Wang, A.; Zaremba, O.; Shi, Y.; Scheeren, H.W.; Metselaar, J.M.; Kiessling, F.; Pallares, R.M.; Wuttke, S.; Lammers, T. Metallodrugs in cancer nanomedicine. Chem. Soc. Rev. 2022, 51, 2544–2582. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.-C.; Leung, K.-K.; Lo, K.K.-W. Recent development of luminescent rhenium (I) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Trans. 2017, 46, 16357–16380. [Google Scholar] [CrossRef] [PubMed]
- Mkhatshwa, M.; Moremi, J.M.; Makgopa, K.; Manicum, A.-L.E. Nanoparticles functionalised with Re (I) tricarbonyl complexes for cancer theranostics. Int. J. Mol. Sci. 2021, 22, 6546. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, K.; Handunnetti, S.; Perera, I.C.; Perera, T. Synthesis and characterization of novel rhenium (I) complexes towards potential biological imaging applications. Chem. Cent. J. 2016, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Acosta, A.; Antipán, J.; Fernández, M.; Prado, G.; Sandoval-Altamirano, C.; Günther, G.; Gutiérrez-Urrutia, I.; Poblete-Castro, I.; Vega, A.; Pizarro, N. Photochemistry of P, N-bidentate rhenium (i) tricarbonyl complexes: Reactive species generation and potential application for antibacterial photodynamic therapy. RSC Adv. 2021, 11, 31959–31966. [Google Scholar] [CrossRef] [PubMed]
- Ikotun, A.A.; Owoseni, A.A.; Egharevba, G.O. Synthesis, physicochemical and antimicrobial properties of rhenium (I) tricarbonyl complexes of isatin Schiff bases. Afr. J. Biotechnol. 2021, 20, 175–185. [Google Scholar] [CrossRef]
- Fulgencio, S.; Scaccaglia, M.; Frei, A. Exploration of Rhenium Bisquinoline Tricarbonyl Complexes for their Antibacterial Properties. ChemBioChem 2024, 25, e202400435. [Google Scholar] [CrossRef]
- Sharma, D.; Dhayalan, V.; Chatterjee, R.; Khatravath, M.; Dandela, R. Recent advances in the synthesis of coumarin and its derivatives by using aryl propiolates. ChemistrySelect 2022, 7, e202104299. [Google Scholar] [CrossRef]
- Frei, A.; Van Niekerk, A.; Joseph, C.M.; Kavanagh, A.; Dinh, H.; Swarts, A.J.; Mapolie, S.F.; Zuegg, J.; Cain, A.K.; Elliott, A.G. The antimicrobial properties of Pd (II)-and Ru (II)-pyta complexes. ChemBioChem 2023, 24, e202300247. [Google Scholar]
- Frei, A.; Amado, M.; Cooper, M.A.; Blaskovich, M.A. Light-Activated rhenium complexes with dual mode of action against bacteria. Chem. A Eur. J. 2020, 26, 2852–2858. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, T.A.; Eke, U.B.; Sylvestre, D.K. Isoniazid stabilized tungsten tricarbonyl complex: A new CO-releasing molecule with antibacterial activity. Sci. Forum (J. Pure Appl. Sci.) 2020, 19, 139–144. [Google Scholar] [CrossRef]
- Patil, H.V.; Mohite, S.T.; Patil, V.C. Multidrug Resistant Acinetobacter in Patient with Ventilator Associated Pneumonia. J. Krishna Inst. Med. Sci. (JKIMSU) 2019, 8. [Google Scholar]
- Sovari, S.N.; Radakovic, N.; Roch, P.; Crochet, A.; Pavic, A.; Zobi, F. Combatting AMR: A molecular approach to the discovery of potent and non-toxic rhenium complexes active against C. albicans-MRSA co-infection. Eur. J. Med. Chem. 2021, 226, 113858. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.M. Tricarbonyl triazolato Re (i) compounds of pyridylbenzimidazole ligands: Spectroscopic and antimicrobial activity evaluation. RSC Adv. 2021, 11, 22715–22722. [Google Scholar] [CrossRef] [PubMed]
- Sovari, S.N.; Golding, T.M.; Mbaba, M.; Mohunlal, R.; Egan, T.J.; Smith, G.S.; Zobi, F. Rhenium (I) derivatives of aminoquinoline and imidazolopiperidine-based ligands: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J. Inorg. Biochem. 2022, 234, 111905. [Google Scholar] [CrossRef] [PubMed]
- Ishmail, F.-Z. Antimalarial Evaluation of Quinoline-triazoleMn (I) and Re (I) PhotoCORMs. Master’s Thesis, Faculty of Science, University of Cape Town, Cape Town, South Africa, 2019. [Google Scholar]
- Soba, M.; Scalese, G.; Casuriaga, F.; Pérez, N.; Veiga, N.; Echeverría, G.A.; Piro, O.E.; Faccio, R.; Pérez-Díaz, L.; Gasser, G. Multifunctional organometallic compounds for the treatment of Chagas disease: Re (i) tricarbonyl compounds with two different bioactive ligands. Dalton Trans. 2023, 52, 1623–1641. [Google Scholar] [CrossRef] [PubMed]
- Soba, M.; Scalese, G.; Pérez-Díaz, L.; Gambino, D.; Machado, I. Application of microwave plasma atomic emission spectrometry in bioanalytical chemistry of bioactive rhenium compounds. Talanta 2022, 244, 123413. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Libardi, S.H.; Borges, J.C.; Oliveira, R.J.; Gotzmann, C.; Blacque, O.; de Albuquerque, S.; Lopes, C.D.; Alberto, R.; Maia, P.I. Rhenium (I) and technetium (I) complexes with megazol derivatives: Towards the development of a theranostic platform for Chagas disease. Dalton Trans. 2024, 53, 19153–19165. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, S.; Imam, S.S.; Rizwanullah, M.; Akhter, S.; Mahdi, W.; Kazi, M.; Ahmad, J. Progress of cancer nanotechnology as diagnostics, therapeutics, and theranostics nanomedicine: Preclinical promise and translational challenges. Pharmaceutics 2020, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Sovari, S.N.; Vojnovic, S.; Bogojevic, S.S.; Crochet, A.; Pavic, A.; Nikodinovic-Runic, J.; Zobi, F. Design, synthesis and in vivo evaluation of 3-arylcoumarin derivatives of rhenium (I) tricarbonyl complexes as potent antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 2020, 205, 112533. [Google Scholar] [CrossRef] [PubMed]
- de Lavor, T.S.; Teixeira, M.H.S.; de Matos, P.A.; Lino, R.C.; Silva, C.M.F.; do Carmo, M.E.G.; Beletti, M.E.; Patrocinio, A.O.T.; de Oliveira Júnior, R.J.; Tsubone, T.M. The impact of biomolecule interactions on the cytotoxic effects of rhenium (I) tricarbonyl complexes. J. Inorg. Biochem. 2024, 257, 112600. [Google Scholar] [CrossRef] [PubMed]
- Shtemenko, N.; Galiana-Rosello, C.; Gil-Martínez, A.; Blasco, S.; Gonzalez-García, J.; Velichko, H.; Holichenko, O.; Shtemenko, O.; García-España, E. Two rhenium compounds with benzimidazole ligands: Synthesis and DNA interactions. RSC Adv. 2024, 14, 19787–19793. [Google Scholar] [CrossRef] [PubMed]
- Moherane, L.; Alexander, O.T.; Schutte-Smith, M.; Kroon, R.E.; Mokolokolo, P.P.; Biswas, S.; Prince, S.; Visser, H.G.; Manicum, A.-L.E. Polypyridyl coordinated rhenium (I) tricarbonyl complexes as model devices for cancer diagnosis and treatment. Polyhedron 2022, 228, 116178. [Google Scholar] [CrossRef]
- Schindler, K.; Horner, J.; Demirci, G.; Cortat, Y.; Crochet, A.; Mamula Steiner, O.; Zobi, F. In vitro biological activity of α-diimine rhenium dicarbonyl complexes and their reactivity with different functional groups. Inorganics 2023, 11, 139. [Google Scholar] [CrossRef]
- Sovari, S.N.; Kolly, I.; Schindler, K.; Djuric, A.; Srdic-Rajic, T.; Crochet, A.; Pavic, A.; Zobi, F. Synthesis, characterization, and in vivo evaluation of the anticancer activity of a series of 5-and 6-(halomethyl)-2, 2′-bipyridine rhenium tricarbonyl complexes. Dalton Trans. 2023, 52, 6934–6944. [Google Scholar] [CrossRef] [PubMed]
- Matlou, M.L.; Malan, F.P.; Nkadimeng, S.; McGaw, L.; Tembu, V.J.; Manicum, A.-L.E. Exploring the in vitro anticancer activities of Re (I) picolinic acid and its fluorinated complex derivatives on lung cancer cells: A structural study. JBIC J. Biol. Inorg. Chem. 2023, 28, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-X.; Liang, J.-H.; Zhang, H.; Wang, Z.-H.; Wan, Q.; Tan, C.-P.; Ji, L.-N.; Mao, Z.-W. Mitochondria-accumulating rhenium (I) tricarbonyl complexes induce cell death via irreversible oxidative stress and glutathione metabolism disturbance. ACS Appl. Mater. Interfaces 2019, 11, 13123–13133. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.-Y.; Cai, D.-H.; He, L. Dinuclear phosphorescent rhenium (I) complexes as potential anticancer and photodynamic therapy agents. Dalton Trans. 2020, 49, 11583–11590. [Google Scholar] [CrossRef] [PubMed]
- Matlou, M.L.; Louis, H.; Charlie, D.E.; Agwamba, E.C.; Amodu, I.O.; Tembu, V.J.; Manicum, A.-L.E. Anticancer Activities of Re (I) Tricarbonyl and Its Imidazole-Based Ligands: Insight from a Theoretical Approach. ACS Omega 2023, 8, 10242–10252. [Google Scholar] [CrossRef] [PubMed]
- Kleynhans, J.; Duatti, A.; Bolzati, C. Fundamentals of Rhenium-188 Radiopharmaceutical Chemistry. Molecules 2023, 28, 1487. [Google Scholar] [CrossRef] [PubMed]
- Morrison, L.; Zembower, T.R. Antimicrobial resistance. Gastrointest. Endosc. Clin. 2020, 30, 619–635. [Google Scholar] [CrossRef] [PubMed]
- Briggs, J.P. The zebrafish: A new model organism for integrative physiology. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2002, 282, R3–R9. [Google Scholar] [CrossRef] [PubMed]
- Betts, J.W.; Roth, P.; Pattrick, C.A.; Southam, H.M.; La Ragione, R.M.; Poole, R.K.; Schatzschneider, U. Antibacterial activity of Mn (I) and Re (I) tricarbonyl complexes conjugated to a bile acid carrier molecule. Metallomics 2020, 12, 1563–1575. [Google Scholar] [CrossRef] [PubMed]
- Romão, C.C.; Mendes, S.S.; Rebelo, C.; Carvalho, S.M.; Saraiva, L.M. Antimicrobial and anticancer properties of carbon monoxide releasing molecules of the fac-[Re(CO)3(N–N)L]+ family. Dalton Trans. 2024, 53, 11009–11020. [Google Scholar] [CrossRef] [PubMed]
- Enslin, L.E.; Purkait, K.; Pozza, M.D.; Saubamea, B.; Mesdom, P.; Visser, H.G.; Gasser, G.; Schutte-Smith, M. Rhenium (I) Tricarbonyl Complexes of 1, 10-Phenanthroline Derivatives with Unexpectedly High Cytotoxicity. Inorg. Chem. 2023, 62, 12237–12251. [Google Scholar] [CrossRef] [PubMed]
- Dobrokhotova, Y.E.; Kazantseva, V.D.; Ozolinya, L.A. Bacterial vaginosis: Modern aspects of pathogenesis, diagnosis, and treatment. VF Snegirev Arch. Obstet. Gynecol. 2023, 10, 209–218. [Google Scholar] [CrossRef]
- Alkharashi, N.; Aljohani, S.; Layqah, L.; Masuadi, E.; Baharoon, W.; Al-Jahdali, H.; Baharoon, S. Candida bloodstream infection: Changing pattern of occurrence and antifungal susceptibility over 10 years in a tertiary care Saudi hospital. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 2015692. [Google Scholar] [CrossRef] [PubMed]
- Santolaya, M.E.; Thompson, L.; Benadof, D.; Tapia, C.; Legarraga, P.; Cortés, C.; Rabello, M.; Valenzuela, R.; Rojas, P.; Rabagliati, R. A prospective, multi-center study of Candida bloodstream infections in Chile. PLoS ONE 2019, 14, e0212924. [Google Scholar] [CrossRef] [PubMed]
- Roemer, T.; Krysan, D.J. Antifungal drug development: Challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med. 2014, 4, a019703. [Google Scholar] [CrossRef] [PubMed]
- Alkadir, S.; Gelana, T.; Gebresilassie, A. A five year trend analysis of malaria prevalence in Guba district, Benishangul-Gumuz regional state, western Ethiopia: A retrospective study. Trop. Dis. Travel Med. Vaccines 2020, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- UNICEF FD. Public health round-up. Bull. World Health Organ. 2023, 101, 301–302. [Google Scholar]
- Sulleiro, E.; Muñoz-Calderon, A.; Schijman, A.G. Role of nucleic acid amplification assays in monitoring treatment response in chagas disease: Usefulness in clinical trials. Acta Trop. 2019, 199, 105120. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Silva, J.; Menezes, D.S.; Fernandes, J.M.P.; Almeida, M.C.; Vasco-dos-Santos, D.R.; Saraiva, R.M.; Viçosa, A.L.; Perez, S.A.C.; Andrade, S.G.; Suarez-Fontes, A.M. The repositioned drugs disulfiram/diethyldithiocarbamate combined to benznidazole: Searching for Chagas disease selective therapy, preventing toxicity and drug resistance. Front. Cell. Infect. Microbiol. 2022, 12, 926699. [Google Scholar] [CrossRef] [PubMed]
- Konkankit, C.C.; King, A.P.; Knopf, K.M.; Southard, T.L.; Wilson, J.J. In vivo anticancer activity of a rhenium (I) tricarbonyl complex. ACS Med. Chem. Lett. 2019, 10, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.L.; Marker, S.C.; Lambert, V.J.; Woods, J.J.; MacMillan, S.N.; Wilson, J.J. Synthesis, characterization, and biological properties of rhenium (I) tricarbonyl complexes bearing nitrogen-donor ligands. J. Organomet. Chem. 2020, 907, 121064. [Google Scholar] [CrossRef]
- Uppal, B.S.; Booth, R.K.; Ali, N.; Lockwood, C.; Rice, C.R.; Elliott, P.I. Synthesis and characterisation of luminescent rhenium tricarbonyl complexes with axially coordinated 1, 2, 3-triazole ligands. Dalton Trans. 2011, 40, 7610–7616. [Google Scholar] [CrossRef] [PubMed]
- Vitale, D. Facial Rhenium Tricarbonyl Complexes with Modified DII Ligands. Bachelor’s Thesis, University of Akron, Akron, OH, USA, 2019. [Google Scholar]
- Manicum, A.-L.E.; Louis, H.; Mathias, G.E.; Agwamba, E.C.; Malan, F.P.; Unimuke, T.O.; Nzondomyo, W.J.; Sithole, S.A.; Biswas, S.; Prince, S. Single crystal investigation, spectroscopic, DFT studies, and in-silico molecular docking of the anticancer activities of acetylacetone coordinated Re (I) tricarbonyl complexes. Inorganica Chim. Acta 2023, 546, 121335. [Google Scholar] [CrossRef]
- Dadachova, E.; Bouzahzah, B.; Zuckier, L.; Pestell, R. Rhenium-188 as an alternative to Iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS). Nucl. Med. Biol. 2002, 29, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Dadachova, E.; Nguyen, A.; Lin, E.Y.; Gnatovskiy, L.; Lu, P.; Pollard, J.W. Treatment with rhenium-188-perrhenate and iodine-131 of NIS-expressing mammary cancer in a mouse model remarkably inhibited tumor growth. Nucl. Med. Biol. 2005, 32, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Kothari, K.; Bapat, K.; Korde, A.; Sarma, H.; Suresh, R.; Padma, S.; Udaychander, M.; Meenakshi, A.; Venkatesh, M.; Pillai, M. Radiochemical and biological studies of 188Re labeled monoclonal antibody CAMA3C8 specific for breast cancer. Ind. J. Nuc. Med. 2004, 19, 6–11. [Google Scholar]
- Wohlfrom, M.; Kotzerke, J.; Kamenz, J.; Eble, M.; Hess, B.; Wöhrle, J.; Reske, S.N.; Hombach, V.; Hanke, H.; Höher, M. Endovascular irradiation with the liquid β-emitter Rhenium-188 to reduce restenosis after experimental wall injury. Cardiovasc. Res. 2001, 49, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-W.; Hong, M.-K.; Moon, D.H.; Oh, S.J.; Lee, C.W.; Kim, J.-J.; Park, S.-J. Treatment of diffuse in-stent restenosis with rotational atherectomy followed by radiation therapy with a rhenium-188–mercaptoacetyltriglycine-filled balloon. J. Am. Coll. Cardiol. 2001, 38, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, B.-T.; Hsieh, J.-F.; Tsai, S.-C.; Lin, W.-Y.; Huang, H.-T.; Ting, G.; Wang, S.-J. Rhenium-188-Labeled DTPA: A new radiopharmaceutical for intravascular radiation therapy. Nucl. Med. Biol. 1999, 26, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Höher, M.; Wöhrle, J.; Wohlfrom, M.; Kamenz, J.; Nusser, T.; Grebe, O.C.; Hanke, H.; Kochs, M.; Reske, S.N.; Hombach, V.; et al. Intracoronary ß-Irradiation with a Rhenium-188–Filled Balloon Catheter. Circulation 2003, 107, 3022–3027. [Google Scholar] [PubMed]
- De Decker, M.; Bacher, K.; Thierens, H.; Slegers, G.; Dierckx, R.A.; De Vos, F. In vitro and in vivo evaluation of direct rhenium-188-labeled anti-CD52 monoclonal antibody alemtuzumab for radioimmunotherapy of B-cell chronic lymphocytic leukemia. Nucl. Med. Biol. 2008, 35, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.A.; Hermann, S.; Dietrich, C.F.; Hoelzer, D.; Martin, H. Transplantation-related toxicity and acute intestinal graft-versus-host disease after conditioning regimens intensified with Rhenium 188–labeled anti-CD66 monoclonal antibodies. Blood J. Am. Soc. Hematol. 2002, 99, 2270–2271. [Google Scholar] [CrossRef] [PubMed]
- Koenecke, C.; Hofmann, M.; Bolte, O.; Gielow, P.; Dammann, E.; Stadler, M.; Franzke, A.; Boerner, A.R.; Eder, M.; Ganser, A. Radioimmunotherapy with [188 Re]-labelled anti-CD66 antibody in the conditioning for allogeneic stem cell transplantation for high-risk acute myeloid leukemia. Int. J. Hematol. 2008, 87, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Bunjes, D. 188 Re-labeled anti-CD66 monoclonal antibody in stem cell transplantation for patients with high-risk acute myeloid leukemia. Leuk. Lymphoma 2002, 43, 2125–2131. [Google Scholar] [CrossRef] [PubMed]
- Ringhoffer, M.; Blumstein, N.; Neumaier, B.; Glatting, G.; von Harsdorf, S.; Buchmann, I.; Wiesneth, M.; Kotzerke, J.; Zenz, T.; Buck, A.K. 188Re or 90Y-labelled anti-CD66 antibody as part of a dose-reduced conditioning regimen for patients with acute leukaemia or myelodysplastic syndrome over the age of 55: Results of a phase I–II study. Br. J. Haematol. 2005, 130, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tian, M.; Li, S.; Liu, J.; Tanada, S.; Endo, K. Rhenium-188-HEDP therapy for the palliation of pain due to osseous metastases in lung cancer patients. Cancer Biother. Radiopharm. 2003, 18, 719–726. [Google Scholar] [CrossRef] [PubMed]
Complexes | Bacterial Strains (MIC µgmL−1) | Outcomes | Reference | |
---|---|---|---|---|
S. aureus | E. coli | |||
1 | 50 | 300 | The complex showed a candidate compound for the formulation of antibiotics | [8] |
2 | >300 | >300 | Low activity was noticed against the selected pathogens | [8] |
3 | 50 | 50 | Palpable antibacterial activity against selected test organisms was noticed. A clear indication that the complexes can be used in the formulation of antibiotics | [8] |
Complexes | MIC Values (mM) | Outcomes | References | ||
---|---|---|---|---|---|
S. aureus | E. faecium | E. coli | |||
4 | 0.8 | 3.1 | Potent activities against both S. aureus and E. faecium were reported with the lowest millimolar concentration of 0.8 mM. A significant anti-bacterial activity against S. aureus is noticed, with a corresponding MIC value of 0.8 mM, which is statistically comparable with the known antibiotics, linezolid, and vancomycin. | [8,9,11] | |
5 | 0.8 | 3.1 | The complex had activities nearly the same as complex 4; this could be due to their structural similarities, with only variation on the side chain lactone ring. Its activities were also comparable to those of the positive control, having promising antibacterial applications. | [8,9,11] | |
6 | 0.8 | 3.1 | A probable antibacterial agent with promising activities both in vitro and in vivo. | [8,9,11] | |
7 | 0.8 | 3.1 | The introduction of more electron donors, namely. Oxygen and nitrogen, in the complex, help to arrest and inhibit microbial colonies within the system. This complex has several active sites, and hence reduces multidrug resistance. | [8,9,11] | |
8 | 0.8 | 6.1 | It is reported that this complex exhibited activities that are not different from the positive control; consequently, in vivo tests also affirm this in zebrafish tests. | [8,9,11] | |
9 | 0.002 | - | 0.023 | The complex showed activity twice as compared as the positive control. It also had no variation in its activities when MRSA and colistin-resistant E. coli strains were used. The toxicological reports affirm that the complex is safe and shows no hemolysis even up to a concentration of 300 µM, hence it can be used as a prospective antibiotic. | [8,9,11] |
10 | 0.01 | - | >64 | The reduced form of complex 9 showed a reduction in activity; it exhibited very low activity against the Gram-negative E. coli, but showed better activity against the Gram-positive bacterium strain S. aureus. | [8,9,11] |
11 | 0.002 | - | >64 | The hydrogenated form of complex 10, a derivative of bis-quinoline, showed a noticeable activity against S. aureus at micromolar concentrations; however, poor activity was reported against the Gram-negative bacterium strain of E. coli. | [8,9,11,12] |
Linezolid | 0.7 | - | - | [8,9,11,13,14] | |
Vancomycin | 0.7 | - | - | [8,9,11,13,14] | |
Polymyxin | 0.0005 | - | 0.0002 | - | [8,9,11,13,14] |
Complexes | MIC (mg/mL) | References | ||||
---|---|---|---|---|---|---|
C. albicans | C. glabrata | C. krusei | C. parapsilosis | C. neoformans | ||
4 | 22.50 | 22.50 | 11.20 | 22.50 | - | [9,16,17] |
5 | 11.20 | 22.50 | 4.50 | 11.20 | - | [9,16,17] |
6 | 13.50 | 13.50 | 13.50 | <7.00 | - | [9,16,17] |
7 | 12.90 | 12.90 | 12.90 | 12.90 | - | [9,16,17] |
8 | 4.90 | 4.90 | 4.90 | 4.90 | - | [9,16,17] |
12 | 0.00062 | - | - | - | - | [9,16,17] |
13 | 0.032 | - | - | - | 0.032 | [9,16,17] |
Complexes | IC50 Value (µM) | ||
---|---|---|---|
P. falciparum | L1 | References | |
14 | 4.61 | - | [18,19] |
15 | 0.356 | 0.611 | [18,19] |
16 | 0.441 | 1.80 | [18,19] |
CDP | 0.014 | 0.247 | [18,19] |
Complex | Antichagasic Activities IC50 T. Cruzi Epimastigotes ± SD (μM) | Selectivity Index Epimastigotes | References |
---|---|---|---|
16 | 9.42 ± 1.53 | 0.34 | [20,21,22] |
17 | 8.43± 2.20 | 1.5 | [20,21,22] |
18 | 3.48 ± 0.98 | 0.89 | [20,21,22] |
19 | 8.48 ± 1.46 | 1.6 | [20,21,22] |
Cell Line | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | References |
---|---|---|---|---|---|---|---|---|---|---|
KB-3-1 | – | – | 0.92 ± 0.2 | – | [28,31,32,33] | |||||
KBCP20 | – | – | 1.6 ± 0.4 | – | [31,32,33] | |||||
A2780 | – | – | 2.2 ± 0.2 | 3.5 ± 2.8 | 2.2 ± 0.8 | 2.2 ± 0.2 | – | – | 0.23 ± 0.07 | [31,32,33] |
A2780 CP70 | – | – | 3.0 ± 0.7 | – | – | – | – | [31,32,33] | ||
A549 | 133.2 ± 4.3 | 2.2 ± 0.2 | 6.7 ± 4.9 | – | – | – | – | – | – | [31,32,33] |
AF49 CisR | – | 2.1 ± 0.1 | 5.4 ± 1.8 | – | – | – | – | – | – | [31,32,33] |
H460 | – | – | 4.5 ± 0.7 | – | – | – | – | – | – | [31,32,33] |
H460 CisR | – | – | 5.3 ± 2.9 | – | – | – | – | – | – | [31,32,33] |
MRC-5 | – | – | 4.1 ± 0.9 | – | – | – | – | – | – | [31,32,33] |
HeLa | 126.4 ± 2.8 | 1.8 ± 0.2 | 1.2 ± 0.2 | – | – | – | – | – | 6.6 ± 0.7 | [31,32,33] |
MCF-7 | 51.4 ± 3.0 | 2.2 ± 0.2 | – | – | – | – | – | – | – | [31,32,33] |
T98G | – | – | – | – | >50 | [31,32,33] | ||||
PC3 | 59.4 ± 3.8 | – | – | – | – | – | – | >50 | 2.19 ± 0.11 | [31,32,33] |
HepG2 | – | – | – | – | – | – | – | – | 10.5 ± 0.5 | [31,32,33] |
LO2 | – | – | – | – | – | – | – | – | – | [31,32,33] |
HLF | – | 12.7 ± 0.8 | – | – | – | – | – | – | – | [31,32,33] |
MDA-MB-231 | 48.5 ± 2.8 | – | – | – | – | – | – | – | – | [31,32,33] |
PT-45 | – | – | – | >250 | 2.2 ± 0.3 | [31,32,33] | ||||
HT-29 | 47.5 ± 0.9 | – | – | – | – | – | >250 | 32.6 ± 0.7 | [31,32,33] |
Cell Line | Description |
---|---|
HeLa | Cervical cancer cell |
A2780 | Human ovary epithelial cell, ovarian endometrioid adenocarcinoma |
HT-29 | Human colon epithelial cell, adenocarcinoma. |
PT-45 | Human pancreas epithelial cell, adenocarcinoma. |
T98G | Human brain fibroblast, glioblastoma. |
PC3 | Human prostate epithelial cell, adenocarcinoma |
HepG2 | Human liver epithelial cell, hepatocellular carcinoma. |
KBCP20 | Breast cancer carcinoma |
A2780CP70 | Ovarian endometrioid adenocarcinoma |
A549 | Lung carcinoma epithelial cells |
H460 | Type II pulmonary epithelium carcinoma |
H460CisR | Lewis lung carcinoma |
MRC-5 | Fetal lung fibroblast cell carcinoma |
MCF-7 | Breast cancer |
LO2 | Human fetal hepatocyte cell line |
HLF | Liver carcinoma cell lines |
MDA-MB-231 | Epithelial, human breast cancer cell line |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Towett, E.K.; Tembu, V.J.; Kemboi, D.; Langat, M.K.; Manicum, A.-L.E. Review of Recent Medicinal Applications of Rhenium(I) Tricarbonyl Complexes. Int. J. Mol. Sci. 2025, 26, 7005. https://doi.org/10.3390/ijms26147005
Towett EK, Tembu VJ, Kemboi D, Langat MK, Manicum A-LE. Review of Recent Medicinal Applications of Rhenium(I) Tricarbonyl Complexes. International Journal of Molecular Sciences. 2025; 26(14):7005. https://doi.org/10.3390/ijms26147005
Chicago/Turabian StyleTowett, Erick Kipngetich, Vuyelwa J. Tembu, Douglas Kemboi, Moses K. Langat, and Amanda-Lee E. Manicum. 2025. "Review of Recent Medicinal Applications of Rhenium(I) Tricarbonyl Complexes" International Journal of Molecular Sciences 26, no. 14: 7005. https://doi.org/10.3390/ijms26147005
APA StyleTowett, E. K., Tembu, V. J., Kemboi, D., Langat, M. K., & Manicum, A.-L. E. (2025). Review of Recent Medicinal Applications of Rhenium(I) Tricarbonyl Complexes. International Journal of Molecular Sciences, 26(14), 7005. https://doi.org/10.3390/ijms26147005