Recombinant DNA the Bio-Revolution, Between Promise, Hurdles, and Achievements
Conflicts of Interest
References
- Arber, W.; Dussoix, D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage λ. J. Mol. Biol. 1962, 5, 18–36. [Google Scholar] [CrossRef] [PubMed]
- Arber, W.; Hattman, S.; Dussoix, D. On the host-controlled modification of bacteriophage λ. Virology 1963, 21, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.J., Jr.; Smith, H.O. A restriction enzyme from Hemophilus influenzae. II. Base sequence of the recognition site. J. Mol. Biol. 1970, 51, 393–409. [Google Scholar] [CrossRef] [PubMed]
- Nathans, D.; Smith, H.O. Restriction endonucleases in the analysis and restructuring of DNA. Annu. Rev. Biochem. 1975, 44, 273–289. [Google Scholar] [CrossRef]
- Loenen, W.A.M.; Dryden, D.T.F.; Raleigh, E.A.; Wilson, G.G.; Murray, N.E. Highlights of the DNA cutters: A short history of the restriction enzymes. Type I restriction enzymes and their relatives. Nucleic Acids Res. 2014, 42, 13–19. [Google Scholar]
- Cohen, S.N.; Chang, A.C.; Boyer, H.W.; Helling, R.B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. USA 1973, 70, 3240–3244. [Google Scholar] [CrossRef]
- Claes, G.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346–353. [Google Scholar]
- Angov, E.; Hillier, C.J.; Kincaid, R.L.; Lyon, J.A. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS ONE 2008, 3, e2189. [Google Scholar] [CrossRef]
- McDonald, M.J.; Chou, C.H.; Swamy, K.B.; Huang, H.-D.a.; Leu, J.-Y. The evolutionary dynamics of tRNA-gene copy number and codon-use in E. coli. BMC Evol. Biol. 2015, 15, 63. [Google Scholar] [CrossRef]
- Parisien, M.; Wang, X.; Pan, T. Diversity of human tRNA genes from the 1000-genomes project. RNA Biol. 2013, 10, 1853–1867. [Google Scholar] [CrossRef]
- Goulet, D.R.; Yan, Y.; Agrawal, P.; Waight, A.B.; Mak, A.N.; Zhu, Y. Codon optimization using a recurrent neural network. J. Comput. Biol. 2023, 30, 70–81. [Google Scholar] [CrossRef]
- Demissie, E.A.; Park, S.Y.; Moon, J.H.; Lee, D.Y. Comparative Analysis of Codon Optimization Tools: Advancing toward a Multi-Criteria Framework for Synthetic Gene Design. J. Microbiol. Biotechnol. 2025, 35, e2411066. [Google Scholar] [CrossRef]
- Nabiel, A.; Yosua, Y.; Sriwidodo, S.; Maksum, I.P. Overview of refolding methods on misfolded recombinant proteins from Escherichia coli inclusion bodies. J. App. Biol. Biotech. 2023, 11, 47–52. [Google Scholar] [CrossRef]
- Markossian, K.A.; Kurganov, B.I. Protein Folding, Misfolding, and Aggregation. Formation of Inclusion Bodies and Aggresomes. Biochemistry (Mosco) 2004, 69, 971–984. [Google Scholar] [CrossRef]
- Guise, A.D.; West, S.M.; Chaudhuri, J.B. Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol. Biotechnol. 1996, 6, 53–64. [Google Scholar] [CrossRef]
- Mori, T.; Kataoka, H.; Tanabe, G.; Into, T. Solubility affects IL-1β-producing activity of the synthetic candidalysin peptide. PLoS ONE 2022, 17, e0273663. [Google Scholar] [CrossRef]
- Boutin, J.A.; Tartar, A.L.; Dorsselaer, A.V.; Vaudry, H. General lack of structural characterization of chemically synthesized long peptides. Protein Sci. 2019, 28, 857–867. [Google Scholar] [CrossRef]
- Burra, G.; Thakur, A.K. Insights into the molecular mechanism behind solubilization of amyloidogenic polyglutamine-containing peptides. Pept. Sci. 2018, 111, e24094. [Google Scholar] [CrossRef]
- Haney, E.F.; Wu, B.C.; Lee, K.; Hilchie, A.L.; Hancock, R.E.W. Aggregation, and Its Influence on the Immunomodulatory Activity of Synthetic Innate Defense Regulators. Cell Chem. Biol. 2017, 24, 969–980.e4. [Google Scholar] [CrossRef]
- Zapadka, K.L.; Becher, F.J.; Gomes dos Santos, A.L.; Jackson, S.E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 2017, 7, 20170030. [Google Scholar] [CrossRef]
- El-Gewely, M.R. Shorter is better. Nat. Biotechnol. 1999, 17, 210. [Google Scholar]
- Storbakk, N.; Fenton, C.; Riise, H.M.F.; Nilsen, I.W.; El-Gewely, M.R. In Vivo Interaction Between Mutated Tryptophan Repressors of Escherichia coli. J. Mol. Biol. 1996, 256, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Fatima, K.; Naqvi, F.; Younas, H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem. Biophys. 2021, 79, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Raschmanová, H.; Weninger, A.; Knejzlík, Z.; Melzoch, K.; Kovar, K. Engineering of the unfolded protein response pathway in Pichia pastoris: Enhancing production of secreted recombinant proteins. Appl. Microbiol. Biotechnol. 2021, 105, 4397–4414. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lu, Z.; Wang, X.; Selvaraj, J.N.; Zhang, G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 2018, 102, 1545–1556. [Google Scholar] [CrossRef]
- Jeon, E.J.; Lee, S.M.; Hong, H.S.; Jeong, K.J. Design of fully synthetic signal peptide library and its use for enhanced secretory production of recombinant proteins in Corynebacterium glutamicum. Microb. Cell Fact. 2024, 23, 252. [Google Scholar] [CrossRef]
- McGonigle, P. How Biologics Have Changed the Drug Discovery Landscape. Annu. Rev. Pharmacol. Toxicol. 2025, 65, 29–46. [Google Scholar] [CrossRef]
- Vavilis, T.; Stamoula, E.; Ainatzoglou, A.; Sachinidis, A.; Lamprinou, M.; Dardalas, I.; Vizirianakis, I.S. mRNA in the Context of Protein Replacement Therapy. Pharmaceutics 2023, 15, 166. [Google Scholar] [CrossRef]
- Rohner, E.; Yang, R.; Foo, K.S.; Goedel, A.; Chien, K.R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 2022, 40, 1586–1600. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, Z.; Zhou, C.; Tang, X.; Hu, X.; Tian, G.; Yang, J.; Yao, Y. Protein structure prediction via deep learning: An in-depth review. Front. Pharmacol. 2025, 16, 1498662. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Gewely, M.R. Recombinant DNA the Bio-Revolution, Between Promise, Hurdles, and Achievements. Int. J. Mol. Sci. 2025, 26, 6611. https://doi.org/10.3390/ijms26146611
El-Gewely MR. Recombinant DNA the Bio-Revolution, Between Promise, Hurdles, and Achievements. International Journal of Molecular Sciences. 2025; 26(14):6611. https://doi.org/10.3390/ijms26146611
Chicago/Turabian StyleEl-Gewely, Mohamed Raafat. 2025. "Recombinant DNA the Bio-Revolution, Between Promise, Hurdles, and Achievements" International Journal of Molecular Sciences 26, no. 14: 6611. https://doi.org/10.3390/ijms26146611
APA StyleEl-Gewely, M. R. (2025). Recombinant DNA the Bio-Revolution, Between Promise, Hurdles, and Achievements. International Journal of Molecular Sciences, 26(14), 6611. https://doi.org/10.3390/ijms26146611