Next Article in Journal
Integrated Metabolomic and Transcriptomic Analysis Reveals the Regulatory Effects of Curcumin on Bovine Ovarian Granulosa Cells
Previous Article in Journal
Citrate Transporter Expression and Localization: The Slc13a5Flag Mouse Model
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Rational Modulation of Liquid–Liquid Phase Separation Offers Novel Ways to Combat Tauopathies

1
Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
2
Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
3
Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2025, 26(14), 6709; https://doi.org/10.3390/ijms26146709
Submission received: 18 June 2025 / Revised: 7 July 2025 / Accepted: 8 July 2025 / Published: 12 July 2025
(This article belongs to the Section Biochemistry)

Abstract

The microtubule-associated protein tau plays an essential role in regulating the dynamic assembly of microtubules and is implicated in axonal elongation and maturation, axonal transport, synaptic plasticity regulation, and genetic stability maintenance. Nevertheless, the assembly of tau into neurofibrillary tangles in neurons is a pathological hallmark of a group of neurodegenerative diseases known as tauopathies. Despite enormous efforts and rapid advancements in the field, effective treatment remains lacking for these diseases. In this review, we provide an overview of the structure and phase transition of tau protein. In particular, we focus on the involvement of liquid–liquid phase separation in the biology and pathology of tau. We then discuss several potential strategies for combating tauopathies in the context of phase separation: (i) modulating the formation of tau condensates, (ii) delaying the liquid-to-solid transition of tau condensates, (iii) reducing the enrichment of aggregation-prone species into tau condensates, and (iv) suppressing abnormal post-translational modifications on tau inside condensates. Deciphering the structure–activity relationship of tau phase transition modulators and uncovering the conformational changes in tau during phase transitions will aid in developing therapeutic agents targeting tau in the context of phase separation.

1. Introduction

The microtubule-associated protein tau is a multi-function neuronal protein. It plays an essential role in regulating the dynamic assembly of microtubules [1,2]. Moreover, tau is implicated in diverse physiological processes, including axonal elongation and maturation, axonal transport, synaptic plasticity regulation, and genetic stability maintenance [2,3,4]. Nevertheless, tau dysfunction is closely associated with many diseases [2,3,4]. In particular, tau is the major component of intracellular neurofibrillary tangles (NFTs) [5,6,7], the formation of which is a pathological hallmark of a group of neurodegenerative diseases known as tauopathies [8]. Toxic tau species can transmit intracellularly and intercellularly [9,10], which induces the accumulation of tau inclusions via a prion-like cascade [11,12,13,14]. In the past decade, it has been revealed that tau can form liquid condensates via liquid–liquid phase separation (LLPS) in vitro and in cells [15,16,17,18,19,20]. Liquid tau condensates are involved in the assembly and regulation of microtubule function [21,22,23]. However, the aging of tau condensates can cause the formation of toxic tau oligomers or aggregates (Figure 1) [24,25,26,27]. These findings indicate that LLPS plays a crucial role in tau physiology and pathology [17,18].
Significant efforts have been devoted to investigating the roles of tau in neurodegeneration, suggesting that therapeutic benefits can be achieved by preventing tau aggregation and disassembling tau aggregates [28,29,30]. Meanwhile, a growing body of evidence indicates the implication of LLPS in signal transduction [31], protein homeostasis [32], post-translational modifications (PTMs) [33], and conformational dynamics [34], which offers new angles to dissect the physiology and pathology of tau. In this review, we summarize recent advances in tau structural characterization and phase transition and discuss new insights from LLPS to combat tauopathies.

2. Tau Protein and Tauopathies

2.1. Tau Physiology

The human protein tau is encoded by the MAPT gene, which is on chromosome 17q21 and contains 16 exons [35]. Alternative splicing of exons 2 and 3 results in variations in the N-terminal domain (NTD) of tau, where zero, one, or two inserts (0 N, 1 N, and 2 N) are present. Alternative splicing of exon 10 determines whether the microtubule-binding domain (MTBD) contains three or four microtubule-binding repeats (3R and 4R) [36,37,38]. The proline-rich domain (PRD) and the C-terminal domain (CTD) are identical in all six tau isoforms. The expression of tau isoforms is altered during brain development and differs between cell types and tissues [39,40,41].
Tau’s main function is to stabilize microtubules [1,2]. Binding of tau to microtubules is primarily mediated by the MTBD, with additional contributions from the flanking regions in the PRD and CTD [42,43]. The cryo-electron microscopy structure of the tau/microtubule complex demonstrates that tau adopts an extended conformation along the surface of the protofilament, which tethers tubulin dimers together [44]. Since the 4R tau isoforms contain one more binding repeat than the 3R isoforms, the 4R tau isoforms show a higher affinity for microtubules and promote microtubule assembly more efficiently [45]. In addition to stabilizing microtubules, the binding of tau to the microtubule surface also modulates the motility of motor proteins, thus regulating microtubule-dependent axonal transport [46].
Besides microtubules, tau interacts with numerous targets and participates in various biological processes through microtubule-independent protein–protein interactions [47,48,49,50]. Liu et al. studied the interactomes specific to tau isoforms with either 0, 1, or 2 N-terminal inserts [51]. They revealed preferential interactions for the three tau isoforms and found that many binding proteins are involved in synaptic signaling, energy metabolism, and cytoskeleton processing. Additionally, a segment of 11 amino acids (residues 18–28) in the NTD is specific to primate species. Stefanoska et al. found that this segment may mediate interactions involved in synaptic transmission and signaling [52]. SH3 domains are a group of protein modules that are crucial in various cellular pathways. They mediate protein–protein interactions by recognizing the proline-rich motifs on target proteins [53]. The PRD of tau contains seven proline-rich motifs, of which some can be recognized by the SH3 domains of the tyrosine kinase Fyn and membrane remodeling protein BIN1 [54,55,56]. The interaction between tau PRD and SH3 domain-containing proteins suggests that tau is involved in signal transduction pathways associated with neurodegeneration.

2.2. Structure of Tau Monomer

Tau is enriched with charged and polar residues, which prevents it from folding into a stable three-dimensional structure. Various experimental characterizations have demonstrated that tau is intrinsically disordered with dynamic secondary structure elements present in the PRD and MTBD [57,58]. While tau is disordered, dynamic intramolecular contacts drive compaction of tau conformation in solution. The NTD and CTD of tau are negatively charged, while the PRD and MTBD are positively charged. Attractive electrostatic interactions drive folding of the NTD and CTD over the PRD and MTBD [59]. As a result, the overall dimensions of tau are smaller than those of a random coil with similar length [60,61,62].
Conformational compaction has a role in modulating the functional state of tau. In a series of works, Joachimiak and collaborators demonstrated that different tau monomer groups can be separated by size exclusion chromatography [63,64,65]. Importantly, they found that tau monomer species adopting more compact conformations are in the seed-competent state [63,64,65]. Studies from the Goldsmith group also revealed that the tau monomer can reside in two groups of conformations with distinct extents of compaction and dynamics [66,67]. Notably, the transition between the more compact conformation group and the less compact conformation group is resistant to heat treatment and sensitive to guanidine hydrochloride treatment [63,66].

2.3. Tau Aggregation and Diseases

The identification of tau as the major component of fibrillar inclusions deposited in the brains of patients with neurodegenerative diseases, including Alzheimer’s disease, chronic traumatic encephalopathy, progressive supranuclear palsy, corticobasal degeneration, and frontotemporal lobar degeneration with tau pathology, has attracted significant attention. High-resolution structures of tau filaments isolated from the brain of a patient with Alzheimer’s disease were reported by Fitzpatrick et al. in 2017 [68]. Since then, substantial progress has been made in determining the structures of tau filaments in other tauopathies [69,70]. These studies revealed that tau filaments are formed by packing tau segments in β-strand conformations (primarily by residues 254–387 located in the MTBD) and tau can adopt different folded structures in the fibrillar state. Most importantly, while the folded structures of tau can be the same or different in distinct diseases, tau filaments from different individuals with the same disease show similar folds [69,71], indicating that a common mechanism and disease-specific modulation synergistically control tau fibrillation [72].
Despite extensive investigation, the pathogenesis of tau-mediated neurodegeneration remains unclear [73]. Some studies using animal models showed that hyperphosphorylated tau, either in monomeric or oligomeric states, is the toxic species in vivo [74,75,76]. However, the neuronal toxicity of NFTs is controversial. On the one hand, it has been suggested that the formation of insoluble NFTs is a protective mechanism to alleviate the toxic effects of soluble tau species and NFTs may act as an antioxidant against chronic oxidative stress [77,78]. On the other hand, there is a growing body of evidence that suggests a correlation between tau inclusion accumulation and cognitive impairment [79,80,81]. Additionally, fragmented tau fibrils can accelerate tau aggregation and promote tau spread [82,83,84,85]. Therefore, preventing tau aggregation and disassembling tau aggregates are potential therapeutic strategies targeting tau.

3. Liquid Condensates: A New Phase Linked to Tauopathies

Numerous studies over the past two decades have revealed that LLPS is a general mechanism that underlies the assembly of membraneless organelles and is closely linked to neurodegenerative diseases [86,87,88]. The LLPS capability of tau was identified in 2017 by the Zweckstetter group, Kosik and Han group, and Diez and Hyman group [21,24,89]. Since then, significant progress has been achieved, indicating the involvement of LLPS in the physiology and pathology of tau [16,17,18,19,90,91].

3.1. LLPS of Tau

When protein concentrations are above the saturation limit, they may undergo LLPS, which results in a protein-depleted dilute phase and a protein-enriched condensed phase. LLPS is driven by dynamic multivalent interactions, such as electrostatic interactions, π–π interactions, cation–π interactions, and hydrophobic interactions [92,93,94]. Tau is a polyelectrolyte with low contents of hydrophobic and aromatic residues. Therefore, nonspecific intermolecular electrostatic interactions between the negatively charged NTD and the positively charged PRD and MTBD drive tau LLPS under physiologically relevant conditions (Figure 2) [95,96]. Tau can also form heterotypic LLPS with nucleic acids, such as RNA [89] and DNA [97], and proteins, such as prion protein [98], α-synuclein [99], 14-3-3ζ [100], S100B [101], and TIA1 [102], where electrostatic interactions are expected to play a key role. As illustrated in fluorescence recovery after photobleaching experiments and confocal microscopy imaging, tau condensates display liquid-like properties, with tau molecules diffusing rapidly within condensates and small condensates fusing into larger ones. Tau molecules are significantly enriched in condensates. The concentration of tau in the condensed phase can be up to 100-fold higher than that in the dilute phase [25,103]. Moreover, the compact conformation of tau is opened in condensates, resulting in tau becoming more expanded [62,104]. Therefore, LLPS significantly alters the spatial distribution and conformational dynamics of tau, which could contribute to both the physiological function and pathological transition of tau.

3.2. Physiological Roles of Tau LLPS

Although in vivo evidence is still lacking, several in vitro studies suggest the physiological relevance of tau LLPS. Tau condensates modulate the assembly and function of microtubules. Tubulin is recruited into tau condensates, where microtubules nucleate and elongate, suggesting that tau condensates could function as non-centrosomal microtubule nucleation centers in neurons [21]. Besides tubulin, tau condensates recruit other biomolecules, including the plus-end tracking protein EB1 and RNA [105,106]. EB1 condenses at the microtubule plus-ends and regulates microtubule growth rate and catastrophe frequency [107]. Venkatramani et al. showed that EB1 impairs the ability of tau to promote microtubule assembly upon co-phase separation with tau [108]. It is possible that tau dissociates from microtubules due to competitive binding of EB1 to microtubules or EB1 prevents tau from binding to microtubules by interacting with the MTBD of tau [108]. Hochmair et al. showed that RNA and tubulin compete for the co-condensation with tau [106]. Their results indicated that the presence of RNA not only lowers the concentration of tubulin within tau condensates, but also impacts the morphology of microtubule bundles [106]. Tau condensates that form on the surface of microtubules have the potential to affect the function of microtubules. For example, tau condensates can function as a protective layer that regulates the activity of microtubule-severing enzymes and the movement of molecular motors on microtubules [22,23]. Tau condensate formation can also induce compaction of the microtubule lattice, thus biasing the conformational dynamics of tubulin within the lattice [109]. Additionally, tau forms transient nano-biomolecular condensates at the presynapse, where tau controls the mobility of recycling synaptic vesicles under the regulation of synaptic activity [110]. Furthermore, Abasi et al. demonstrated that tau promotes chromatin compaction and protects DNA from digestion through co-phase separation with DNA, nucleosomes, and heterochromatin protein 1α [97]. Therefore, tau phase separation in the nucleus may contribute to DNA protection and heterochromatin regulation.

3.3. Linking Tau LLPS to Tauopathies

While there is numerous evidence indicating that cellular compartmentalization via LLPS plays a crucial role in various biological processes [111,112,113,114], LLPS is also associated with many diseases, including neurodegenerative disorders [115], cancers [116], and infectious diseases [117].
Translocation of tau into the presynapse regulates the organization of synaptic vesicles [110]; however, localization of tau at the postsynapse may be correlated with synaptic dysfunction [118]. Shen et al. showed that tau undergoes co-phase separation with postsynaptic density scaffold proteins and induces dynamic arrest of postsynaptic density condensates in vitro, which may contribute to synaptic dysfunction due to impact on the clustering and trafficking of N-methyl-D-aspartate receptor into dendritic spines [119].
Fibrillar aggregation of tau is widely believed to be linked to tauopathies [72]. It turns out that LLPS accelerates tau aggregation [24,25,26,27]. Tau can be enriched by up to a 100 fold in the condensed phase compared to the dilute phase [25,103]. In addition, transient interactions within condensates induce expansion of tau conformation, which exposes the aggregation-prone hexapeptides located in the MTBD [62,104]. These two factors can work together to accelerate tau aggregation. Indeed, the lag phase of tau aggregation is significantly reduced and the rate of propagation is markedly increased under LLPS conditions [27,62]. Moreover, LLPS promotes the oligomerization of tau. Using purified recombinant proteins, Kanaan et al. showed that tau forms stable oligomers adopting pathogenic conformations when tau condensates become aged [25]. Interestingly, Lucas et al. found that when tau oligomers are recruited into tau condensates, they can catalyze the oligomerization of monomeric tau in condensates [120]. Recently, Soeda et al. discovered that the tau-CRY2olig fusion protein forms stable clusters in Neuro2a cells under blue light exposure [121]. They further demonstrated that these stable tau clusters are able to seed recombinant tau aggregation.
Many factors that promote tau aggregation have been found to modulate tau LLPS. Pro-aggregation mutations, such as P301L, P301S, A152T, and ΔK280, have been shown to increase the LLPS propensity of tau and/or decrease the dynamics of tau condensates in some studies [25,26,122,123]. PTMs, including phosphorylation, acetylation, and ubiquitination, are involved in the physiological functions and pathological processes of tau [124,125]. A growing body of evidence indicates that PTMs play a crucial role in modulating tau’s tendency to undergo phase separation [18,90]. The effect of a PTM on tau LLPS can be promotive, suppressive, or neutral, which depends on the site and type of modification [24,26,106,126,127,128,129,130,131,132]. Dyshomeostasis of metal ions is involved in the development of neurodegenerative diseases [133,134]. Particularly, several metal ions have been shown to accelerate tau aggregation and modulate tau phase separation [135,136,137,138].
Tau is recruited into stress granules under stress conditions. The stress granule nucleating protein T-cell intracellular antigen 1 (TIA1) associates with tau and facilitates the internalization of extracellular tau [139,140]. Importantly, TIA1 accelerates the liquid-to-solid transition of tau droplets and promotes the formation of tau oligomers [102,141,142]. Although the exact role of tau in stress granules is unclear, dysfunction of stress granules is implicated in the pathophysiology of tauopathies [143,144,145,146].

4. Combating Tauopathies in the Context of LLPS

Significant efforts have been made to combat tauopathies, with the main objectives being to inhibit tau aggregation, clear tau aggregates, and attenuate abnormal PTMs on tau [28,29,147,148]. Previous strategies primarily target tau monomers, oligomers, and fibrils. The identification of liquid condensate as the fourth state of tau poses challenges to previous efforts but also offers new directions for future studies. LLPS is driven by dynamic multivalent interactions; thus, the formation of liquid condensates is readily modulated by various factors, including pH, salt, protein concentration, PTMs, small molecule compounds, and client macromolecules [92,149]. Below, we discuss the potential strategies for combating tauopathies in the context of LLPS (Figure 3).

4.1. Modulating Tau Condensate Formation

Because tau aggregation is accelerated in condensates, modulating tau LLPS under pathological conditions may delay the progression of tauopathies. A number of molecules, including macromolecules and small molecule compounds, have been found to interact with tau and significantly modulate tau’s LLPS propensity [90]. Among them, microtubule plus end-tracking protein EB1 [108], Ca2+-dependent chaperone S100B [101], peptidyl prolyl isomerase A (PPIA) [150], the main components of espresso coffee extract caffeine and genistein [151], the natural products shikonin [152] and myricetin [153], the synthetic derivative of curcumin C1 [154], and cyclic dipeptide-based small molecules [155] have been shown to impede tau phase separation. Some molecules prevent tau aggregation while augmenting tau phase separation, such as methylene blue (MB) [156], (−)-epigallocatechin-3-gallate [126], and suramin [157]. In addition, gallic acid [158] and tannic acid [159] are biphasic modulators of tau LLPS and inhibit the conversion of tau droplets into aggregates. The chemical structures of compounds that modulate tau LLPS differ significantly. However, hydrophobic moieties, negatively charged groups, and phenolic hydroxyl groups are usually present, suggesting that hydrophobic interactions, electrostatic interactions, and hydrogen bonding play a crucial role in modulating tau LLPS.
To elucidate the mechanisms underlying tau LLPS modulation, the Zweckstetter group and Gomes group used nuclear magnetic resonance spectroscopy to characterize the interactions between tau and PPIA [150], MB [156], and S100B [160], respectively. PPIA binding and PPIA-catalyzed cis/trans-isomerization of proline residues remodel the conformational ensemble of tau, resulting in the broadening of resonance signals throughout the entire sequence of tau [150]. Similarly, MB interacts with various regions of tau [156]. Unlike PPIA and MB, the S100B-affected regions of tau are located around the MTBD [160]. These results suggest that the interactions between tau and binding molecules are complicated and may vary significantly from one molecule to another. Nevertheless, our understanding of the regulatory mechanism is still limited because most studies are mainly focused on quantifying the effects of molecules on tau LLPS and the subsequent aggregation. In this context, it is unclear whether a molecule uses the same mechanism to inhibit tau aggregation within condensates as in the dilute bulk solution or not.

4.2. Delaying the Liquid-to-Solid Transition of Tau Condensates

Because LLPS plays a vital role in the physiological function of tau, dramatically enhancing or suppressing normal tau LLPS may be detrimental to disease treatment. In this context, delaying the liquid-to-solid transition (or aging) of tau condensates is preferred. The material properties of liquid condensates vary with time, and liquid-to-solid transition has been observed for many protein condensates [161,162,163,164,165]. Over time, intermolecular interactions strengthen and toxic tau oligomers form within the solidified condensates [25,120]. Disease-relevant mutations, PTMs, stress-induced protein-protein interactions, as well as RNA G-quadruplex could accelerate the liquid-to-solid transition of tau condensates [25,102,166,167]. Therefore, slowing down the liquid-to-solid transition of tau condensates could be a potential therapeutic strategy. Recently, Jonchhe at al. quantified the half-time of the liquid-to-solid transition of tau condensates in the presence of various small molecules [168]. Their findings suggested that the removal of water molecules from the hydration shell of tau molecules is an important factor for the liquid-to-solid transition of tau condensates. Importantly, they found that the osmolyte trimethylamine N-oxide is capable of efficiently slowing down the liquid-to-solid transition of tau condensates. While the mechanism is unclear, myricetin enhances the fluidity of tau condensates [153]. Besides small molecule compounds, proteins are also able to modulate the liquid-to-solid transition of tau condensates. For example, the tau-interacting proteins EB1 and protein disulfide isomerase enhance the fluidity of tau condensates and reduce tau aggregation [108,169]. Molecular chaperones are essential for protein homeostasis and can prevent the aggregation of many proteins related to neurodegenerative diseases [170,171]. Recently, several studies showed that heat-shock proteins, such as Hsp27 and Hsp40, are able to stabilize the liquid phase of FUS condensates and prevent amyloid aggregation [172,173]. A similar mechanism may be applied when Hsp40 and Hsp22 prevent tau aggregation [174,175,176].

4.3. Reducing the Concentration of Aggregation-Prone Species Within Tau Condensates

Protein aggregation normally proceeds via a nucleation-elongation mechanism [177]. Boyko et al. showed that the aggregation kinetics of tau under LLPS conditions differ from those under non-LLPS conditions [27]. Their findings indicated that nucleation is significantly increased and the lag phase becomes concentration-independent as the tau concentration in condensates is constant under LLPS conditions. Interestingly, they found that co-phase separation of tau with non-aggregating tau variants results in a reduction of aggregation due to a “dilution effect” [27]. Co-condensation of tau with the prion protein or α-synuclein enhances tau aggregation even in the absence of inducers [98,99]. Tau aggregation is a slow process and is usually induced with ionic inducers in in vitro experiments. On the contrary, prion protein and α-synuclein spontaneously aggregate without any required inducer. It has been found that α-synuclein fibrils can be recruited into tau condensates [178]. Therefore, it is possible that prion protein or α-synuclein fibrils formed within heteromolecular condensates seed the aggregation of tau. How to prevent the conversion of heteromolecular condensates into fibrils has not yet been studied. Based on the studies discussed above, reducing the concentration of aggregation-prone species could be a general strategy.

4.4. Suppressing Abnormal PTMs on Tau Within Condensates

The impact of PTMs on tau LLPS has been extensively studied [18,90,127]. Conversely, how LLPS affects tau PTM is not clear. A growing body of evidence shows that the rate of enzyme catalysis can be dramatically increased upon LLPS [179,180,181]. Specifically, the activity of several kinases has been found to increase under LLPS conditions compared to the bulk aqueous phase [182]. The intrinsically disordered CTD of RNA polymerase II (RNAPII) undergoes LLPS [183]. The cyclin-dependent kinase 7 (CDK7) associates with the surface of RNAPII CTD droplets, where it phosphorylates RNAPII CTD efficiently [183]. Tau can be phosphorylated by CDK2/cyclin A1, and the rates of phosphorylation are increased by several fold under LLPS conditions [184]. Unlike CDK7, CDK2 is highly enriched in the condensed phase [184]. cAMP-dependent protein kinase A (PKA) is another kinase contributing to tau phosphorylation. The regulatory subunit of PKA (RIα) undergoes LLPS on its own, producing liquid condensates enriched in cAMP and PKA activity [185]. In addition, tau ubiquitination can be facilitated under LLPS conditions. The E3 ubiquitin ligase TRIAD3A undergoes LLPS and recruits tau into condensates, where tau becomes ubiquitinated and forms aggregates [186]. Therefore, liquid condensates play a crucial role in regulating enzyme reaction rates by concentrating molecules and remodeling interactions [180,187,188,189,190,191]. The partition of a regulator (inhibitor or activator) between the condensed phase and the dilute phase can dramatically influence its activity. Furthermore, regulation can be achieved by modulating the composition of enzymatic condensates, which may bridge or interfere with interactions between the enzyme and the substrate.

5. Conclusions and Perspectives

Neurodegenerative diseases, including tauopathies, are a common threat worldwide. Despite enormous efforts and rapid advancements in the field, effective treatment remains lacking for these diseases. In this review, we provide an overview of the structure and phase transition of tau protein. In particular, we focus on the involvement of LLPS in the biology and pathology of tau. We discuss the potential of rational modulation of tau LLPS, including modulating the formation of tau condensates, delaying the liquid-to-solid transition of tau condensates, reducing the enrichment of aggregation-prone species into tau condensates, and suppressing abnormal PTMs on tau inside condensates, as a novel strategy for the development of therapeutic agents targeting tau pathologies in the future.
Although significant progress has been achieved in understanding tau phase transition in the past decade, there are still many open questions. For example, why do some tau aggregation inhibitors (e.g., MB and myricetin) exhibit opposite effects on tau condensate formation and liquid-to-solid transition? Are the interactions playing a crucial role in tau aggregation inhibition involved in tau LLPS modulation? How can we identify active molecules that modulate tau condensate formation and liquid-to-solid transition in a high-throughput manner? Answering these questions will deepen our understanding of the structure–activity relationship of tau phase transition modulators. Meanwhile, it is urgent to uncover the conformational changes of tau during phase transitions and the interactions between tau and modulators. Furthermore, the progression of tauopathies is associated with other biological processes, such as ferroptosis [192]. Synergistic effects could be achieved by targeting the LLPS of multiple targets [193,194].

Author Contributions

Conceptualization, Y.H. and M.G.; Literature Analysis, X.Z., L.W. and N.L.; Writing—original draft preparation, Y.H. and X.Z.; Writing—review and editing, Y.H. and M.G. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China [grant no. 22477022 to M.G.].

Conflicts of Interest

The authors have no relevant financial or non-financial interest to disclose.

References

  1. Venkatramani, A.; Panda, D. Regulation of neuronal microtubule dynamics by tau: Implications for tauopathies. Int. J. Biol. Macromol. 2019, 133, 473–483. [Google Scholar] [CrossRef] [PubMed]
  2. Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016, 17, 5–21. [Google Scholar] [CrossRef] [PubMed]
  3. Mandelkow, E.M.; Mandelkow, E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med. 2012, 2, a006247. [Google Scholar] [CrossRef]
  4. Parra Bravo, C.; Naguib, S.A.; Gan, L. Cellular and pathological functions of tau. Nat. Rev. Mol. Cell Biol. 2024, 25, 845–864. [Google Scholar] [CrossRef]
  5. Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein t (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986, 83, 4913–4917. [Google Scholar] [CrossRef]
  6. Kosik, K.S.; Joachim, C.L.; Selkoe, D.J. Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA 1986, 83, 4044–4048. [Google Scholar] [CrossRef]
  7. Wood, J.G.; Mirra, S.S.; Pollock, N.J.; Binder, L.I. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (t). Proc. Natl. Acad. Sci. USA 1986, 83, 4040–4043. [Google Scholar] [CrossRef] [PubMed]
  8. Wilson, D.M., 3rd; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of neurodegenerative diseases. Cell 2023, 186, 693–714. [Google Scholar] [CrossRef]
  9. Clavaguera, F.; Bolmont, T.; Crowther, R.A.; Abramowski, D.; Frank, S.; Probst, A.; Fraser, G.; Stalder, A.K.; Beibel, M.; Staufenbiel, M.; et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 2009, 11, 909–913. [Google Scholar] [CrossRef]
  10. Frost, B.; Jacks, R.L.; Diamond, M.I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 2009, 284, 12845–12852. [Google Scholar] [CrossRef]
  11. Guo, J.L.; Lee, V.M. Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 2011, 286, 15317–15331. [Google Scholar] [CrossRef] [PubMed]
  12. Li, L.; Shi, R.; Gu, J.; Tung, Y.C.; Zhou, Y.; Zhou, D.; Wu, R.; Chu, D.; Jin, N.; Deng, K.; et al. Alzheimer’s disease brain contains tau fractions with differential prion-like activities. Acta Neuropathol. Commun. 2021, 9, 28. [Google Scholar] [CrossRef]
  13. Stancu, I.C.; Vasconcelos, B.; Ris, L.; Wang, P.; Villers, A.; Peeraer, E.; Buist, A.; Terwel, D.; Baatsen, P.; Oyelami, T.; et al. Templated misfolding of tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in tau transgenic mice. Acta Neuropathol. 2015, 129, 875–894. [Google Scholar] [CrossRef] [PubMed]
  14. Dimou, E.; Katsinelos, T.; Meisl, G.; Tuck, B.J.; Keeling, S.; Smith, A.E.; Hidari, E.; Lam, J.Y.L.; Burke, M.; Lovestam, S.; et al. Super-resolution imaging unveils the self-replication of tau aggregates upon seeding. Cell Rep. 2023, 42, 112725. [Google Scholar] [CrossRef]
  15. Chakraborty, P.; Zweckstetter, M. Phase separation of the microtubule-associated protein tau. Essays Biochem. 2022, 66, 1013–1021. [Google Scholar] [CrossRef]
  16. Boyko, S.; Surewicz, W.K. Tau liquid-liquid phase separation in neurodegenerative diseases. Trends Cell Biol. 2022, 32, 611–623. [Google Scholar] [CrossRef]
  17. Islam, M.; Shen, F.; Regmi, D.; Petersen, K.; Karim, M.R.U.; Du, D. Tau liquid-liquid phase separation: At the crossroads of tau physiology and tauopathy. J. Cell. Physiol. 2024, 239, e30853. [Google Scholar] [CrossRef] [PubMed]
  18. Ainani, H.; Bouchmaa, N.; Ben Mrid, R.; El Fatimy, R. Liquid-liquid phase separation of protein tau: An emerging process in Alzheimer’s disease pathogenesis. Neurobiol. Dis. 2023, 178, 106011. [Google Scholar] [CrossRef]
  19. Wegmann, S. Liquid-liquid phase separation of tau protein in neurobiology and pathology. Adv. Exp. Med. Biol. 2019, 1184, 341–357. [Google Scholar] [CrossRef]
  20. Kosik, K.S.; Han, S. Tau condensates. Adv. Exp. Med. Biol. 2019, 1184, 327–339. [Google Scholar] [CrossRef]
  21. Hernandez-Vega, A.; Braun, M.; Scharrel, L.; Jahnel, M.; Wegmann, S.; Hyman, B.T.; Alberti, S.; Diez, S.; Hyman, A.A. Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep. 2017, 20, 2304–2312. [Google Scholar] [CrossRef] [PubMed]
  22. Tan, R.; Lam, A.J.; Tan, T.; Han, J.; Nowakowski, D.W.; Vershinin, M.; Simo, S.; Ori-McKenney, K.M.; McKenney, R.J. Microtubules gate tau condensation to spatially regulate microtubule functions. Nat. Cell Biol. 2019, 21, 1078–1085. [Google Scholar] [CrossRef]
  23. Siahaan, V.; Krattenmacher, J.; Hyman, A.A.; Diez, S.; Hernandez-Vega, A.; Lansky, Z.; Braun, M. Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes. Nat. Cell Biol. 2019, 21, 1086–1092. [Google Scholar] [CrossRef]
  24. Ambadipudi, S.; Biernat, J.; Riedel, D.; Mandelkow, E.; Zweckstetter, M. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau. Nat. Commun. 2017, 8, 275. [Google Scholar] [CrossRef]
  25. Kanaan, N.M.; Hamel, C.; Grabinski, T.; Combs, B. Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nat. Commun. 2020, 11, 2809. [Google Scholar] [CrossRef]
  26. Wegmann, S.; Eftekharzadeh, B.; Tepper, K.; Zoltowska, K.M.; Bennett, R.E.; Dujardin, S.; Laskowski, P.R.; MacKenzie, D.; Kamath, T.; Commins, C.; et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J. 2018, 37, e98049. [Google Scholar] [CrossRef]
  27. Boyko, S.; Surewicz, K.; Surewicz, W.K. Regulatory mechanisms of tau protein fibrillation under the conditions of liquid-liquid phase separation. Proc. Natl. Acad. Sci. USA 2020, 117, 31882–31890. [Google Scholar] [CrossRef]
  28. Congdon, E.E.; Ji, C.; Tetlow, A.M.; Jiang, Y.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease: Current status and future directions. Nat. Rev. Neurol. 2023, 19, 715–736. [Google Scholar] [CrossRef] [PubMed]
  29. Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 399–415. [Google Scholar] [CrossRef] [PubMed]
  30. Zheng, H.; Sun, H.; Cai, Q.; Tai, H.C. The enigma of tau protein aggregation: Mechanistic insights and future challenges. Int. J. Mol. Sci. 2024, 25, 4969. [Google Scholar] [CrossRef]
  31. Su, Q.; Mehta, S.; Zhang, J. Liquid-liquid phase separation: Orchestrating cell signaling through time and space. Mol. Cell 2021, 81, 4137–4146. [Google Scholar] [CrossRef] [PubMed]
  32. Wang, Z.; Zhang, H. Phase-separated condensates in autophagosome formation and autophagy regulation. J. Mol. Biol. 2025, 168964. [Google Scholar] [CrossRef]
  33. Li, J.; Zhang, M.; Ma, W.; Yang, B.; Lu, H.; Zhou, F.; Zhang, L. Post-translational modifications in liquid-liquid phase separation: A comprehensive review. Mol. Biomed. 2022, 3, 13. [Google Scholar] [CrossRef]
  34. Scholl, D.; Deniz, A.A. Conformational freedom and topological confinement of proteins in biomolecular condensates. J. Mol. Biol. 2022, 434, 167348. [Google Scholar] [CrossRef]
  35. Neve, R.L.; Harris, P.; Kosik, K.S.; Kurnit, D.M.; Donlon, T.A. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res. 1986, 387, 271–280. [Google Scholar] [CrossRef] [PubMed]
  36. Goedert, M.; Spillantini, M.G.; Jakes, R.; Rutherford, D.; Crowther, R.A. Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989, 3, 519–526. [Google Scholar] [CrossRef]
  37. Goedert, M.; Spillantini, M.G.; Potier, M.C.; Ulrich, J.; Crowther, R.A. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: Differential expression of tau protein mRNAs in human brain. EMBO J. 1989, 8, 393–399. [Google Scholar] [CrossRef]
  38. Takuma, H.; Arawaka, S.; Mori, H. Isoforms changes of tau protein during development in various species. Brain Res. Dev. Brain Res. 2003, 142, 121–127. [Google Scholar] [CrossRef]
  39. Guo, T.; Noble, W.; Hanger, D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017, 133, 665–704. [Google Scholar] [CrossRef]
  40. Chen, S.; Townsend, K.; Goldberg, T.E.; Davies, P.; Conejero-Goldberg, C. MAPT isoforms: Differential transcriptional profiles related to 3R and 4R splice variants. J. Alzheimer’s Dis. 2010, 22, 1313–1329. [Google Scholar] [CrossRef]
  41. Bachmann, S.; Bell, M.; Klimek, J.; Zempel, H. Differential effects of the six human TAU isoforms: Somatic retention of 2N-TAU and increased microtubule number induced by 4R-TAU. Front. Neurosci. 2021, 15, 643115. [Google Scholar] [CrossRef]
  42. Kadavath, H.; Cabrales Fontela, Y.; Jaremko, M.; Jaremko, L.; Overkamp, K.; Biernat, J.; Mandelkow, E.; Zweckstetter, M. The binding mode of a tau peptide with tubulin. Angew. Chem. Int. Ed. Engl. 2018, 57, 3246–3250. [Google Scholar] [CrossRef]
  43. Preuss, U.; Biernat, J.; Mandelkow, E.M.; Mandelkow, E. The ‘jaws’ model of tau-microtubule interaction examined in CHO cells. J. Cell Sci. 1997, 110 Pt 6, 789–800. [Google Scholar] [CrossRef] [PubMed]
  44. Kellogg, E.H.; Hejab, N.M.A.; Poepsel, S.; Downing, K.H.; DiMaio, F.; Nogales, E. Near-atomic model of microtubule-tau interactions. Science 2018, 360, 1242–1246. [Google Scholar] [CrossRef] [PubMed]
  45. Goedert, M.; Jakes, R. Expression of separate isoforms of human tau protein: Correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J. 1990, 9, 4225–4230. [Google Scholar] [CrossRef] [PubMed]
  46. Dixit, R.; Ross, J.L.; Goldman, Y.E.; Holzbaur, E.L. Differential regulation of dynein and kinesin motor proteins by tau. Science 2008, 319, 1086–1089. [Google Scholar] [CrossRef]
  47. Tracy, T.E.; Madero-Perez, J.; Swaney, D.L.; Chang, T.S.; Moritz, M.; Konrad, C.; Ward, M.E.; Stevenson, E.; Huttenhain, R.; Kauwe, G.; et al. Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell 2022, 185, 712–728. [Google Scholar] [CrossRef]
  48. Morris, M.; Maeda, S.; Vossel, K.; Mucke, L. The many faces of tau. Neuron 2011, 70, 410–426. [Google Scholar] [CrossRef]
  49. Papin, S.; Paganetti, P. Emerging evidences for an implication of the neurodegeneration-associated protein tau in cancer. Brain Sci. 2020, 10, 862. [Google Scholar] [CrossRef]
  50. Alonso, A.D.C.; El Idrissi, A.; Candia, R.; Morozova, V.; Kleiman, F.E. Tau: More than a microtubule-binding protein in neurons. Cytoskeleton 2024, 81, 71–77. [Google Scholar] [CrossRef]
  51. Liu, C.; Song, X.; Nisbet, R.; Gotz, J. Co-immunoprecipitation with tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N tau in disease. J. Biol. Chem. 2016, 291, 8173–8188. [Google Scholar] [CrossRef] [PubMed]
  52. Stefanoska, K.; Volkerling, A.; Bertz, J.; Poljak, A.; Ke, Y.D.; Ittner, L.M.; Ittner, A. An N-terminal motif unique to primate tau enables differential protein-protein interactions. J. Biol. Chem. 2018, 293, 3710–3719. [Google Scholar] [CrossRef]
  53. Kurochkina, N.; Guha, U. SH3 domains: Modules of protein-protein interactions. Biophys. Rev. 2013, 5, 29–39. [Google Scholar] [CrossRef]
  54. Lau, D.H.; Hogseth, M.; Phillips, E.C.; O’Neill, M.J.; Pooler, A.M.; Noble, W.; Hanger, D.P. Critical residues involved in tau binding to fyn: Implications for tau phosphorylation in Alzheimer’s disease. Acta Neuropathol. Commun. 2016, 4, 49. [Google Scholar] [CrossRef]
  55. Lee, G.; Newman, S.T.; Gard, D.L.; Band, H.; Panchamoorthy, G. Tau interacts with src-family non-receptor tyrosine kinases. J. Cell Sci. 1998, 111 Pt 21, 3167–3177. [Google Scholar] [CrossRef] [PubMed]
  56. Sottejeau, Y.; Bretteville, A.; Cantrelle, F.X.; Malmanche, N.; Demiaute, F.; Mendes, T.; Delay, C.; Alves Dos Alves, H.; Flaig, A.; Davies, P.; et al. Tau phosphorylation regulates the interaction between BIN1’s SH3 domain and tau’s proline-rich domain. Acta Neuropathol. Commun. 2015, 3, 58. [Google Scholar] [CrossRef] [PubMed]
  57. Zeng, Y.; Yang, J.; Zhang, B.; Gao, M.; Su, Z.; Huang, Y. The structure and phase of tau: From monomer to amyloid filament. Cell. Mol. Life Sci. 2021, 78, 1873–1886. [Google Scholar] [CrossRef]
  58. Avila, J.; Jimenez, J.S.; Sayas, C.L.; Bolos, M.; Zabala, J.C.; Rivas, G.; Hernandez, F. Tau structures. Front. Aging Neurosci. 2016, 8, 262. [Google Scholar] [CrossRef]
  59. Jeganathan, S.; von Bergen, M.; Brutlach, H.; Steinhoff, H.J.; Mandelkow, E. Global hairpin folding of tau in solution. Biochemistry 2006, 45, 2283–2293. [Google Scholar] [CrossRef]
  60. Mylonas, E.; Hascher, A.; Bernado, P.; Blackledge, M.; Mandelkow, E.; Svergun, D.I. Domain conformation of tau protein studied by solution small-angle X-ray scattering. Biochemistry 2008, 47, 10345–10353. [Google Scholar] [CrossRef]
  61. Nath, A.; Sammalkorpi, M.; DeWitt, D.C.; Trexler, A.J.; Elbaum-Garfinkle, S.; O’Hern, C.S.; Rhoades, E. The conformational ensembles of a-synuclein and tau: Combining single-molecule FRET and simulations. Biophys. J. 2012, 103, 1940–1949. [Google Scholar] [CrossRef] [PubMed]
  62. Wen, J.; Hong, L.; Krainer, G.; Yao, Q.Q.; Knowles, T.P.J.; Wu, S.; Perrett, S. Conformational expansion of tau in condensates promotes irreversible aggregation. J. Am. Chem. Soc. 2021, 143, 13056–13064. [Google Scholar] [CrossRef] [PubMed]
  63. Mirbaha, H.; Chen, D.; Morazova, O.A.; Ruff, K.M.; Sharma, A.M.; Liu, X.; Goodarzi, M.; Pappu, R.V.; Colby, D.W.; Mirzaei, H.; et al. Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife 2018, 7, e36584. [Google Scholar] [CrossRef] [PubMed]
  64. Chen, D.; Drombosky, K.W.; Hou, Z.; Sari, L.; Kashmer, O.M.; Ryder, B.D.; Perez, V.A.; Woodard, D.R.; Lin, M.M.; Diamond, M.I.; et al. Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat. Commun. 2019, 10, 2493. [Google Scholar] [CrossRef]
  65. Mirbaha, H.; Chen, D.; Mullapudi, V.; Terpack, S.J.; White, C.L., 3rd; Joachimiak, L.A.; Diamond, M.I. Seed-competent tau monomer initiates pathology in a tauopathy mouse model. J. Biol. Chem. 2022, 298, 102163. [Google Scholar] [CrossRef]
  66. Manger, L.H.; Foote, A.K.; Wood, S.L.; Holden, M.R.; Heylman, K.D.; Margittai, M.; Goldsmith, R.H. Revealing conformational variants of solution-phase intrinsically disordered tau protein at the single-molecule level. Angew. Chem. Int. Ed. Engl. 2017, 56, 15584–15588. [Google Scholar] [CrossRef]
  67. Foote, A.K.; Manger, L.H.; Holden, M.R.; Margittai, M.; Goldsmith, R.H. Time-resolved multirotational dynamics of single solution-phase tau proteins reveals details of conformational variation. Phys. Chem. Chem. Phys. 2019, 21, 1863–1871. [Google Scholar] [CrossRef]
  68. Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 2017, 547, 185–190. [Google Scholar] [CrossRef]
  69. Goedert, M. Cryo-EM structures of tau filaments from human brain. Essays Biochem. 2021, 65, 949–959. [Google Scholar] [CrossRef]
  70. Scheres, S.H.W.; Ryskeldi-Falcon, B.; Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 2023, 621, 701–710. [Google Scholar] [CrossRef]
  71. Mengham, K.; Al-Hilaly, Y.; Oakley, S.; Kasbi, K.; Maina, M.B.; Serpell, L.C. Shapeshifting tau: From intrinsically disordered to paired-helical filaments. Essays Biochem. 2022, 66, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
  72. Limorenko, G.; Lashuel, H.A. Revisiting the grammar of tau aggregation and pathology formation: How new insights from brain pathology are shaping how we study and target tauopathies. Chem. Soc. Rev. 2022, 51, 513–565. [Google Scholar] [CrossRef] [PubMed]
  73. Gotz, J.; Halliday, G.; Nisbet, R.M. Molecular pathogenesis of the tauopathies. Annu. Rev. Pathol. 2019, 14, 239–261. [Google Scholar] [CrossRef] [PubMed]
  74. Feuillette, S.; Miguel, L.; Frebourg, T.; Campion, D.; Lecourtois, M. Drosophila models of human tauopathies indicate that tau protein toxicity in vivo is mediated by soluble cytosolic phosphorylated forms of the protein. J. Neurochem. 2010, 113, 895–903. [Google Scholar] [CrossRef]
  75. d’Orange, M.; Auregan, G.; Cheramy, D.; Gaudin-Guerif, M.; Lieger, S.; Guillermier, M.; Stimmer, L.; Josephine, C.; Herard, A.S.; Gaillard, M.C.; et al. Potentiating tangle formation reduces acute toxicity of soluble tau species in the rat. Brain 2018, 141, 535–549. [Google Scholar] [CrossRef]
  76. Watamura, N.; Foiani, M.S.; Bez, S.; Bourdenx, M.; Santambrogio, A.; Frodsham, C.; Camporesi, E.; Brinkmalm, G.; Zetterberg, H.; Patel, S.; et al. In vivo hyperphosphorylation of tau is associated with synaptic loss and behavioral abnormalities in the absence of tau seeds. Nat. Neurosci. 2025, 28, 293–307. [Google Scholar] [CrossRef]
  77. Spires-Jones, T.L.; Kopeikina, K.J.; Koffie, R.M.; de Calignon, A.; Hyman, B.T. Are tangles as toxic as they look? J. Mol. Neurosci. 2011, 45, 438–444. [Google Scholar] [CrossRef]
  78. Bonda, D.J.; Castellani, R.J.; Zhu, X.; Nunomura, A.; Lee, H.G.; Perry, G.; Smith, M.A. A novel perspective on tau in Alzheimer’s disease. Curr. Alzheimer Res. 2011, 8, 639–642. [Google Scholar] [CrossRef]
  79. Boccalini, C.; Ribaldi, F.; Hristovska, I.; Arnone, A.; Peretti, D.E.; Mu, L.; Scheffler, M.; Perani, D.; Frisoni, G.B.; Garibotto, V. The impact of tau deposition and hypometabolism on cognitive impairment and longitudinal cognitive decline. Alzheimer’s Dement. 2024, 20, 221–233. [Google Scholar] [CrossRef]
  80. Hanseeuw, B.J.; Betensky, R.A.; Jacobs, H.I.L.; Schultz, A.P.; Sepulcre, J.; Becker, J.A.; Cosio, D.M.O.; Farrell, M.; Quiroz, Y.T.; Mormino, E.C.; et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study. JAMA Neurol. 2019, 76, 915–924. [Google Scholar] [CrossRef]
  81. Markesbery, W.R.; Schmitt, F.A.; Kryscio, R.J.; Davis, D.G.; Smith, C.D.; Wekstein, D.R. Neuropathologic substrate of mild cognitive impairment. Arch. Neurol. 2006, 63, 38–46. [Google Scholar] [CrossRef] [PubMed]
  82. Krammer, C.; Schatzl, H.M.; Vorberg, I. Prion-like propagation of cytosolic protein aggregates: Insights from cell culture models. Prion 2009, 3, 206–212. [Google Scholar] [CrossRef]
  83. Darricau, M.; Dou, C.; Kinet, R.; Zhu, T.; Zhou, L.; Li, X.; Bedel, A.; Claverol, S.; Tokarski, C.; Katsinelos, T.; et al. Tau seeds from Alzheimer’s disease brains trigger tau spread in macaques while oligomeric-Ab mediates pathology maturation. Alzheimer’s Dement. 2024, 20, 1894–1912. [Google Scholar] [CrossRef]
  84. Wang, J.; Williams, C.K.; DeTure, M.A.; Magaki, S.D.; Dickson, D.W.; Vinters, H.V.; Seidler, P.M. Tau seeds catalyze fibril-type structures from GFP tau biosensor cells. Structure 2024, 32, 2251–2258. [Google Scholar] [CrossRef]
  85. Woerman, A.L.; Aoyagi, A.; Patel, S.; Kazmi, S.A.; Lobach, I.; Grinberg, L.T.; McKee, A.C.; Seeley, W.W.; Olson, S.H.; Prusiner, S.B. Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells. Proc. Natl. Acad. Sci. USA 2016, 113, E8187–E8196. [Google Scholar] [CrossRef]
  86. Zbinden, A.; Perez-Berlanga, M.; De Rossi, P.; Polymenidou, M. Phase separation and neurodegenerative diseases: A disturbance in the force. Dev. Cell 2020, 55, 45–68. [Google Scholar] [CrossRef] [PubMed]
  87. Babinchak, W.M.; Surewicz, W.K. Liquid-liquid phase separation and its mechanistic role in pathological protein aggregation. J. Mol. Biol. 2020, 432, 1910–1925. [Google Scholar] [CrossRef] [PubMed]
  88. Hayashi, Y.; Ford, L.K.; Fioriti, L.; McGurk, L.; Zhang, M. Liquid-liquid phase separation in physiology and pathophysiology of the nervous system. J. Neurosci. 2021, 41, 834–844. [Google Scholar] [CrossRef]
  89. Zhang, X.; Lin, Y.; Eschmann, N.A.; Zhou, H.; Rauch, J.N.; Hernandez, I.; Guzman, E.; Kosik, K.S.; Han, S. RNA stores tau reversibly in complex coacervates. PLoS Biol. 2017, 15, e2002183. [Google Scholar] [CrossRef]
  90. Li, P.; Chen, J.; Wang, X.; Su, Z.; Gao, M.; Huang, Y. Liquid-liquid phase separation of tau: Driving forces, regulation, and biological implications. Neurobiol. Dis. 2023, 183, 106167. [Google Scholar] [CrossRef]
  91. Rai, S.K.; Savastano, A.; Singh, P.; Mukhopadhyay, S.; Zweckstetter, M. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease. Protein Sci. 2021, 30, 1294–1314. [Google Scholar] [CrossRef] [PubMed]
  92. Dignon, G.L.; Best, R.B.; Mittal, J. Biomolecular phase separation: From molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 2020, 71, 53–75. [Google Scholar] [CrossRef]
  93. Brangwynne, C.P.; Tompa, P.; Pappu, R.V. Polymer physics of intracellular phase transitions. Nat. Phys. 2015, 11, 899–904. [Google Scholar] [CrossRef]
  94. Holehouse, A.S.; Alberti, S. Molecular determinants of condensate composition. Mol. Cell 2025, 85, 290–308. [Google Scholar] [CrossRef] [PubMed]
  95. Boyko, S.; Qi, X.; Chen, T.H.; Surewicz, K.; Surewicz, W.K. Liquid-liquid phase separation of tau protein: The crucial role of electrostatic interactions. J. Biol. Chem. 2019, 294, 11054–11059. [Google Scholar] [CrossRef]
  96. Najafi, S.; Lin, Y.; Longhini, A.P.; Zhang, X.; Delaney, K.T.; Kosik, K.S.; Fredrickson, G.H.; Shea, J.E.; Han, S. Liquid-liquid phase separation of tau by self and complex coacervation. Protein Sci. 2021, 30, 1393–1407. [Google Scholar] [CrossRef]
  97. Abasi, L.S.; Elathram, N.; Movva, M.; Deep, A.; Corbett, K.D.; Debelouchina, G.T. Phosphorylation regulates tau’s phase separation behavior and interactions with chromatin. Commun. Biol. 2024, 7, 251. [Google Scholar] [CrossRef]
  98. Rai, S.K.; Khanna, R.; Avni, A.; Mukhopadhyay, S. Heterotypic electrostatic interactions control complex phase separation of tau and prion into multiphasic condensates and co-aggregates. Proc. Natl. Acad. Sci. USA 2023, 120, e2216338120. [Google Scholar] [CrossRef]
  99. Gracia, P.; Polanco, D.; Tarancon-Diez, J.; Serra, I.; Bracci, M.; Oroz, J.; Laurents, D.V.; Garcia, I.; Cremades, N. Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and tau. Nat. Commun. 2022, 13, 4586. [Google Scholar] [CrossRef]
  100. Han, Y.; Ye, H.; Li, P.; Zeng, Y.; Yang, J.; Gao, M.; Su, Z.; Huang, Y. In vitro characterization and molecular dynamics simulation reveal mechanism of 14-3-3z regulated phase separation of the tau protein. Int. J. Biol. Macromol. 2022, 208, 1072–1081. [Google Scholar] [CrossRef]
  101. Moreira, G.G.; Gomes, C.M. Tau liquid-liquid phase separation is modulated by the Ca(2+) -switched chaperone activity of the S100B protein. J. Neurochem. 2023, 166, 76–86. [Google Scholar] [CrossRef] [PubMed]
  102. Ash, P.E.A.; Lei, S.; Shattuck, J.; Boudeau, S.; Carlomagno, Y.; Medalla, M.; Mashimo, B.L.; Socorro, G.; Al-Mohanna, L.F.A.; Jiang, L.; et al. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc. Natl. Acad. Sci. USA 2021, 118, e2014188118. [Google Scholar] [CrossRef] [PubMed]
  103. Pantoja, C.F.; Ibanez de Opakua, A.; Cima-Omori, M.S.; Zweckstetter, M. Determining the physico-chemical composition of biomolecular condensates from spatially-resolved NMR. Angew. Chem. Int. Ed. Engl. 2023, 62, e202218078. [Google Scholar] [CrossRef]
  104. Majumdar, A.; Dogra, P.; Maity, S.; Mukhopadhyay, S. Liquid-liquid phase separation is driven by large-scale conformational unwinding and fluctuations of intrinsically disordered protein molecules. J. Phys. Chem. Lett. 2019, 10, 3929–3936. [Google Scholar] [CrossRef]
  105. Zhang, X.; Vigers, M.; McCarty, J.; Rauch, J.N.; Fredrickson, G.H.; Wilson, M.Z.; Shea, J.E.; Han, S.; Kosik, K.S. The proline-rich domain promotes tau liquid-liquid phase separation in cells. J. Cell Biol. 2020, 219, e202006054. [Google Scholar] [CrossRef]
  106. Hochmair, J.; Exner, C.; Franck, M.; Dominguez-Baquero, A.; Diez, L.; Brognaro, H.; Kraushar, M.L.; Mielke, T.; Radbruch, H.; Kaniyappan, S.; et al. Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of tau condensates. EMBO J. 2022, 41, e108882. [Google Scholar] [CrossRef]
  107. Song, X.; Yang, F.; Yang, T.; Wang, Y.; Ding, M.; Li, L.; Xu, P.; Liu, S.; Dai, M.; Chi, C.; et al. Phase separation of EB1 guides microtubule plus-end dynamics. Nat. Cell Biol. 2022, 25, 79–91. [Google Scholar] [CrossRef] [PubMed]
  108. Venkatramani, A.; Ashtam, A.; Panda, D. EB1 increases the dynamics of tau droplets and inhibits tau aggregation: Implications in tauopathies. ACS Chem. Neurosci. 2024, 15, 1219–1233. [Google Scholar] [CrossRef]
  109. Siahaan, V.; Tan, R.; Humhalova, T.; Libusova, L.; Lacey, S.E.; Tan, T.; Dacy, M.; Ori-McKenney, K.M.; McKenney, R.J.; Braun, M.; et al. Microtubule lattice spacing governs cohesive envelope formation of tau family proteins. Nat. Chem. Biol. 2022, 18, 1224–1235. [Google Scholar] [CrossRef]
  110. Longfield, S.F.; Mollazade, M.; Wallis, T.P.; Gormal, R.S.; Joensuu, M.; Wark, J.R.; van Waardenberg, A.J.; Small, C.; Graham, M.E.; Meunier, F.A.; et al. Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles. Nat. Commun. 2023, 14, 7277. [Google Scholar] [CrossRef]
  111. Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298. [Google Scholar] [CrossRef] [PubMed]
  112. Shin, Y.; Brangwynne, C.P. Liquid phase condensation in cell physiology and disease. Science 2017, 357, eaaf4382. [Google Scholar] [CrossRef] [PubMed]
  113. Boeynaems, S.; Alberti, S.; Fawzi, N.L.; Mittag, T.; Polymenidou, M.; Rousseau, F.; Schymkowitz, J.; Shorter, J.; Wolozin, B.; Van Den Bosch, L.; et al. Protein phase separation: A new phase in cell biology. Trends Cell Biol. 2018, 28, 420–435. [Google Scholar] [CrossRef]
  114. Lyon, A.S.; Peeples, W.B.; Rosen, M.K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 2021, 22, 215–235. [Google Scholar] [CrossRef] [PubMed]
  115. Mathieu, C.; Pappu, R.V.; Taylor, J.P. Beyond aggregation: Pathological phase transitions in neurodegenerative disease. Science 2020, 370, 56–60. [Google Scholar] [CrossRef]
  116. Silva, J.L.; Foguel, D.; Ferreira, V.F.; Vieira, T.; Marques, M.A.; Ferretti, G.D.S.; Outeiro, T.F.; Cordeiro, Y.; de Oliveira, G.A.P. Targeting biomolecular condensation and protein aggregation against cancer. Chem. Rev. 2023, 123, 9094–9138. [Google Scholar] [CrossRef]
  117. Chen, K.; Cao, X. Biomolecular condensates: Phasing in regulated host–pathogen interactions. Trends Immunol. 2025, 46, 29–45. [Google Scholar] [CrossRef]
  118. Lilek, J.; Ajroud, K.; Feldman, A.Z.; Krishnamachari, S.; Ghourchian, S.; Gefen, T.; Spencer, C.L.; Kawles, A.; Mao, Q.; Tranovich, J.F.; et al. Accumulation of pTau231 at the postsynaptic density in early Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 92, 241–260. [Google Scholar] [CrossRef]
  119. Shen, Z.; Sun, D.; Savastano, A.; Varga, S.J.; Cima-Omori, M.S.; Becker, S.; Honigmann, A.; Zweckstetter, M. Multivalent Tau/PSD-95 interactions arrest in vitro condensates and clusters mimicking the postsynaptic density. Nat. Commun. 2023, 14, 6839. [Google Scholar] [CrossRef]
  120. Lucas, L.; Tsoi, P.S.; Ferreon, J.C.; Ferreon, A.C.M. Tau oligomers resist phase separation. Biomolecules 2025, 15, 336. [Google Scholar] [CrossRef]
  121. Soeda, Y.; Yoshimura, H.; Bannai, H.; Koike, R.; Shiiba, I.; Takashima, A. Intracellular tau fragment droplets serve as seeds for tau fibrils. Structure 2024, 32, 1793–1807. [Google Scholar] [CrossRef] [PubMed]
  122. Chen, Y.; Sun, X.; Tang, Y.; Tan, Y.; Guo, C.; Pan, T.; Zhang, X.; Luo, J.; Wei, G. Pathogenic mutation DK280 promotes hydrophobic interactions involving microtubule-binding domain and enhances liquid-liquid phase separation of tau. Small 2025, 21, e2406429. [Google Scholar] [CrossRef] [PubMed]
  123. Lin, Y.; Fichou, Y.; Longhini, A.P.; Llanes, L.C.; Yin, P.; Bazan, G.C.; Kosik, K.S.; Han, S. Liquid-liquid phase separation of tau driven by hydrophobic interaction facilitates fibrillization of tau. J. Mol. Biol. 2021, 433, 166731. [Google Scholar] [CrossRef]
  124. Alquezar, C.; Arya, S.; Kao, A.W. Tau post-translational modifications: Dynamic transformers of tau function, degradation, and aggregation. Front. Neurol. 2021, 11, 595532. [Google Scholar] [CrossRef]
  125. Ye, H.; Han, Y.; Li, P.; Su, Z.; Huang, Y. The role of post-translational modifications on the structure and function of tau protein. J. Mol. Neurosci. 2022, 72, 1557–1571. [Google Scholar] [CrossRef]
  126. Chen, J.; Ma, W.; Yu, J.; Wang, X.; Qian, H.; Li, P.; Ye, H.; Han, Y.; Su, Z.; Gao, M.; et al. (-)-Epigallocatechin-3-gallate, a polyphenol from green tea, regulates the liquid-liquid phase separation of Alzheimer’s-related protein tau. J. Agric. Food Chem. 2023, 71, 1982–1993. [Google Scholar] [CrossRef]
  127. Powell, W.C.; Nahum, M.; Pankratz, K.; Herlory, M.; Greenwood, J.; Poliyenko, D.; Holland, P.; Jing, R.; Biggerstaff, L.; Stowell, M.H.B.; et al. Post-translational modifications control phase transitions of tau. ACS Cent. Sci. 2024, 10, 2145–2161. [Google Scholar] [CrossRef]
  128. Ukmar-Godec, T.; Hutten, S.; Grieshop, M.P.; Rezaei-Ghaleh, N.; Cima-Omori, M.S.; Biernat, J.; Mandelkow, E.; Soding, J.; Dormann, D.; Zweckstetter, M. Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun. 2019, 10, 2909. [Google Scholar] [CrossRef]
  129. Ferreon, J.C.; Jain, A.; Choi, K.J.; Tsoi, P.S.; MacKenzie, K.R.; Jung, S.Y.; Ferreon, A.C. Acetylation disfavors tau phase separation. Int. J. Mol. Sci. 2018, 19, 1360. [Google Scholar] [CrossRef]
  130. Trivellato, D.; Floriani, F.; Giorgio Barracchia, C.; Munari, F.; D’Onofrio, M.; Assfalg, M. Site-directed double monoubiquitination of the repeat domain of the amyloid-forming protein tau impairs self-assembly and coacervation. Bioorg. Chem. 2023, 132, 106347. [Google Scholar] [CrossRef]
  131. Parolini, F.; Tira, R.; Barracchia, C.G.; Munari, F.; Capaldi, S.; D’Onofrio, M.; Assfalg, M. Ubiquitination of Alzheimer’s-related tau protein affects liquid-liquid phase separation in a site- and cofactor-dependent manner. Int. J. Biol. Macromol. 2022, 201, 173–181. [Google Scholar] [CrossRef] [PubMed]
  132. Allahyartorkaman, M.; Chan, T.H.; Chen, E.H.; Ng, S.T.; Chen, Y.A.; Wen, J.K.; Ho, M.R.; Yen, H.Y.; Kuan, Y.S.; Kuo, M.H.; et al. Phosphorylation-induced self-coacervation versus RNA-assisted complex coacervation of tau proteins. J. Am. Chem. Soc. 2025, 147, 10172–10187. [Google Scholar] [CrossRef]
  133. Wang, L.; Yin, Y.L.; Liu, X.Z.; Shen, P.; Zheng, Y.G.; Lan, X.R.; Lu, C.B.; Wang, J.Z. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl. Neurodegener. 2020, 9, 10. [Google Scholar] [CrossRef] [PubMed]
  134. Chen, L.; Shen, Q.; Liu, Y.; Zhang, Y.; Sun, L.; Ma, X.; Song, N.; Xie, J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct. Target. Ther. 2025, 10, 31. [Google Scholar] [CrossRef] [PubMed]
  135. Singh, V.; Xu, L.; Boyko, S.; Surewicz, K.; Surewicz, W.K. Zinc promotes liquid-liquid phase separation of tau protein. J. Biol. Chem. 2020, 295, 5850–5856. [Google Scholar] [CrossRef]
  136. Gao, Y.Y.; Zhong, T.; Wang, L.Q.; Zhang, N.; Zeng, Y.; Hu, J.Y.; Dang, H.B.; Chen, J.; Liang, Y. Zinc enhances liquid-liquid phase separation of tau protein and aggravates mitochondrial damages in cells. Int. J. Biol. Macromol. 2022, 209, 703–715. [Google Scholar] [CrossRef]
  137. Yatoui, D.; Tsvetkov, P.O.; La Rocca, R.; Baksheeva, V.E.; Allegro, D.; Breuzard, G.; Ferracci, G.; Byrne, D.; Devred, F. Binding of two zinc ions promotes liquid-liquid phase separation of tau. Int. J. Biol. Macromol. 2022, 223, 1223–1229. [Google Scholar] [CrossRef]
  138. Mukherjee, S.; Panda, D. Contrasting effects of ferric and ferrous ions on oligomerization and droplet formation of tau: Implications in tauopathies and neurodegeneration. ACS Chem. Neurosci. 2021, 12, 4393–4405. [Google Scholar] [CrossRef]
  139. Brunello, C.A.; Yan, X.; Huttunen, H.J. Internalized tau sensitizes cells to stress by promoting formation and stability of stress granules. Sci. Rep. 2016, 6, 30498. [Google Scholar] [CrossRef]
  140. Vanderweyde, T.; Yu, H.; Varnum, M.; Liu-Yesucevitz, L.; Citro, A.; Ikezu, T.; Duff, K.; Wolozin, B. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J. Neurosci. 2012, 32, 8270–8283. [Google Scholar] [CrossRef]
  141. Apicco, D.J.; Ash, P.E.A.; Maziuk, B.; LeBlang, C.; Medalla, M.; Al Abdullatif, A.; Ferragud, A.; Botelho, E.; Ballance, H.I.; Dhawan, U.; et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat. Neurosci. 2018, 21, 72–80. [Google Scholar] [CrossRef] [PubMed]
  142. Maziuk, B.F.; Apicco, D.J.; Cruz, A.L.; Jiang, L.; Ash, P.E.A.; da Rocha, E.L.; Zhang, C.; Yu, W.H.; Leszyk, J.; Abisambra, J.F.; et al. RNA binding proteins co-localize with small tau inclusions in tauopathy. Acta Neuropathol. Commun. 2018, 6, 71. [Google Scholar] [CrossRef] [PubMed]
  143. Wolozin, B.; Ivanov, P. Stress granules and neurodegeneration. Nat. Rev. Neurosci. 2019, 20, 649–666. [Google Scholar] [CrossRef] [PubMed]
  144. Yu, Q.Y.; Ye, L.Q.; Li, H.L. Molecular interaction of stress granules with tau and autophagy in Alzheimer’s disease. Neurochem. Int. 2022, 157, 105342. [Google Scholar] [CrossRef]
  145. Advani, V.M.; Ivanov, P. Stress granule subtypes: An emerging link to neurodegeneration. Cell. Mol. Life Sci. 2020, 77, 4827–4845. [Google Scholar] [CrossRef]
  146. Asadi, M.R.; Sadat Moslehian, M.; Sabaie, H.; Jalaiei, A.; Ghafouri-Fard, S.; Taheri, M.; Rezazadeh, M. Stress granules and neurodegenerative disorders: A scoping review. Front. Aging Neurosci. 2021, 13, 650740. [Google Scholar] [CrossRef]
  147. VandeVrede, L.; Boxer, A.L.; Polydoro, M. Targeting tau: Clinical trials and novel therapeutic approaches. Neurosci. Lett. 2020, 731, 134919. [Google Scholar] [CrossRef] [PubMed]
  148. Soeda, Y.; Takashima, A. New insights into drug discovery targeting tau protein. Front. Mol. Neurosci. 2020, 13, 590896. [Google Scholar] [CrossRef]
  149. Kilgore, H.R.; Young, R.A. Learning the chemical grammar of biomolecular condensates. Nat. Chem. Biol. 2022, 18, 1298–1306. [Google Scholar] [CrossRef]
  150. Babu, M.; Favretto, F.; Rankovic, M.; Zweckstetter, M. Peptidyl prolyl isomerase A modulates the liquid-liquid phase separation of proline-rich IDPs. J. Am. Chem. Soc. 2022, 144, 16157–16163. [Google Scholar] [CrossRef]
  151. Tira, R.; Viola, G.; Barracchia, C.G.; Parolini, F.; Munari, F.; Capaldi, S.; Assfalg, M.; D’Onofrio, M. Espresso coffee mitigates the aggregation and condensation of Alzheimer’s associated tau protein. J. Agric. Food Chem. 2023, 71, 11429–11441. [Google Scholar] [CrossRef] [PubMed]
  152. Venkatramani, A.; Mukherjee, S.; Kumari, A.; Panda, D. Shikonin impedes phase separation and aggregation of tau and protects SH-SY5Y cells from the toxic effects of tau oligomers. Int. J. Biol. Macromol. 2022, 204, 19–33. [Google Scholar] [CrossRef] [PubMed]
  153. Dai, B.; Zhong, T.; Chen, Z.X.; Chen, W.; Zhang, N.; Liu, X.L.; Wang, L.Q.; Chen, J.; Liang, Y. Myricetin slows liquid-liquid phase separation of tau and activates ATG5-dependent autophagy to suppress tau toxicity. J. Biol. Chem. 2021, 297, 101222. [Google Scholar] [CrossRef]
  154. Pradhan, A.; Mishra, S.; Surolia, A.; Panda, D. C1 inhibits liquid-liquid phase separation and oligomerization of tau and protects neuroblastoma cells against toxic tau oligomers. ACS Chem. Neurosci. 2021, 12, 1989–2002. [Google Scholar] [CrossRef]
  155. Ramesh, M.; Balachandra, C.; Baruah, P.; Govindaraju, T. Cyclic dipeptide-based small molecules modulate zinc-mediated liquid-liquid phase separation of tau. J. Pept. Sci. 2023, 29, e3465. [Google Scholar] [CrossRef] [PubMed]
  156. Huang, Y.; Wen, J.; Ramirez, L.M.; Gumusdil, E.; Pokhrel, P.; Man, V.H.; Ye, H.; Han, Y.; Liu, Y.; Li, P.; et al. Methylene blue accelerates liquid-to-gel transition of tau condensates impacting tau function and pathology. Nat. Commun. 2023, 14, 5444. [Google Scholar] [CrossRef]
  157. Prince, P.R.; Hochmair, J.; Brognaro, H.; Gevorgyan, S.; Franck, M.; Schubert, R.; Lorenzen, K.; Yazici, S.; Mandelkow, E.; Wegmann, S.; et al. Initiation and modulation of tau protein phase separation by the drug suramin. Sci. Rep. 2023, 13, 3963. [Google Scholar] [CrossRef]
  158. Moorthy, H.; Kamala, N.; Ramesh, M.; Govindaraju, T. Biphasic modulation of tau liquid-liquid phase separation by polyphenols. Chem. Commun. 2024, 60, 4334–4337. [Google Scholar] [CrossRef]
  159. Xiang, J.; Chen, J.; Liu, Y.; Ye, H.; Han, Y.; Li, P.; Gao, M.; Huang, Y. Tannic acid as a biphasic modulator of tau protein liquid-liquid phase separation. Int. J. Biol. Macromol. 2024, 275, 133578. [Google Scholar] [CrossRef]
  160. Moreira, G.G.; Cantrelle, F.X.; Quezada, A.; Carvalho, F.S.; Cristovao, J.S.; Sengupta, U.; Puangmalai, N.; Carapeto, A.P.; Rodrigues, M.S.; Cardoso, I.; et al. Dynamic interactions and Ca(2+)-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nat. Commun. 2021, 12, 6292. [Google Scholar] [CrossRef]
  161. Alberti, S.; Hyman, A.A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 196–213. [Google Scholar] [CrossRef] [PubMed]
  162. Mukherjee, S.; Sakunthala, A.; Gadhe, L.; Poudyal, M.; Sawner, A.S.; Kadu, P.; Maji, S.K. Liquid-liquid phase separation of a-synuclein: A new mechanistic insight for a-synuclein aggregation associated with Parkinson’s disease pathogenesis. J. Mol. Biol. 2023, 435, 167713. [Google Scholar] [CrossRef]
  163. Berkeley, R.F.; Kashefi, M.; Debelouchina, G.T. Real-time observation of structure and dynamics during the liquid-to-solid transition of FUS LC. Biophys. J. 2021, 120, 1276–1287. [Google Scholar] [CrossRef]
  164. Xu, B.; Mo, X.; Chen, J.; Yu, H.; Liu, Y. Myricetin inhibits a-synuclein amyloid aggregation by delaying the liquid-to-solid phase transition. Chembiochem 2022, 23, e202200216. [Google Scholar] [CrossRef]
  165. Li, Y.; Gu, J.; Wang, C.; Hu, J.; Zhang, S.; Liu, C.; Zhang, S.; Fang, Y.; Li, D. Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. iScience 2022, 25, 104356. [Google Scholar] [CrossRef] [PubMed]
  166. Chakraborty, P.; Ibanez de Opakua, A.; Purslow, J.A.; Fromm, S.A.; Chatterjee, D.; Zachrdla, M.; Zhuang, S.; Puri, S.; Wolozin, B.; Zweckstetter, M. GSK3b phosphorylation catalyzes the aggregation of tau into Alzheimer’s disease-like filaments. Proc. Natl. Acad. Sci. USA 2024, 121, e2414176121. [Google Scholar] [CrossRef]
  167. Yabuki, Y.; Matsuo, K.; Komiya, G.; Kudo, K.; Hori, K.; Ikenoshita, S.; Kawata, Y.; Mizobata, T.; Shioda, N. RNA G-quadruplexes and calcium ions synergistically induce tau phase transition in vitro. J. Biol. Chem. 2024, 300, 107971. [Google Scholar] [CrossRef]
  168. Jonchhe, S.; Pan, W.; Pokhrel, P.; Mao, H. Small molecules modulate liquid-to-solid transitions in phase-separated tau condensates. Angew. Chem. Int. Ed. Engl. 2022, 61, e202113156. [Google Scholar] [CrossRef]
  169. Wang, K.; Liu, J.Q.; Zhong, T.; Liu, X.L.; Zeng, Y.; Qiao, X.; Xie, T.; Chen, Y.; Gao, Y.Y.; Tang, B.; et al. Phase separation and cytotoxicity of tau are modulated by protein disulfide isomerase and s-nitrosylation of this molecular chaperone. J. Mol. Biol. 2020, 432, 2141–2163. [Google Scholar] [CrossRef]
  170. Chaari, A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int. J. Biol. Macromol. 2019, 131, 396–411. [Google Scholar] [CrossRef]
  171. Smith, H.L.; Li, W.; Cheetham, M.E. Molecular chaperones and neuronal proteostasis. Semin. Cell Dev. Biol. 2015, 40, 142–152. [Google Scholar] [CrossRef] [PubMed]
  172. Gu, J.; Liu, Z.; Zhang, S.; Li, Y.; Xia, W.; Wang, C.; Xiang, H.; Liu, Z.; Tan, L.; Fang, Y.; et al. Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proc. Natl. Acad. Sci. USA 2020, 117, 31123–31133. [Google Scholar] [CrossRef]
  173. Liu, Z.; Zhang, S.; Gu, J.; Tong, Y.; Li, Y.; Gui, X.; Long, H.; Wang, C.; Zhao, C.; Lu, J.; et al. Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat. Struct. Mol. Biol. 2020, 27, 363–372. [Google Scholar] [CrossRef] [PubMed]
  174. Chang, Y.L.; Yang, C.C.; Huang, Y.Y.; Chen, Y.A.; Yang, C.W.; Liao, C.Y.; Li, H.; Wu, C.S.; Lin, C.H.; Teng, S.C. The HSP40 family chaperone isoform DNAJB6b prevents neuronal cells from tau aggregation. BMC Biol. 2023, 21, 293. [Google Scholar] [CrossRef]
  175. Irwin, R.; Faust, O.; Petrovic, I.; Wolf, S.G.; Hofmann, H.; Rosenzweig, R. Hsp40s play complementary roles in the prevention of tau amyloid formation. eLife 2021, 10, e69601. [Google Scholar] [CrossRef] [PubMed]
  176. Darling, A.L.; Dahrendorff, J.; Creodore, S.G.; Dickey, C.A.; Blair, L.J.; Uversky, V.N. Small heat shock protein 22 kDa can modulate the aggregation and liquid-liquid phase separation behavior of tau. Protein Sci. 2021, 30, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
  177. Visser, B.S.; Lipiński, W.P.; Spruijt, E. The role of biomolecular condensates in protein aggregation. Nat. Rev. Chem. 2024, 8, 686–700. [Google Scholar] [CrossRef]
  178. Siegert, A.; Rankovic, M.; Favretto, F.; Ukmar-Godec, T.; Strohaker, T.; Becker, S.; Zweckstetter, M. Interplay between tau and a-synuclein liquid-liquid phase separation. Protein Sci. 2021, 30, 1326–1336. [Google Scholar] [CrossRef]
  179. Saini, B.; Mukherjee, T.K. Biomolecular condensates regulate enzymatic activity under a crowded milieu: Synchronization of liquid-liquid phase separation and enzymatic transformation. J. Phys. Chem. B 2023, 127, 180–193. [Google Scholar] [CrossRef]
  180. O’Flynn, B.G.; Mittag, T. The role of liquid-liquid phase separation in regulating enzyme activity. Curr. Opin. Cell Biol. 2021, 69, 70–79. [Google Scholar] [CrossRef]
  181. Zhang, Y.; Narlikar, G.J.; Kutateladze, T.G. Enzymatic reactions inside biological condensates. J. Mol. Biol. 2021, 433, 166624. [Google Scholar] [CrossRef]
  182. Frattini, C.; Promonet, A.; Alghoul, E.; Vidal-Eychenie, S.; Lamarque, M.; Blanchard, M.P.; Urbach, S.; Basbous, J.; Constantinou, A. TopBP1 assembles nuclear condensates to switch on ATR signaling. Mol. Cell 2021, 81, 1231–1245. [Google Scholar] [CrossRef]
  183. Linhartova, K.; Falginella, F.L.; Matl, M.; Sebesta, M.; Vacha, R.; Stefl, R. Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7. Nat. Commun. 2024, 15, 9163. [Google Scholar] [CrossRef] [PubMed]
  184. Sang, D.; Shu, T.; Pantoja, C.F.; Ibanez de Opakua, A.; Zweckstetter, M.; Holt, L.J. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. Mol. Cell 2022, 82, 3693–3711. [Google Scholar] [CrossRef] [PubMed]
  185. Zhang, J.Z.; Lu, T.W.; Stolerman, L.M.; Tenner, B.; Yang, J.R.; Zhang, J.F.; Falcke, M.; Rangamani, P.; Taylor, S.S.; Mehta, S.; et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell 2020, 182, 1531–1544. [Google Scholar] [CrossRef] [PubMed]
  186. Zhou, J.; Chuang, Y.; Redding-Ochoa, J.; Zhang, R.; Platero, A.J.; Barrett, A.H.; Troncoso, J.C.; Worley, P.F.; Zhang, W. The autophagy adaptor TRIAD3A promotes tau fibrillation by nested phase separation. Nat. Cell Biol. 2024, 26, 1274–1286. [Google Scholar] [CrossRef]
  187. Gil-Garcia, M.; Benitez-Mateos, A.I.; Papp, M.; Stoffel, F.; Morelli, C.; Normak, K.; Makasewicz, K.; Faltova, L.; Paradisi, F.; Arosio, P. Local environment in biomolecular condensates modulates enzymatic activity across length scales. Nat. Commun. 2024, 15, 3322. [Google Scholar] [CrossRef]
  188. Peeples, W.; Rosen, M.K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 2021, 17, 693–702. [Google Scholar] [CrossRef]
  189. Harris, R.; Veretnik, S.; Dewan, S.; Baruch Leshem, A.; Lampel, A. Regulation of enzymatic reactions by chemical composition of peptide biomolecular condensates. Commun. Chem. 2024, 7, 90. [Google Scholar] [CrossRef]
  190. Lin, C.C.; Suen, K.M.; Jeffrey, P.A.; Wieteska, L.; Lidster, J.A.; Bao, P.; Curd, A.P.; Stainthorp, A.; Seiler, C.; Koss, H.; et al. Receptor tyrosine kinases regulate signal transduction through a liquid-liquid phase separated state. Mol. Cell 2022, 82, 1089–1106. [Google Scholar] [CrossRef]
  191. Lopez-Palacios, T.P.; Andersen, J.L. Kinase regulation by liquid-liquid phase separation. Trends Cell Biol. 2023, 33, 649–666. [Google Scholar] [CrossRef] [PubMed]
  192. Zhang, G.; Zhang, Y.; Shen, Y.; Wang, Y.; Zhao, M.; Sun, L. The potential role of ferroptosis in Alzheimer’s disease. J. Alzheimer’s Dis. 2021, 80, 907–925. [Google Scholar] [CrossRef]
  193. Padhi, D.; Baruah, P.; Ramesh, M.; Moorthy, H.; Govindaraju, T. Hybrid molecules synergistically mitigate ferroptosis and amyloid-associated toxicities in Alzheimer’s disease. Redox Biol. 2024, 71, 103119. [Google Scholar] [CrossRef]
  194. Moorthy, H.; Ramesh, M.; Padhi, D.; Baruah, P.; Govindaraju, T. Polycatechols inhibit ferroptosis and modulate tau liquid-liquid phase separation to mitigate Alzheimer’s disease. Mater. Horiz. 2024, 11, 3082–3089. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Schematic illustration of tau domain organization and phase transition. (a) Domain organization of 2N4R tau isoform. (b) Transitions among tau monomer, liquid condensate, oligomer, and amyloid fibril. The transition between tau monomer and liquid condensate is dynamic and reversible.
Figure 1. Schematic illustration of tau domain organization and phase transition. (a) Domain organization of 2N4R tau isoform. (b) Transitions among tau monomer, liquid condensate, oligomer, and amyloid fibril. The transition between tau monomer and liquid condensate is dynamic and reversible.
Ijms 26 06709 g001
Figure 2. Schematic illustration of interactions mediating tau LLPS. (a) Distribution of charges on tau. (b) LLPS of tau is primarily driven by electrostatic interactions. When a co-factor (such as a nucleic acid, protein, or small compound molecule) is present, LLPS of tau can be modulated by electrostatic interactions, hydrophobic interactions, and hydrogen bonding.
Figure 2. Schematic illustration of interactions mediating tau LLPS. (a) Distribution of charges on tau. (b) LLPS of tau is primarily driven by electrostatic interactions. When a co-factor (such as a nucleic acid, protein, or small compound molecule) is present, LLPS of tau can be modulated by electrostatic interactions, hydrophobic interactions, and hydrogen bonding.
Ijms 26 06709 g002
Figure 3. Therapeutic approaches for tau pathology in the context of LLPS. LLPS offers novel strategies for combating tauopathies, such as modulating tau phase separation, delaying the liquid-to-solid transition of tau condensates, reducing the enrichment of aggregation-prone species into tau condensates, and suppressing abnormal PTMs on tau. P: phosphorylation; Ac: acetylation; Ub: ubiquitination.
Figure 3. Therapeutic approaches for tau pathology in the context of LLPS. LLPS offers novel strategies for combating tauopathies, such as modulating tau phase separation, delaying the liquid-to-solid transition of tau condensates, reducing the enrichment of aggregation-prone species into tau condensates, and suppressing abnormal PTMs on tau. P: phosphorylation; Ac: acetylation; Ub: ubiquitination.
Ijms 26 06709 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhang, X.; Wang, L.; Lin, N.; Gao, M.; Huang, Y. Rational Modulation of Liquid–Liquid Phase Separation Offers Novel Ways to Combat Tauopathies. Int. J. Mol. Sci. 2025, 26, 6709. https://doi.org/10.3390/ijms26146709

AMA Style

Zhang X, Wang L, Lin N, Gao M, Huang Y. Rational Modulation of Liquid–Liquid Phase Separation Offers Novel Ways to Combat Tauopathies. International Journal of Molecular Sciences. 2025; 26(14):6709. https://doi.org/10.3390/ijms26146709

Chicago/Turabian Style

Zhang, Xingxing, Lumiao Wang, Nixin Lin, Meng Gao, and Yongqi Huang. 2025. "Rational Modulation of Liquid–Liquid Phase Separation Offers Novel Ways to Combat Tauopathies" International Journal of Molecular Sciences 26, no. 14: 6709. https://doi.org/10.3390/ijms26146709

APA Style

Zhang, X., Wang, L., Lin, N., Gao, M., & Huang, Y. (2025). Rational Modulation of Liquid–Liquid Phase Separation Offers Novel Ways to Combat Tauopathies. International Journal of Molecular Sciences, 26(14), 6709. https://doi.org/10.3390/ijms26146709

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop