Molecular Mechanisms and Regulatory Factors Governing Feed Utilization Efficiency in Laying Hens: Insights for Sustainable Poultry Production and Breeding Optimization
Abstract
1. Introduction
2. Factors Affecting Feed Efficiency and Regulatory Mechanisms of Laying Hens
2.1. Effect of Feeding Behavior on Feed Efficiency and Regulatory Mechanisms
2.2. Effects of Host Genetics on Feed Efficiency and Regulatory Mechanisms
2.3. Effects of Nutritional Levels on Feed Efficiency and Regulatory Mechanisms
2.3.1. Effects of Energy Levels on Feed Efficiency and Regulatory Mechanisms
2.3.2. Effects of Crude Protein Levels on Feed Efficiency and Regulatory Mechanisms
2.3.3. Effects of Trace Elements on Feed Efficiency and Regulatory Mechanisms
2.4. Effects of Environmental Factors on Feed Efficiency and Regulatory Mechanisms
2.5. Effects of Exogenous Additives on Feed Efficiency and Regulatory Mechanisms
2.5.1. Probiotics
2.5.2. Enzymes
2.6. Effects of Hormonal Regulation on Feed Efficiency and Regulatory Mechanisms
2.7. Effects of Health Status on Feed Efficiency and Regulatory Mechanisms
2.8. Effects of Microbial Community on Feed Efficiency and Regulatory Mechanisms
2.8.1. The Composition of the Digestive Organs of Laying Hens
2.8.2. Impact of Gut Environment on Feed Efficiency
Influence of Gut Villus Structure on Feed Efficiency
Influence of Gut Microbiota on Feed Efficiency
3. The Significance of Modern Molecular Biology Techniques
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, N. Egg production in China: Current status and outlook. Front. Agric. Sci. Eng. 2021, 8, 25–34. [Google Scholar] [CrossRef]
- Van Eck, L.M.; Enting, H.; Carvalhido, I.J.; Chen, H.; Kwakkel, R.P. Lipid metabolism and body composition in long-term producing hens. World’s Poult. Sci. J. 2023, 79, 243–264. [Google Scholar] [CrossRef]
- Vaarst, M.; Steenfeldt, S.; Horsted, K. Sustainable development perspectives of poultry production. World’s Poult. Sci. J. 2015, 71, 609–620. [Google Scholar] [CrossRef]
- Wilkinson, J.M. Re-defining efficiency of feed use by livestock. Animal 2011, 5, 1014–1022. [Google Scholar] [CrossRef]
- Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 2010, 41, 32–46. [Google Scholar] [CrossRef]
- Li, Y.; Ma, R.; Qi, R.; Li, J.; Liu, W.; Wan, Y.; Li, S.; Sun, Z.; Xu, J.; Zhan, K. Novel insight into the feed conversion ratio in laying hens and construction of its prediction model. Poult. Sci. 2024, 103, 104013. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, J.; Li, F.; Zheng, J.; Xu, G. Effect of oils in feed on the production performance and egg quality of laying hens. Animals 2021, 11, 3482. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, P.; Martinez, D.A.; Weil, J.; Suesuttajit, N.; Umberson, C.; Mullenix, G.; Hilton, K.M.; Beitia, A.; Coon, C.N. Physiological growth trend of current meat broilers and dietary protein and energy management approaches for sustainable broiler production. Animal 2021, 15, 100284. [Google Scholar] [CrossRef]
- Li, W.; Zheng, M.; Zhao, G.; Wang, J.; Liu, J.; Wang, S.; Feng, F.; Liu, D.; Zhu, D.; Li, Q. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers. Genet. Sel. Evol. 2021, 53, 13. [Google Scholar] [CrossRef]
- Brunes, L.C.; Baldi, F.; Lopes, F.B.; Lobo, R.B.; Espigolan, R.; Costa, M.; Magnabosco, C.U. Selection criteria for feed efficiency-related traits and their association with growth, reproductive and carcass traits in Nelore cattle. Anim. Prod. Sci. 2021, 61, 1633–1642. [Google Scholar] [CrossRef]
- van Emous, R.A. Male Percentage: Less is More. In Proceedings of the XI European Symposium on Poultry Welfare (ESPW 2023), Prague, Czech Republic, 26–29 June 2023. [Google Scholar]
- De Verdal, H.; Komen, H.; Quillet, E.; Chatain, B.; Allal, F.; Benzie, J.A.; Vandeputte, M. Improving feed efficiency in fish using selective breeding: A review. Rev. Aquac. 2018, 10, 833–851. [Google Scholar] [CrossRef]
- Tallentire, C.W.; Leinonen, I.; Kyriazakis, I. Breeding for efficiency in the broiler chicken: A review. Agron. Sustain. Dev. 2016, 36, 66. [Google Scholar] [CrossRef]
- Wen, C.; Yan, W.; Zheng, J.; Ji, C.; Zhang, D.; Sun, C.; Yang, N. Feed efficiency measures and their relationships with production and meat quality traits in slower growing broilers. Poult. Sci. 2018, 97, 2356–2364. [Google Scholar] [CrossRef]
- Yuan, J.; Dou, T.; Ma, M.; Yi, G.; Chen, S.; Qu, L.; Shen, M.; Qu, L.; Wang, K.; Yang, N. Genetic parameters of feed efficiency traits in laying period of chickens. Poult. Sci. 2015, 94, 1470–1475. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Zhang, H.; Liu, J.; Chen, L.; Tian, Y.; Shen, J.; Lu, L. Genetic parameters of feed efficiency traits and their relationships with egg quality traits in laying period of ducks. Poult. Sci. 2018, 97, 758–763. [Google Scholar] [CrossRef]
- Mahmud, A.; Rahim, L.; Dagong, M.; Bugiwati, S.; Pakiding, W. Growth traits and carcass characteristics of kalosi chicken selected based on residual feed intake (RFI) phenotype. Adv. Anim. Vet. Sci. 2023, 11, 1–10. [Google Scholar]
- Lidauer, M.H.; Negussie, E.; Mäntysaari, E.A.; Mäntysaari, P.; Kajava, S.; Kokkonen, T.; Chegini, A.; Mehtiö, T. Estimating breeding values for feed efficiency in dairy cattle by regression on expected feed intake. Animal 2023, 17, 100917. [Google Scholar] [CrossRef]
- Fathi, M.M.; Galal, A.; Al-Homidan, I.; Abou-Emera, O.K.; Rayan, G.N. Residual feed intake: A limiting economic factor for selection in poultry breeding programs. Ann. Agric. Sci. 2021, 66, 53–57. [Google Scholar] [CrossRef]
- Miyumo, S.A.; Wasike, C.B.; Ilatsia, E.D.; Bennewitz, J.; Chagunda, M.G. Genetic and phenotypic correlations among feed efficiency, immune and production traits in indigenous chicken of Kenya. Front. Genet. 2023, 13, 1070304. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, J.; Wang, Y.; Ni, A.; Sun, Y.; Li, Y.; Ma, H.; Wang, P.; Shi, L.; Ge, P. Assessment of feed efficiency and its relationship with egg quality in two purebred chicken lines and their reciprocal crosses. Agriculture 2022, 12, 2171. [Google Scholar] [CrossRef]
- Bryden, W.L.; Li, X.; Ruhnke, I.; Zhang, D.; Shini, S. Nutrition, feeding and laying hen welfare. Anim. Prod. Sci. 2021, 61, 893–914. [Google Scholar] [CrossRef]
- van Emous, R.A.; Mens, A. Effects of Breeder Feed Restriction on Behavior, Welfare, Reproduction and Health. In Breeder Management and Nutrition; Novus International, Inc.: Chesterfield, MO, USA, 2022; pp. 35–60. [Google Scholar]
- Zhao, J.; Pan, H.; Liu, Y.; He, Y.; Shi, H.; Ge, C. Interacting networks of the hypothalamic–pituitary–ovarian axis regulate layer hens performance. Genes 2023, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, B.; Ghashghayi, E.; Zendehdel, M.; Khodadadi, M.; Hamidi, B. The crosstalk between brain mediators regulating food intake behavior in birds: A review. Int. J. Pept. Res. Ther. 2021, 27, 2349–2370. [Google Scholar] [CrossRef]
- Greene, E.S.; Abdelli, N.; Dridi, J.S.; Dridi, S. Avian neuropeptide Y: Beyond feed intake regulation. Vet. Sci. 2022, 9, 171. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, K.; Wang, D.; Wang, Z.; Gu, Z.; Li, G.; Jiang, R.; Tian, Y.; Kang, X.; Li, H. Comparative analysis of hypothalamus transcriptome between laying hens with different egg-laying rates. Poult. Sci. 2021, 100, 101110. [Google Scholar] [CrossRef] [PubMed]
- McConn, B.R.; Matias, J.; Wang, G.; Cline, M.A.; Gilbert, E.R. Dietary macronutrient composition affects hypothalamic appetite regulation in chicks. Nutr. Neurosci. 2018, 21, 49–58. [Google Scholar] [CrossRef]
- Kaiya, H. Update on feeding regulation by ghrelin in birds: Focused on brain network. Zool. Sci. 2024, 41, 39–49. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Zhao, J.; Jiao, H.; Lin, H. Low protein diet supplemented with crystalline amino acids suppressing appetite and apo-lipoprotein synthesis in laying hens. Anim. Feed Sci. Technol. 2020, 266, 114533. [Google Scholar] [CrossRef]
- Lee, J.; Kim, W.K. Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals 2023, 13, 2975. [Google Scholar] [CrossRef]
- Chuang, W.Y.; Hsieh, Y.C.; Chen, L.W.; Lee, T. Evaluation of the relationship between adipose metabolism patterns and secretion of appetite-related endocrines on chicken. Animals 2020, 10, 1282. [Google Scholar] [CrossRef]
- Yousefi, M.; Jonaidi, H.; Sadeghi, B. Influence of peripheral lipopolysaccharide (LPS) on feed intake, body temperature and hypothalamic expression of neuropeptides involved in appetite regulation in broilers and layer chicks. Br. Poult. Sci. 2021, 62, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Zampiga, M. Application of Traditional and Innovative Techniques to Investigate Productive Efficiency and Related Molecular Traits in Broiler Chickens. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2019. [Google Scholar]
- Hanlon, C.; Ramachandran, R.; Zuidhof, M.J.; Bédécarrats, G.Y. Should I lay or should I grow: Photoperiodic versus metabolic cues in chickens. Front. Physiol. 2020, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Bohler, M.W., Jr. Hypothalamic Mechanisms of Food Intake in Birds; Virginia Tech: Blacksburg, VA, USA, 2022. [Google Scholar]
- Morita-Takemura, S.; Wanaka, A. Blood-to-brain communication in the hypothalamus for energy intake regulation. Neurochem. Int. 2019, 128, 135–142. [Google Scholar] [CrossRef]
- Jiang, Q. Regulatory mechanism of animal feeding and its research progress. Feed. Livest. (New Feed.) 2012, 4, 5–9. [Google Scholar]
- Zhou, Q.; Lan, F.; Gu, S.; Li, G.; Wu, G.; Yan, Y.; Li, X.; Jin, J.; Wen, C.; Sun, C. Genetic and microbiome analysis of feed efficiency in laying hens. Poult. Sci. 2023, 102, 102393. [Google Scholar] [CrossRef]
- Zhang, W.; Lan, F.; Zhou, Q.; Gu, S.; Li, X.; Wen, C.; Yang, N.; Sun, C. Host genetics and gut microbiota synergistically regulate feed utilization in egg-type chickens. J. Anim. Sci. Biotechnology. 2024, 15, 123. [Google Scholar] [CrossRef]
- Wilhelmi, S.S. Investigation of the Regulatory Processes of Gene Expression in Animal and Plant Sciences. Ph.D. Thesis, Göttingen University, Göttingen, Germany, 2023. [Google Scholar]
- Alves, A.A.; Fernandes, A.F.; Lopes, F.B.; Breen, V.; Hawken, R.; Rosa, G.J. Genetic analysis of feed efficiency and novel feeding behavior traits measured in group-housed broilers using electronic feeders. Poult. Sci. 2024, 103, 103737. [Google Scholar] [CrossRef]
- Santostefano, F.; Moiron, M.; Sánchez-Tójar, A.; Fisher, D.N. Indirect genetic effects increase the heritable variation available to selection and are largest for behaviors: A meta-analysis. Evol. Lett. 2024, 9, 89–104. [Google Scholar] [CrossRef]
- Brinker, T. Genetics and Genomics of Direct and Social Genetic Effects on Survival Time and Plumage Condition in Laying Hens. Ph.D. Thesis, Wageningen University and Research, Wageningen, The Netherlands, 2020. [Google Scholar]
- Kereh, V.G.; Untu, I.M.; Najoan, M.; Lumi, T. Extraction of Uronic Acid From Sargassum crassifolium and Its Feeding Effects On The Eggs Production and Quality of Lohmann Chicken Eggs. J. Ilmu Teknol. Peternak. Trop. 2018, 7, 264–270. [Google Scholar] [CrossRef]
- Zahid, G.; Iftikhar, S.; Farooq, M.U.; Soomro, S.A. Advances in DNA based Molecular Markers for the Improvement of Fruit Cultivars in Pakistan-A Review. Sarhad J. Agric. 2022, 38, 812–832. [Google Scholar] [CrossRef]
- Soller, M. Mapping Quantitative Trait Loci Affecting Traits of Economic Importance in Animal Populations Using Molecular Markers, in Gene-Mapping Techniques and Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 21–49. [Google Scholar]
- Parsanejad, R. Phosphoenolpyruvate Carboxykinase and Ornithine Decarboxylase Genes: Allelic Variations and Associations with Traits in Poultry; McGill University: Montreal, QC, Canada, 2003. [Google Scholar]
- Gheyas, A.A.; Burt, D.W. Microarray resources for genetic and genomic studies in chicken: A review. Genesis 2013, 51, 337–356. [Google Scholar] [CrossRef] [PubMed]
- Mota, L.F.; Santos, S.W.; Júnior, G.A.F.; Bresolin, T.; Mercadante, M.E.; Silva, J.A.; Cyrillo, J.N.; Monteiro, F.M.; Carvalheiro, R.; Albuquerque, L.G. Meta-analysis across Nellore cattle populations identifies common metabolic mechanisms that regulate feed efficiency-related traits. BMC Genom. 2022, 23, 424. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-López, O.A.; Montesinos-López, A.; Pérez-Rodríguez, P.; Barrón-López, J.A.; Martini, J.W.; Fajardo-Flores, S.B.; Gaytan-Lugo, L.S.; Santana-Mancilla, P.C.; Crossa, J. A review of deep learning applications for genomic selection. BMC Genom. 2021, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Wolc, A.; Zhao, H.H.; Arango, J.; Settar, P.; Fulton, J.E.; OSullivan, N.P.; Preisinger, R.; Stricker, C.; Habier, D.; Fernando, R.L. Response and inbreeding from a genomic selection experiment in layer chickens. Genet. Sel. Evol. 2015, 47, 59. [Google Scholar] [CrossRef] [PubMed]
- Underwood, G.; Andrews, D.; Phung, T. Advances in genetic selection and breeder practice improve commercial layer hen welfare. Anim. Prod. Sci. 2021, 61, 856–866. [Google Scholar] [CrossRef]
- Quelhas, J.; Pinto-Pinho, P.; Lopes, G.; Rocha, A.; Pinto-Leite, R.; Fardilha, M.; Colaço, B. Sustainable animal production: Exploring the benefits of sperm sexing technologies in addressing critical industry challenges. Front. Vet. Sci. 2023, 10, 1181659. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Q.; Wang, C.; Sun, C.; Yang, N.; Wen, C. Genetic improvement of duration of fertility in chickens and its commercial application for extending insemination intervals. Poult. Sci. 2024, 103, 103438. [Google Scholar] [CrossRef]
- Ibrahim, M.; Stadnicka, K. The science of genetically modified poultry. Phys. Sci. Rev. 2024, 9, 825–842. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Chen, S.; Yang, N.; Zheng, J. Overview of avian sex reversal. Int. J. Mol. Sci. 2023, 24, 8284. [Google Scholar] [CrossRef]
- Halgrain, M.; Bernardet, N.; Hennequet-Antier, C.; Réhault-Godbert, S. Sex-specific transcriptome of the chicken chorioallantoic membrane. Genomics 2024, 116, 110754. [Google Scholar] [CrossRef]
- Wen, C.; Yan, W.; Sun, C.; Ji, C.; Zhou, Q.; Zhang, D.; Zheng, J.; Yang, N. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME J. 2019, 13, 1422–1436. [Google Scholar] [CrossRef] [PubMed]
- Sinclair-Black, M.; Garcia, R.A.; Ellestad, L.E. Physiological regulation of calcium and phosphorus utilization in laying hens. Front. Physiol. 2023, 14, 1112499. [Google Scholar] [CrossRef] [PubMed]
- Winiarska-Mieczan, A.; Kwiecień, M.; Jachimowicz-Rogowska, K.; Muszyński, S.; Tomaszewska, E. Bioactive compounds, antibiotics and heavy metals: Effects on the intestinal structure and microbiome of monogastric animals–a non-systematic review. Ann. Anim. Sci. 2023, 23, 289–313. [Google Scholar] [CrossRef]
- Marmelstein, S.; Costa, I.P.D.A.; Terra, A.V.; Silva, R.F.D.; Capela, G.P.D.O.; Moreira, M.Â.L.; Junior, C.D.S.R.; Gomes, C.F.S.; Santos, M.D. Advancing Efficiency Sustainability in Poultry Farms through Data Envelopment Analysis in a Brazilian Production System. Animals 2024, 14, 726. [Google Scholar] [CrossRef]
- Melo Durán, D. Feed-Associated Factors to Xylanase Response in Corn-Based Poultry Diets. Ph.D. Thesis, Universitat Autònoma de Barcelona, Bellaterra, Spain, 2021. [Google Scholar]
- Tan, P.; Liu, H.; Zhao, J.; Gu, X.; Wei, X.; Zhang, X.; Ma, N.; Johnston, L.J.; Bai, Y.; Zhang, W. Amino acids metabolism by rumen microorganisms: Nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. Sci. Total Environ. 2021, 800, 149596. [Google Scholar] [CrossRef]
- Abd El Hack, M.E.; Salem, H.M.; Khafaga, A.F.; Soliman, S.M.; El Saadony, M.T. Impacts of polyphenols on laying hens’ productivity and egg quality: A review. J. Anim. Physiol. Anim. Nutr. 2023, 107, 928–947. [Google Scholar] [CrossRef] [PubMed]
- Ahiwe, E.U.; Omede, A.A.; Abdallh, M.B.; Iji, P.A. Managing dietary energy intake by broiler chickens to reduce production costs and improve product quality. Anim. Husb. Nutr. 2018, 115, 115–145. [Google Scholar]
- Rezaei, A.; Janmohammadi, H.; Olyayee, M.; Alijani, S. A New Precision–Fed Chick Assay for Determining True Metabolizable Energy Values of some Poultry Feed Ingredients for Broiler Chickens. Iran. J. Appl. Anim. Sci. 2020, 10, 103–111. [Google Scholar]
- Emmans, G.C.; Kyriazakis, I. Issues arising from genetic selection for growth and body composition characteristics in poultry and pigs. BSAP Occas. Publ. 2000, 27, 39–53. [Google Scholar] [CrossRef]
- Macelline, S.P.; Toghyani, M.; Chrystal, P.V.; Selle, P.H.; Liu, S.Y. Amino acid requirements for laying hens: A comprehensive review. Poult. Sci. 2021, 100, 101036. [Google Scholar] [CrossRef]
- Murugesan, G.R. Characterization of the Effects of Intestinal Physiology Modified by Exogenous Enzymes and Direct-Fed Microbial on Intestinal Integrity, Energy Metabolism, Body Composition and Performance of Laying Hens and Broiler Chickens. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2013. [Google Scholar]
- Phan, L.; Kals, J.; Masagounder, K.; Mas-Muñoz, J.; Schrama, J.W. Energy utilisation efficiencies of digestible protein, fat and carbohydrates for African catfish (Clarias gariepinus). Aquac. Rep. 2022, 23, 101051. [Google Scholar] [CrossRef]
- Kaur, M.; Sharma, H.K.; Kumar, N. Processing of Oilseeds. In Agro-Processing and Food Engineering: Operational and Application Aspects; Springer: Berlin/Heidelberg, Germany, 2022; pp. 483–533. [Google Scholar]
- Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals 2020, 10, 2119. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Tancharoenrat, P.; Zaefarian, F.; Ravindran, G. Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Anim. Feed Sci. Technol. 2016, 213, 1–21. [Google Scholar] [CrossRef]
- Orlich, M.; Drażbo, A.; Ognik, K.; Rogiewicz, A.; Juśkiewicz, J. The effect of raw, hydrobarothermally treated and fermented rapeseed cake on plasma biochemical parameters, total tract digestibility and gut function in laying hens. Ann. Anim. Sci. 2023, 23, 765–776. [Google Scholar] [CrossRef]
- Li, Y.; Mei, H.; Liu, Y.; Li, Z.; Qamar, H.; Yu, M.; Ma, X. Dietary supplementation with rutin alters meat quality, fatty acid profile, antioxidant capacity, and expression levels of genes associated with lipid metabolism in breast muscle of qingyuan partridge chickens. Foods 2023, 12, 2302. [Google Scholar] [CrossRef] [PubMed]
- Kishore, N.; Verma, R.; Shunthwal, J.; Sihag, S. Influence of linseed oil supplementation on egg cholesterol content, fatty acid profile, and shell quality. Pharma Innov. 2017, 6, 174. [Google Scholar]
- Rangel, P.L.; Gutierrez, C.G. Reproduction in hens: Is testosterone necessary for the ovulatory process? Gen. Comp. Endocrinol. 2014, 203, 250–261. [Google Scholar] [CrossRef]
- Long, L.; Wu, S.G.; Yuan, F.; Zhang, H.J.; Wang, J.; Qi, G.H. Effects of dietary octacosanol supplementation on laying performance, egg quality, serum hormone levels, and expression of genes related to the reproductive axis in laying hens. Poult. Sci. 2017, 96, 894–903. [Google Scholar] [CrossRef]
- Bhawa, S.; Morêki, J.C.; Machete, J.B. Poultry management strategies to alleviate heat stress in hot climates: A review. J. World’s Poult. Res. 2023, 13, 1–19. [Google Scholar] [CrossRef]
- Barzegar, S.; Wu, S.B.; Noblet, J.; Choct, M.; Swick, R.A. Energy efficiency and net energy prediction of feed in laying hens. Poult. Sci. 2019, 98, 5746–5758. [Google Scholar] [CrossRef]
- Yue, Q.; Chen, H.; Xu, Y.; Huang, C.; Xi, J.; Zhou, R.; Xu, L.; Wang, H.; Chen, Y. Effect of housing system and age on products and bone properties of Taihang chickens. Poult. Sci. 2020, 99, 1341–1348. [Google Scholar]
- Li, D.; Zhang, X.; Zhao, Z.; Wang, S.; Wang, J.; Wang, H. Integrated Assessment of Productive, Environmental, and Social Performances of Adopting Low-Protein Diets Technology for Laying Hens. Animals 2025, 15, 146. [Google Scholar] [CrossRef] [PubMed]
- Burley, R.W.; Sleigh, R.W.; Shenstone, F.S. Lipoproteins from the blood and egg yolk of the hen: The transfer of very-low-density lipoprotein to egg yolk and possible changes to apoprotein B. Eur. J. Biochem. 1984, 142, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, G.; Bryant, M.M.; Roland, D.A., Sr. Influence of added synthetic lysine in low-protein diets with the methionine plus cysteine to lysine ratio maintained at 0.75. J. Appl. Poult. Res. 2005, 14, 174–182. [Google Scholar] [CrossRef]
- Kidd, M.T.; Maynard, C.W.; Mullenix, G.J. Progress of amino acid nutrition for diet protein reduction in poultry. J. Anim. Sci. Biotechnol. 2021, 12, 45. [Google Scholar] [CrossRef]
- Applegate, T.J.; Fowler, J. Backyard Poultry Nutrition. In Backyard Poultry Medicine and Surgery: A Guide for Veterinary Practitioners; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 117–130. [Google Scholar]
- Elnesr, S.S.; Mahmoud, B.Y.; Da Silva Pires, P.G.; Moraes, P.; Elwan, H.A.; El-Shall, N.A.; El-Kholy, M.S.; Alagawany, M. Trace minerals in laying hen diets and their effects on egg quality. Biol. Trace Elem. Res. 2024, 202, 5664–5679. [Google Scholar] [CrossRef]
- Otieno, H.M.; Mageto, E.K. Use of poultry manure as an alternative to inorganic fertilizer: A review of potential human and environmental health risks. Fundam. Appl. Agric. 2023, 8, 567–579. [Google Scholar] [CrossRef]
- Zhang, K.K.; Han, M.M.; Dong, Y.Y.; Miao, Z.Q.; Zhang, J.Z.; Song, X.Y.; Feng, Y.; Li, H.F.; Zhang, L.H.; Wei, Q.Y. Low levels of organic compound trace elements improve the eggshell quality, antioxidant capacity, immune function, and mineral deposition of aged laying hens. Animal 2021, 15, 100401. [Google Scholar] [CrossRef]
- Yang, S.; Deng, H.; Zhu, J.; Shi, Y.; Luo, J.; Chen, T.; Sun, J.; Zhang, Y.; Xi, Q. Organic Trace Elements Improve the Eggshell Quality via Eggshell Formation Regulation during the Late Phase of the Laying Cycle. Animals 2024, 14, 1637. [Google Scholar] [CrossRef]
- Youssef, A.W.; Hassan, H.; Ali, H.M.; Mohamed, M.A. Effect of probiotics, prebiotics and organic acids on layer performance and egg quality. Asian J. Poult. Sci. 2013, 7, 65–74. [Google Scholar] [CrossRef]
- Wang, H.; Liang, S.; Li, X.; Yang, X.; Long, F.; Yang, X. Effects of encapsulated essential oils and organic acids on laying performance, egg quality, intestinal morphology, barrier function, and microflora count of hens during the early laying period. Poult. Sci. 2019, 98, 6751–6760. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.I.; Mohamed, D.A.; Chwen, L.T.; Akit, H.; Samsudin, A.A. Effect of selenium sources on laying performance, egg quality characteristics, intestinal morphology, microbial population and digesta volatile fatty acids in laying hens. Animals 2021, 11, 1681. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ryu, C.; Lee, S.; Cho, J.; Kang, H. Effects of Heat Stress on the Laying Performance, Egg Quality, and Physiological Response of Laying Hens. Animals 2024, 14, 1076. [Google Scholar] [CrossRef]
- Reddy, I.J.; Sukanto Mondal, S.M.; Ashish Mishra, A.M.; Gorti RaviKiran, G.R. Impact of lighting on poultry reproduction and recent advances. CABI Rev. 2014, 9, 1–9. [Google Scholar] [CrossRef]
- Ki-Youn, K.; Jung-Kon, K. Indoor Concentration Distributions of Ammonia and Sulfur-Based Odorous Substances According to Types of Laying Hen Houses in South Korea. Atmosphere 2024, 15, 980. [Google Scholar] [CrossRef]
- Cook, N.J.; Schaefer, A.L.; Korver, D.R.; Haley, D.B.; Feddes, J.; Church, J.S. Minimally-invasive assessments of the behavioural and physiological effects of enriched colony cages on laying hens. Open Agric. J. 2011, 5, 10. [Google Scholar] [CrossRef]
- Campbell, D.; De Haas, E.N.; Lee, C. A review of environmental enrichment for laying hens during rearing in relation to their behavioral and physiological development. Poult. Sci. 2019, 98, 9–28. [Google Scholar] [CrossRef]
- Sosnówka-Czajka, E.; Herbut, E.; Skomorucha, I. Effect of different housing systems on productivity and welfare of laying hens. Ann. Anim. Sci. 2010, 10, 349–360. [Google Scholar]
- Adegbeye, M.J.; Adetuyi, B.O.; Igirigi, A.I.; Adisa, A.; Palangi, V.; Aiyedun, S.; Alvarado-Ramírez, E.R.; Elghandour, M.M.; Molina, O.M.; Oladipo, A.A. Comprehensive insights into antibiotic residues in livestock products: Distribution, factors, challenges, opportunities, and implications for food safety and public health. Food Control 2024, 163, 110545. [Google Scholar] [CrossRef]
- Lee, L.; Samardzic, K.; Wallach, M.; Frumkin, L.R.; Mochly-Rosen, D. Immunoglobulin Y for potential diagnostic and therapeutic applications in infectious diseases. Front. Immunol. 2021, 12, 696003. [Google Scholar] [CrossRef]
- Waqas, M.; Nastoh, N.A.; Çinar, A.A.; Farooq, M.Z.; Salman, M. Advantages of the use of postbiotics in poultry production: A new concept. Braz. J. Poult. Sci. 2024, 26, eRBCA-2024. [Google Scholar] [CrossRef]
- Krysiak, K.; Konkol, D.; Korczyński, M. Overview of the use of probiotics in poultry production. Animals 2021, 11, 1620. [Google Scholar] [CrossRef]
- Nii, T. Relationship between mucosal barrier function of the oviduct and intestine in the productivity of laying hens. J. Poult. Sci. 2022, 59, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Appl. Environ. Microbiol. 2020, 86, e00600-20. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.A.; Kim, W.K. Overview of prebiotics and probiotics: Focus on performance, gut health and immunity–A review. Ann. Anim. Sci. 2017, 17, 949–966. [Google Scholar] [CrossRef]
- Carrero, P.I.B. The Effects of Tryptophan and Probiotic Treatment on Behavior and Production Parameters of Laying Hens. Master’s Thesis, University of Maryland, College Park, MD, USA, 2021. [Google Scholar]
- Zhu, F.; Zhang, B.; Li, J.; Zhu, L. Effects of fermented feed on growth performance, immune response, and antioxidant capacity in laying hen chicks and the underlying molecular mechanism involving nuclear factor-κB. Poult. Sci. 2020, 99, 2573–2580. [Google Scholar] [CrossRef]
- Deng, X.; Chen, K.; Jiang, D.; Lu, L. Advancements in synergistic fermentation of probiotics and enzymes for non-grain feed raw materials. Anim. Res. One Health 2024, 3, 31–42. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Abd El-Hack, M.E.; Dhama, K. The practical application of sunflower meal in poultry nutrition. Adv. Anim. Vet. Sci. 2015, 3, 634–648. [Google Scholar] [CrossRef]
- Liu, M.; Uyanga, V.A.; Cao, X.; Liu, X.; Lin, H. Regulatory effects of the probiotic Clostridium butyricum on gut microbes, intestinal health, and growth performance of chickens. J. Poult. Sci. 2023, 60, 2023011. [Google Scholar] [CrossRef]
- Yuan, Z.; Yan, W.; Wen, C.; Zheng, J.; Yang, N.; Sun, C. Enterotype identification and its influence on regulating the duodenum metabolism in chickens. Poult. Cience 2020, 99, 1515–1527. [Google Scholar] [CrossRef]
- Scholey, D.V.; Marshall, A.; Cowan, A.A. Evaluation of oats with varying hull inclusion in broiler diets up to 35 days. Poult. Sci. 2020, 99, 2566–2572. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Simon, O.; Jeroch, H. Effects of supplementation of xylanase or β-glucanase containing enzyme preparations to either rye-or barley-based broiler diets on performance and nutrient digestibility. Eur. Poult. Sci. 1999, 63, 252–259. [Google Scholar] [CrossRef]
- Mathlouthi, N.; Juin, H.; Larbier, M. Effect of xylanase and β-glucanase supplementation of wheat-or wheat-and barley-based diets on the performance of male turkeys. Br. Poult. Sci. 2003, 44, 291–298. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Z. Effect of supplementing barley diets with crude enzyme preparations on the metabolic hormone levels of the blood of chickens. Chin. J. Vet. Sci. 1998, 18, 577–580. [Google Scholar]
- Liu, B.; Ma, R.; Yang, Q.; Yang, Y.; Fang, Y.; Sun, Z.; Song, D. Effects of traditional chinese herbal feed additive on production performance, egg quality, antioxidant capacity, immunity and intestinal health of laying hens. Animals 2023, 13, 2510. [Google Scholar] [CrossRef]
- He, W.; Wang, H.; Tang, C.; Zhao, Q.; Zhang, J. Dietary supplementation with astaxanthin alleviates ovarian aging in aged laying hens by enhancing antioxidant capacity and increasing reproductive hormones. Poult. Sci. 2023, 102, 102258. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yang, H.; Wang, Z.; Dai, H.; Xu, L.; Ling, C. Effects of arginine on the growth performance, hormones, digestive organ development and intestinal morphology in the early growth stage of layer chickens. Ital. J. Anim. Sci. 2018, 17, 1077–1082. [Google Scholar] [CrossRef]
- Wang, G.; Kim, W.K.; Cline, M.A.; Gilbert, E.R. Factors affecting adipose tissue development in chickens: A review. Poult. Sci. 2017, 96, 3687–3699. [Google Scholar] [CrossRef]
- Du, Y.; Liu, L.; He, Y.; Dou, T.; Jia, J.; Ge, C. Endocrine and genetic factors affecting egg laying performance in chickens: A review. Br. Poult. Sci. 2020, 61, 538–549. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods. Mini Rev. Med. Chem. 2024, 24, 453–477. [Google Scholar] [CrossRef]
- Słupczyńska, M.; Jamroz, D.; Orda, J.; Wiliczkiewicz, A.; Kuropka, P.; Król, B. The Thyroid Hormone and Immunoglobulin Concentrations in Blood Serum and Thyroid Gland Morphology in Young Hens Fed with Different Diets, Sources, and Levels of Iodine Supply. Animals 2022, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Indyuhova, E.N.; Arisov, M.V.; Maximov, V.I.; Azarnova, T.O. Characteristics of metabolic disorders in laying hens with dermanyssosis. Vet. Arh. 2022, 92, 161–169. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, H.; Han, Y.; Yang, P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. Biology 2024, 13, 926. [Google Scholar] [CrossRef]
- Harlap, S.Y.; Derkho, M.A.; Fomina, N.A.; Shakirova, S.S.; Grigoryants, I.A. Dynamics of correlations between thyroid hormones and biochemical parameters of the laying hens blood in the age aspect. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 022106. [Google Scholar] [CrossRef]
- Kavtarashvili, A.S.; Stefanova, I.L.; Svitkin, V.S.; Novotorov, E.N. Functional Egg Production. II. The Roles of Selenium, Zinc, and Iodine. Biol. Agric. 2017, 52, 700–715. [Google Scholar]
- Moss, A.F.; Dao, T.H.; Crowley, T.M.; Wilkinson, S.J. Interactions of diet and circadian rhythm to achieve precision nutrition of poultry. Anim. Prod. Sci. 2023, 63, 1926–1932. [Google Scholar] [CrossRef]
- Geng, A.L.; Zhang, Y.; Zhang, J.; Wang, H.H.; Chu, Q.; Yan, Z.X.; Liu, H.G. Effects of light regime on circadian rhythmic behavior and reproductive parameters in native laying hens. Poult. Sci. 2022, 101, 101808. [Google Scholar] [CrossRef]
- Guo, L.; Lv, J.; Liu, Y.; Ma, H.; Chen, B.; Hao, K.; Feng, J.; Min, Y. Effects of different fermented feeds on production performance, cecal microorganisms, and intestinal immunity of laying hens. Animals 2021, 11, 2799. [Google Scholar] [CrossRef]
- Tilbrook, A.J.; Fisher, A.D. Stress, health and the welfare of laying hens. Anim. Prod. Sci. 2020, 61, 931–943. [Google Scholar] [CrossRef]
- Meseko, C.A.; Oluwayelu, D.O. Avian influenza. In Transboundary Animal Diseases in Sahelian Africa and Connected Regions; Springer: Cham, Switzerland, 2019; pp. 345–374. [Google Scholar]
- Kamal, M.A.M.; Atef, M.; Khalf, M.A.; Ahmed, Z.A. Newcastle viral disease causation web correlations with laying hen productivity. Sci. Rep. 2024, 14, 16021. [Google Scholar] [CrossRef]
- Najimudeen, S.M.; Hassan, S.M.H.; Cork, C.S.; Abdul-Careem, M.F. Infectious bronchitis coronavirus infection in chickens: Multiple system disease with immune suppression. Pathogens 2020, 9, 779. [Google Scholar] [CrossRef] [PubMed]
- Khamas, W.; Rutllant Labeaga, J.; Greenacre, C.B. Physical Examination, Anatomy, and Physiology. In Backyard Poultry Medicine and Surgery: A Guide for Veterinary Practitioners; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 93–116. [Google Scholar]
- Svihus, B. Function of the digestive system. J. Appl. Poult. Res. 2014, 23, 306–314. [Google Scholar] [CrossRef]
- Hristov, H. Avian stomach anatomy—A mini review. Bulg. J. Vet. Med. 2020, 24, 461–468. [Google Scholar] [CrossRef]
- Alsanosy, A.A.; Noreldin, A.E.; Elewa, Y.H.; Mahmoud, S.F.; Elnasharty, M.A.; Aboelnour, A. Comparative features of the upper alimentary tract in the domestic fowl (Gallus gallus domesticus) and kestrel (Falco tinnunculus): A morphological, histochemical, and scanning electron microscopic study. Microsc. Microanal. 2021, 27, 201–214. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, J.; Zhou, Z.; Yu, L.; Yu, L.; He, J.; Zhu, K.; Luo, Y.; Wang, H.; Du, X. Moringa oleifera leaf improves meat quality by modulating intestinal microbes in white feather broilers. Food Chem. X 2023, 20, 100938. [Google Scholar] [CrossRef]
- Röhe, I.; Ruhnke, I.; Knorr, F.; Mader, A.; Boroojeni, F.G.; Löwe, R.; Zentek, J. Effects of grinding method, particle size, and physical form of the diet on gastrointestinal morphology and jejunal glucose transport in laying hens. Poult. Sci. 2014, 93, 2060–2068. [Google Scholar] [CrossRef]
- Bindari, Y.R.; Gerber, P.F. Centennial Review: Factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult. Sci. 2022, 101, 101612. [Google Scholar] [CrossRef]
- Gu, Y.F.; Chen, Y.P.; Jin, R.; Wang, C.; Wen, C.; Zhou, Y.M. A comparison of intestinal integrity, digestive function, and egg quality in laying hens with different ages. Poult. Sci. 2021, 100, 100949. [Google Scholar] [CrossRef]
- Proszkowiec-Weglarz, M.; Schreier, L.L.; Kahl, S.; Miska, K.B.; Russell, B.; Elsasser, T.H. Effect of delayed feeding post-hatch on expression of tight junction–and gut barrier–related genes in the small intestine of broiler chickens during neonatal development. Poult. Sci. 2020, 99, 4714–4729. [Google Scholar] [CrossRef]
- Yasar, S.; Forbes, J.M. Enzyme supplementation of dry and wet wheat-based feeds for broiler chickens: Performance and gut responses. Br. J. Nutr. 2000, 84, 297–307. [Google Scholar] [CrossRef]
- Broom, L.J.; Kogut, M.H. The role of the gut microbiome in shaping the immune system of chickens. Vet. Immunol. Immunopathol. 2018, 204, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Kumar, S.; Oakley, B.; Kim, W.K. Chicken gut microbiota: Importance and detection technology. Front. Vet. Sci. 2018, 5, 254. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhan, Z.; Zhou, Y.; Zhang, W.; Gu, L.; Wang, Q.; He, J.; Liang, Y.; Zhou, W.; Li, Y. Effects of yeast culture on laying performance, antioxidant properties, intestinal morphology, and intestinal flora of laying hens. Antioxidants 2024, 13, 779. [Google Scholar] [CrossRef] [PubMed]
- Beldowska, A.; Barszcz, M.; Dunislawska, A. State of the art in research on the gut-liver and gut-brain axis in poultry. J. Anim. Sci. Biotechnol. 2023, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Torok, V.A.; Ophel-Keller, K.; Hughes, R.J. The Development of Molecular Tools for Monitoring Gut Microflora of Poultry; In Proceedings of the 17th Australian Poultry Science Symposium, Sydney, Australia, 7–9 February 2005.
- Wen, C.; Yan, W.; Mai, C.; Duan, Z.; Zheng, J.; Sun, C.; Yang, N. Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. Microbiome 2021, 9, 126. [Google Scholar] [CrossRef]
- Huang, Y.; Lv, H.; Song, Y.; Sun, C.; Zhang, Z.; Chen, S. Community composition of cecal microbiota in commercial yellow broilers with high and low feed efficiencies. Poult. Sci. 2021, 100, 100996. [Google Scholar] [CrossRef]
- Dai, D.; Qi, G.; Wang, J.; Zhang, H.; Qiu, K.; Wu, S. Intestinal microbiota of layer hens and its association with egg quality and safety. Poult. Sci. 2022, 101, 102008. [Google Scholar] [CrossRef]
- Xiao, S.; Mi, J.; Mei, L.; Liang, J.; Feng, K.; Wu, Y.; Liao, X.; Wang, Y. Microbial diversity and community variation in the intestines of layer chickens. Animals 2021, 11, 840. [Google Scholar] [CrossRef]
- Xu, H.; Lu, Y.; Li, D.; Yan, C.; Jiang, Y.; Hu, Z.; Zhang, Z.; Du, R.; Zhao, X.; Zhang, Y. Probiotic mediated intestinal microbiota and improved performance, egg quality and ovarian immune function of laying hens at different laying stage. Front. Microbiol. 2023, 14, 1041072. [Google Scholar] [CrossRef]
- Shi, K.; Liu, X.; Duan, Y.; Jiang, X.; Li, N.; Du, Y.; Li, D.; Feng, C. Dynamic Changes in Intestinal Gene Expression and Microbiota across Chicken Egg-Laying Stages. Animals 2024, 14, 1529. [Google Scholar] [CrossRef]
- Cheng, M.; Jia, X.; Ren, L.; Chen, S.; Wang, W.; Wang, J.; Cong, B. Region-Specific Effects of Metformin on Gut Microbiome and Metabolome in High-Fat Diet-Induced Type 2 Diabetes Mouse Model. Int. J. Mol. Sci. 2024, 25, 7250. [Google Scholar] [CrossRef] [PubMed]
- Ballou, A.L. Probiotic Modulation of the Avian Microbiome Releases Systemic Signals that Alter the Lymphocyte Transcriptome. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2017. [Google Scholar]
- Ngunjiri, J.M.; Taylor, K.J.; Abundo, M.C.; Jang, H.; Elaish, M.; Kc, M.; Ghorbani, A.; Wijeratne, S.; Weber, B.P.; Johnson, T.J. Farm stage, bird age, and body site dominantly affect the quantity, taxonomic composition, and dynamics of respiratory and gut microbiota of commercial layer chickens. Appl. Environ. Microbiol. 2019, 85, e03137-18. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, M.; Han, J.; Liu, C.; Han, X.; Wang, K.; Qiao, R.; Li, X.; Li, X. Correlation between fat accumulation and fecal microbiota in crossbred pigs. J. Microbiol. 2022, 60, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, I. Composition and function of chicken gut microbiota. Animals 2020, 10, 103. [Google Scholar] [CrossRef]
- Patra, A.K.; Kar, I. Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. J. Anim. Sci. Technol. 2021, 63, 211. [Google Scholar] [CrossRef]
- Li, W.; Ma, X.; Li, X.; Zhang, X.; Sun, Y.; Ning, C.; Zhang, Q.; Wang, D.; Tang, H. Integrating proteomics and metabolomics to elucidate the regulatory mechanisms of pimpled egg production in chickens. Poult. Sci. 2025, 104, 104818. [Google Scholar] [CrossRef]
- Lv, Z.; Fan, H.; Zhang, B.; Ning, C.; Xing, K.; Guo, Y. Dietary genistein supplementation in laying broiler breeder hens alters the development and metabolism of offspring embryos as revealed by hepatic transcriptome analysis. FASEB J. 2018, 32, 4214–4228. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, K.; Yi, G.; Ma, M.; Dou, T.; Sun, C.; Qu, L.; Shen, M.; Qu, L.; Yang, N. Genome-wide association studies for feed intake and efficiency in two laying periods of chickens. Genet. Sel. Evol. 2015, 47, 82. [Google Scholar] [CrossRef]
- Li, H.; Wang, T.; Xu, C.; Wang, D.; Ren, J.; Li, Y.; Tian, Y.; Wang, Y.; Jiao, Y.; Kang, X. Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying hens. BMC Genom. 2015, 16, 763. [Google Scholar] [CrossRef]
- La, Y.; Liu, Q.; Zhang, L.; Chu, M. Single nucleotide polymorphisms in SLC5A1, CCNA1, and ABCC1 and the association with litter size in small-tail Han sheep. Animals 2019, 9, 432. [Google Scholar] [CrossRef]
- Zhao, D.; Gao, L.; Gong, F.; Feng, J.; Zhang, H.; Wu, S.; Wang, J.; Min, Y. TMT-based quantitative proteomic analysis reveals eggshell matrix protein changes correlated with eggshell quality in Jing Tint 6 laying hens of different ages. Poult. Sci. 2024, 103, 103463. [Google Scholar] [CrossRef] [PubMed]
- Vlaicu, P.A.; Untea, A.E.; Oancea, A.G. Sustainable poultry feeding strategies for achieving zero hunger and enhancing food quality. Agriculture 2024, 14, 1811. [Google Scholar] [CrossRef]
- Zaytsoff, S.J.; Brown, C.L.; Montina, T.; Metz, G.A.; Abbott, D.W.; Uwiera, R.R.; Inglis, G.D. Corticosterone-mediated physiological stress modulates hepatic lipid metabolism, metabolite profiles, and systemic responses in chickens. Sci. Rep. 2019, 9, 19225. [Google Scholar] [CrossRef] [PubMed]
- Yogeswari, M.S.; Selamat, J.; Jambari, N.N.; Khatib, A.; Mohd Amin, M.H.; Murugesu, S. Metabolomics for quality assessment of poultry meat and eggs. Food Qual. Saf. 2024, 8, fyae004. [Google Scholar] [CrossRef]
Influencing Factors | Major Impacts | Author/s |
---|---|---|
Feeding Behavior | Feeding behavior impacts laying hens’ feed efficiency via feed intake, influenced by genetics/nutrition, with both low/high intake harming efficiency. Regulated by hypothalamic neural networks via orexigenic/anorexigenic factors, studying mechanisms enhances feed efficiency. | [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] |
Host Genetics | Genetic factors significantly influence laying hens’ feed efficiency via selective breeding and advanced technologies (molecular markers, genomic selection, and gene editing), enhancing feed conversion and breeding efficiency. | [39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58] |
Nutritional Levels | In modern farming, inconsistent feed quality and aging hens’ reduced nutrient absorption—caused by inadequate nutrition—and impaired feed efficiency via disrupted enzyme activity and metabolism. Optimizing dietary energy, protein, and trace elements (e.g., organic forms over inorganic) enhances digestion, egg-laying performance, and feed conversion, while wheat-based feeds reduce efficiency due to indigestible polysaccharides. | [59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94] |
Environmental Factors | Environmental factors (temperature, humidity, lighting, air quality, and stocking density) directly impact laying hens’ feed efficiency. Suboptimal conditions disrupt metabolism, impair digestion, and reduce nutrient absorption, while suitable environments enhance feed conversion and economic viability. | [95,96,97,98,99,100] |
Exogenous Additives | Exogenous additives (probiotics and enzymes) enhance laying hens’ feed efficiency by regulating gut flora and improving nutrient digestion. Probiotics replace antibiotics post 2020 restrictions, while enzymes counter anti-nutritional factors, though enzyme application needs more research. | [101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119] |
Hormonal Regulation | Hormones like growth hormone, thyroid hormones, and insulin regulate feed efficiency in laying hens by modulating gene expression, digestion, nutrient absorption, and energy metabolism. Growth hormone enhances digestive enzyme secretion and intestinal absorption, while IGFs promote protein synthesis via mTORC1. Thyroid hormones (T3/T4) boost oxidative metabolism and energy utilization. Dietary composition (protein and amino acids) and feeding management (frequency and timing) influence hormone secretion, optimizing feed efficiency and productivity. | [31,120,121,122,123,124,125,126,127,128,129,130] |
Microbial Community | The gut microbiota of laying hens influences feed efficiency via nutrient digestion, metabolism, and gut immunity, with high-efficiency groups having more beneficial bacteria like Lactobacillus, affected by genetics, feed, and environment. | [136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162] |
Modern Molecular Biology Techniques | Multi-omics technologies (genomics, transcriptomics, proteomics, and metabolomics) aid in elucidating molecular mechanisms of feed conversion efficiency in laying hens, identifying key genes/proteins/metabolites to optimize feed utilization and promote sustainable poultry production. | [163,164,165,166,167,168,169,170,171] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Zheng, J.; Xu, G. Molecular Mechanisms and Regulatory Factors Governing Feed Utilization Efficiency in Laying Hens: Insights for Sustainable Poultry Production and Breeding Optimization. Int. J. Mol. Sci. 2025, 26, 6389. https://doi.org/10.3390/ijms26136389
Gao Z, Zheng J, Xu G. Molecular Mechanisms and Regulatory Factors Governing Feed Utilization Efficiency in Laying Hens: Insights for Sustainable Poultry Production and Breeding Optimization. International Journal of Molecular Sciences. 2025; 26(13):6389. https://doi.org/10.3390/ijms26136389
Chicago/Turabian StyleGao, Zhouyang, Jiangxia Zheng, and Guiyun Xu. 2025. "Molecular Mechanisms and Regulatory Factors Governing Feed Utilization Efficiency in Laying Hens: Insights for Sustainable Poultry Production and Breeding Optimization" International Journal of Molecular Sciences 26, no. 13: 6389. https://doi.org/10.3390/ijms26136389
APA StyleGao, Z., Zheng, J., & Xu, G. (2025). Molecular Mechanisms and Regulatory Factors Governing Feed Utilization Efficiency in Laying Hens: Insights for Sustainable Poultry Production and Breeding Optimization. International Journal of Molecular Sciences, 26(13), 6389. https://doi.org/10.3390/ijms26136389