Cracking the Code of Oocyte Quality: The Oxidative Stress Link to IVF Success
Abstract
1. Introduction
2. Physiological Role of ROS in Ovarian Folliculogenesis
Mechanism | Molecular Players/Pathways | Target Cell Type | Oocyte-Specific Effect | Physiological Outcome | References |
---|---|---|---|---|---|
Controlled basal ROS signaling | Mitochondrial OXPHOS, NOX1-4, xanthine oxidase → PI3K/AKT, ERK1/2 | Granulosa cells (GCs) | Indirect: supports GC proliferation → oocyte nourishment | Follicle growth, GC survival, early angiogenesis (via HIF-1α/VEGF) | Agarwal et al., 2005; Artini et al., 2022 [8,24] |
LH-triggered ROS peak | NOX2, DUOX, mitochondrial burst → EGFR–ERK1/2–p38 MAPK | GCs, Cumulus cells (CCs) | Indirect: enhances cumulus expansion → meiotic resumption | Prepares cumulus–oocyte complex for ovulation | Wang et al., 2021 [9] |
Mitochondrial remodeling | OPA1, MFN1/2, DRP1, ROS → actin cytoskeleton modulation | Oocyte | Ensures spindle asymmetry, correct chromosome alignment | Cytoplasmic maturation, prevention of aneuploidy | Sasaki et al., 2020 [12] |
Redox-sensitive cAMP signaling | ROS → PDE3A activation → ↓ cAMP → ↑ MPF | Oocyte | Triggers meiosis I resumption, germinal vesicle breakdown | Nuclear maturation (MII stage entry) | Rodríguez-Varela & Labarta, 2020 [11] |
Autophagy regulation | AMPK ↑ → mTORC1 ↓ → ULK1 ↑ | GCs | Indirect: supports GC stress tolerance and steroidogenesis | Maintains GC viability under oxidative load | Wang et al., 2021; Moustakli et al., 2024 [9,19] |
EV biogenesis under ROS control | CD63, CD9, CD81, ESCRT → exosome release | CCs, GCs | miRNA and protein delivery to oocyte via exosomes | Epigenetic modulation, chromatin remodeling | Lee et al., 2024 [53] |
Thiol–redox protein remodeling | Thioredoxin, PDIs, ROS-sensitive cysteines | Oocyte and CCs | Protein folding, cortical granule formation, zona pellucida hardening | Fertilization competence, block to polyspermy | Vogelsang et al., 2024 [54] |
Redox modulation of GJIC | Cx43 phosphorylation (Ser368) | CCs–Oocyte | Temporary closure → resumption of meiosis | Sync of cytoplasmic and nuclear maturation | Vitale et al., 2022 [55] |
ROS–miRNA interaction | miR-21, miR-155 ↑ via NF-κB | GCs | Indirect: anti-apoptotic GC signaling → oocyte survival | Follicular integrity, luteinization | Andronico et al., 2023 [56] |
Metabolic synchronization | ROS → xCT (SLC7A11), MCTs, glycolytic enzymes | CCs–Oocyte | Lactate & pyruvate transport, GSH synthesis precursors | Redox buffering, energy supply | Artini et al., 2022 [24] |
Circadian redox integration | BMAL1–CLOCK, redox loops, NAD+/ROS feedback | GCs, Oocyte | Temporal alignment of redox & meiotic competence | Fertilization timing, ovarian aging prevention | Sato and Greco 2021 [57] |
3. Oocyte Maturation and OS: When Redox Balance Fails
3.1. OS and Its Cellular Triggers in the Ovarian Follicle
3.2. Mitochondrial Dysfunction and Bioenergetic Collapse During Oocyte Maturation
3.3. Genomic Instability and Epigenetic Vulnerability Induced by ROS
3.4. Redox Regulation by Non-Coding RNAs: microRNAs and lncRNAs
3.5. Antioxidant Systems and Clinical Relevance in Assisted Reproduction
Marker | Role in Follicular Environment | Effect of OS | Clinical Correlation in IVF | Key References |
---|---|---|---|---|
GSH | Major intracellular antioxidant; detoxifies H2O2 and lipid peroxides | Depleted under stress; reduced GSH/GSSG ratio | Low levels linked to lower MII yield and fertilization rates | Neyroud et al., 2022 [91] |
SOD | Converts superoxide radicals into H2O2 | Inactivated by ROS; impaired superoxide clearance | Low activity correlates with embryo fragmentation | Muraoka et al., 2020 [92] |
CAT | Breaks down H2O2 into water and oxygen | Reduced activity; diminished H2O2 detoxification | Decreased levels found in poor responders | Neyroud et al., 2022 [91] |
GPX | Reduces H2O2 using GSH as substrate | Downregulated expression; decreased peroxide reduction | Correlated with embryo quality and pregnancy rates | Andronico et al., 2021; Meseguer et al., 2006 [56,93] |
MDA | End-product of lipid peroxidation; indicates OS | Increased levels; associated with poor oocyte and embryo quality | High levels associated with failed IVF and poor implantation | Muraoka et al., 2020; Yalcinkaya et al., 2023 [92,94] |
8-oxo-dG | Marker of oxidative DNA damage | Elevated in FF; linked to DNA fragmentation | Associated with advanced age and poor IVF outcomes | Nori and Helmi 2023 [95] |
CoQ10 | Supports mitochondrial function and ATP production | Restores mitochondrial redox balance; reduces oxidative damage | Improves oocyte morphology and pregnancy outcomes | Neyroud et al., 2022 [91] |
NAC | Precursor for GSH synthesis; scavenges free radicals | Enhances GSH levels; reduces lipid peroxidation | Beneficial in women with DOR and OS | Tenorio et al., 2021 [96] |
Melatonin | Mitochondrial-targeted antioxidant; improves oocyte competence | Increases MII oocyte yield and embryo quality | Improves fertilization and clinical pregnancy rates | Song et al., 2016 [97] |
GPX4, SOD1/2, CAT, MDA | Antioxidant enzymes and lipid peroxidation regulators | Enhanced with glycine supplementation; reduced lipid peroxidation | Improved cleavage and blastocyst rate in porcine oocytes (model) | Gao et al., 2023 [98] |
Nrf2, Sirt, MAPK, AKT, FoxO | Molecular pathways involved in OS response and ovarian aging | Pathway dysregulation promotes mitochondrial damage, apoptosis, aging | Potential for antioxidant therapies to delay ovarian aging | Yan et al., 2022 [99] |
General ROS, light-induced OS | Endogenous and exogenous ROS generation during ART | Photooxidation exacerbates ROS levels during ART handling | Recommendations for antioxidant strategies in ART | Mauchart et al., 2023 [100] |
SOD, GPX, 8-oxo-dG, MDA, p16, p21 | Antioxidant and senescence-related markers in FF of endometriosis patients | Rapamycin reduced OS markers, senescence, improved FF profile | Improved fertilization, implantation, and live birth rates with rapamycin | Fan et al., 2023 [101] |
Aldose reductase, ROS | Polyol pathway regulation and OS in ovarian cells | Hyperandrogenism induces polyol pathway → ROS ↑ → follicular dysfunction | Explains oxidative mechanism in PCOS; potential therapeutic target | Wang et al., 2022 [102] |
4. OS and Embryonic Development
5. Antioxidant Approaches to Alleviate OS in In Vitro Fertilization
Intervention | Primary Molecular Targets | Mechanism of Action | Clinical Impact | Key References |
---|---|---|---|---|
Melatonin | ΔΨm, SOD, GPX, NRF2, APAF1–caspase-9 axis | Mitochondrial antioxidant; enhances enzyme expression and prevents apoptosis | ↑ MII oocytes, embryo quality, pregnancy rates | Muraoka et al. 2024, Andronico et al. 2019 [56,92] |
NAC | GSH synthesis, NRF2–ARE, GPX4, GSH/GSSG ratio | Boosts thiol levels and GSH-mediated redox buffering; enhances meiosis | ↑ Oocyte maturation, ↓ embryo fragmentation (especially in DOR) | Gu et al. 2024, Andronico et al. 2019 [56,120] |
CoQ10 | ETC Complexes I & III, ΔΨm, PGC-1α, BCL2, ROS detox | Supports ETC efficiency, ATP production, and mitochondrial integrity | ↑ Oocyte competence, pregnancy rates (especially in aging) | Neyroud et al. 2022 [91] |
Glycine | GPX4, SOD1/2, CAT, PGC-1α, PPARγ, ferroptosis pathways | Enhances antioxidant gene expression, lipid metabolism, and membrane stability | ↑ Cleavage & blastocyst rates in vitro | Gao et al. 2023 [98] |
Rapamycin | mTORC1, p16/p21, 8-OHdG, autophagy, mitochondrial clearance | Reduces senescence markers, ROS damage, and enhances mitophagy | ↑ Fertilization, implantation, live birth rates (in endometriosis) | Fan et al. 2024 [101] |
Light Protection | ROS from photo-oxidation, culture media protection | Reduces iatrogenic ROS through light shielding and media supplementation | ↑ Embryo viability, ↓ ROS-induced developmental arrest | Mauchart et al. 2023 [100] |
6. Clinical Implications
7. Limitations and Future Directions
8. Conclusions
Funding
Conflicts of Interest
References
- Keefe, D.; Kumar, M.; Kalmbach, K. Oocyte competency is the key to embryo potential. Fertil. Steril. 2015, 103, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Fluks, M.; Collier, R.; Walewska, A.; Bruce, A.W.; Ajduk, A. How great thou ART: Biomechanical properties of oocytes and embryos as indicators of quality in assisted reproductive technologies. Front. Cell Dev. Biol. 2024, 12, 1342905. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Xiang, W.; Li, Q.; Zhang, H.; Li, Y.; Zhu, G.; Xiong, C.; Jin, L. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front. Med. 2018, 12, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Chattopadhyay, R.; Chakravarty, B.; Chaudhury, K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod. Toxicol. 2013, 42, 116–124. [Google Scholar] [CrossRef]
- Homer, H.A. The Role of Oocyte Quality in Explaining “Unexplained” Infertility. Semin. Reprod. Med. 2020, 38, 021–028. [Google Scholar] [CrossRef]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Guseva, O.; Kan, N.; Chekmareva, V.; Kokorev, D.; Ilyasov, P. The impact of antioxidant supplements on oocytes and preimplantation embryos of humans and mammals, and their potential application for mitigating the consequences of oxidative stress in vitro: A review. Reprod. Dev. Med. 2024, 8, 252–263. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005, 3, 28. [Google Scholar] [CrossRef]
- Wang, H.Q.; Zhang, W.D.; Yuan, B.; Zhang, J.B. Advances in the Regulation of Mammalian Follicle-Stimulating Hormone Secretion. Animals 2021, 11, 1134. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–62. [Google Scholar] [CrossRef]
- Rodríguez-Varela, C.; Labarta, E. Clinical Application of Antioxidants to Improve Human Oocyte Mitochondrial Function: A Review. Antioxidants 2020, 9, 1197. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Hamatani, T.; Kamijo, S.; Iwai, M.; Kobanawa, M.; Ogawa, S.; Miyado, K.; Tanaka, M. Impact of Oxidative Stress on Age-Associated Decline in Oocyte Developmental Competence. Front. Endocrinol. 2019, 10, 811. [Google Scholar] [CrossRef] [PubMed]
- Shadfar, S.; Parakh, S.; Jamali, M.S.; Atkin, J.D. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl. Neurodegener. 2023, 12, 18. [Google Scholar] [CrossRef]
- Lord, T.; Aitken, R.J. Oxidative stress and ageing of the post-ovulatory oocyte. Reproduction 2013, 146, R217–R227. [Google Scholar] [CrossRef] [PubMed]
- Tebay, L.E.; Robertson, H.; Durant, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayes, J.D. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic. Biol. Med. 2015, 88, 108–146. [Google Scholar] [CrossRef]
- Yan, H.; Wang, L.; Zhang, G.; Li, N.; Zhao, Y.; Liu, J.; Jiang, M.; Du, X.; Zeng, Q.; Xiong, D.; et al. Oxidative stress and energy metabolism abnormalities in polycystic ovary syndrome: From mechanisms to therapeutic strategies. Reprod. Biol. Endocrinol. 2024, 22, 159. [Google Scholar] [CrossRef]
- Corachán, A.; Pellicer, N.; Pellicer, A.; Ferrero, H. Novel therapeutic targets to improve IVF outcomes in endometriosis patients: A review and future prospects. Hum. Reprod. Update 2021, 27, 923–972. [Google Scholar] [CrossRef]
- Zhou, F.; Li, C.; Zhang, S.Y. NLRP3 inflammasome: A new therapeutic target for high-risk reproductive disorders? Chin. Med. J. 2021, 134, 20–27. [Google Scholar] [CrossRef]
- Moustakli, E.; Zikopoulos, A.; Skentou, C.; Bouba, I.; Dafopoulos, K.; Georgiou, I. Evolution of Minimally Invasive and Non-Invasive Preimplantation Genetic Testing: An Overview. J. Clin. Med. 2024, 13, 2160. [Google Scholar] [CrossRef]
- Kobayashi, H.; Imanaka, S. Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. Int. J. Mol. Sci. 2024, 25, 13144. [Google Scholar] [CrossRef]
- Nishihara, T.; Matsumoto, K.; Hosoi, Y.; Morimoto, Y. Evaluation of antioxidant status and oxidative stress markers in follicular fluid for human in vitro fertilization outcome. Reprod. Med. Biol. 2018, 17, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Meng, C.; Cai, L.B.; Cui, Y.G.; Liu, J.Y.; Meng, Y. Peroxiredoxin 4, a new oxidative stress marker in follicular fluid, may predict in vitro fertilization and embryo transfer outcomes. Ann. Transl. Med. 2020, 8, 1049. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, Z.; Zhao, S.; Cheng, L.; Man, Y.; Gao, X.; Zhao, H. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J. Assist. Reprod. Genet. 2021, 38, 471–477. [Google Scholar] [CrossRef]
- Artini, P.G.; Scarfò, G.; Marzi, I.; Fusi, J.; Obino, M.E.; Franzoni, F.; Zappelli, E.; Chelucci, E.; Martini, C.; Cela, V.; et al. Oxidative Stress-Related Signaling Pathways Predict Oocytes’ Fertilization In Vitro and Embryo Quality. Int. J. Mol. Sci. 2022, 23, 13442. [Google Scholar] [CrossRef]
- Meshkovska, Y.; Abramov, A.; Mahira, S.; Thatikonda, S. Understanding the Impact of Oxidative Stress on Ovarian Cancer: Advances in Diagnosis and Treatment. Future Pharmacol. 2024, 4, 651–675. [Google Scholar] [CrossRef]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Zhang, L. The Impact of Follicular Fluid Oxidative Stress Levels on the Outcomes of Assisted Reproductive Therapy. Antioxidants 2023, 12, 2117. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Averill-Bates, D. Reactive oxygen species and cell signaling. Rev. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2024, 1871, 119573. [Google Scholar] [CrossRef]
- White, P.C.; Shore, A.M.; Clement, M.; McLaren, J.; Soeiro, I.; Lam, E.W.; Brennan, P. Regulation of cyclin D2 and the cyclin D2 promoter by protein kinase A and CREB in lymphocytes. Oncogene 2006, 25, 2170–2180. [Google Scholar] [CrossRef]
- Shoorei, H.; Seify, M.; Talebi, S.F.; Majidpoor, J.; Koohestanidehaghi, Y.; Shokoohi, M. Different types of bisphenols alter ovarian steroidogenesis: Special attention to BPA. Heliyon 2023, 9, e16848. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.; Jabłońska, E.; Ratajczak-Wrona, W. NF-κB—An Important Player in Xenoestrogen Signaling in Immune Cells. Cells 2021, 10, 1799. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Ushio-Fukai, M. Cross-Talk between NADPH Oxidase and Mitochondria: Role in ROS Signaling and Angiogenesis. Cells 2020, 9, 1849. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Li, J. The art of oocyte meiotic arrest regulation. Reprod. Biol. Endocrinol. 2019, 17, 8. [Google Scholar] [CrossRef]
- Sasseville, M.; Côté, N.; Guillemette, C.; Richard, F.J. New insight into the role of phosphodiesterase 3A in porcine oocyte maturation. BMC Dev. Biol. 2006, 6, 47. [Google Scholar] [CrossRef]
- Picard, M.; Shirihai, O.S. Mitochondrial signal transduction. Cell Metab. 2022, 34, 1620–1653. [Google Scholar] [CrossRef]
- Prashad, S.; Gopal, P.P. RNA-binding proteins in neurological development and disease. RNA Biol. 2021, 18, 972–987. [Google Scholar] [CrossRef]
- Hinchy, E.C.; Gruszczyk, A.V.; Willows, R.; Navaratnam, N.; Hall, A.R.; Bates, G.; Bright, T.P.; Krieg, T.; Carling, D.; Murphy, M.P. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J. Biol. Chem. 2018, 293, 17208–17217. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Feng, B.; Bi, Z.; Zhu, G.; Zhang, Y.; Li, X. Activation of AMPK-PGC-1α pathway ameliorates peritoneal dialysis related peritoneal fibrosis in mice by enhancing mitochondrial biogenesis. Ren. Fail. 2022, 44, 1546–1558. [Google Scholar] [CrossRef]
- Upham, B.L.; Trosko, J.E. Oxidative-Dependent Integration of Signal Transduction with Intercellular Gap Junctional Communication in the Control of Gene Expression. Antioxid. Redox Signal. 2009, 11, 297–307. [Google Scholar] [CrossRef]
- Lin, D.; Takemoto, D.J. Oxidative Activation of Protein Kinase Cγ through the C1 Domain. J. Biol. Chem. 2005, 280, 13682–13693. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, T.; Gomes, A.V. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol. 2020, 36, 101607. [Google Scholar] [CrossRef] [PubMed]
- Nail, H.M.; Chiu, C.C.; Leung, C.H.; Ahmed, M.M.M.; Wang, H.M.D. Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J. Biomed. Sci. 2023, 30, 69. [Google Scholar] [CrossRef] [PubMed]
- Olayioye, M.A.; Barisic, S.; Hausser, A. Multi-level control of actin dynamics by protein kinase D. Cell. Signal. 2013, 25, 1739–1747. [Google Scholar] [CrossRef]
- Hu, Y.P.; Peng, Y.B.; Zhang, Y.F.; Wang, Y.; Yu, W.R.; Yao, M.; Fu, X.J. Reactive Oxygen Species Mediated Prostaglandin E2 Contributes to Acute Response of Epithelial Injury. Oxidative Med. Cell. Longev. 2017, 2017, 4123854. [Google Scholar] [CrossRef]
- Chen, Q.M.; Maltagliati, A.J. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol. Genom. 2018, 50, 77–97. [Google Scholar] [CrossRef]
- Bhardwaj, J.K.; Paliwal, A.; Saraf, P.; Sachdeva, S.N. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary. J. Cell. Physiol. 2022, 237, 1157–1170. [Google Scholar] [CrossRef]
- Guo, H.; Ouyang, Y.; Yin, H.; Cui, H.; Deng, H.; Liu, H.; Jian, Z.; Fang, J.; Zuo, Z.; Wang, X.; et al. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder. Redox Biol. 2022, 49, 102227. [Google Scholar] [CrossRef]
- Tesfaye, D.; Hailay, T.; Salilew-Wondim, D.; Hoelker, M.; Bitseha, S.; Gebremedhn, S. Extracellular vesicle mediated molecular signaling in ovarian follicle: Implication for oocyte developmental competence. Theriogenology 2020, 150, 70–74. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, R.; Chen, Y.; Wang, M.; Du, J. Crosstalk between Oxidative Stress and Exosomes. Oxidative Med. Cell. Longev. 2022, 2022, 3553617. [Google Scholar] [CrossRef]
- Yoshida, K.; Hara, S.; Hisabori, T. Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts. J. Biol. Chem. 2015, 290, 14278–14288. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, K.; Nakaki, T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules 2015, 20, 8742–8758. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Shin, K.J.; Chae, Y.C. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp. Mol. Med. 2024, 56, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Vogelsang, L.; Eirich, J.; Finkemeier, I.; Dietz, K.J. Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress. In Plant Stress Tolerance; Sunkar, R., Ed.; Springer: New York, NY, USA, 2024; Volume 2832. [Google Scholar] [CrossRef]
- Vitale, S.G.; Fulghesu, A.M.; Mikuš, M.; Watrowski, R.; D’Alterio, M.N.; Lin, L.T.; Shah, M.; Reyes-Muñoz, E.; Sathyapalan, T.; Angioni, S. The Translational Role of miRNA in Polycystic Ovary Syndrome: From Bench to Bedside—A Systematic Literature Review. Biomedicines 2022, 10, 1816. [Google Scholar] [CrossRef]
- Andronico, F.; Battaglia, R.; Ragusa, M.; Barbagallo, D.; Purrello, M.; Di Pietro, C. Extracellular Vesicles in Human Oogenesis and Implantation. Int. J. Mol. Sci. 2019, 20, 2162. [Google Scholar] [CrossRef]
- Sato, T.; Greco, C.M. Expanding the link between circadian rhythms and redox metabolism of epigenetic control. Free Radic. Biol. Med. 2021, 170, 50–58. [Google Scholar] [CrossRef]
- Karabulut, S.; Korkmaz, O.; Kutlu, P.; Gozel, H.E.; Keskin, I. Effects of follicular fluid oxidative status on human mural granulosa cells, oocyte competency and ICSI parameters. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 252, 127–136. [Google Scholar] [CrossRef]
- Afzal, S.; Abdul Manap, A.S.; Attiq, A.; Albokhadaim, I.; Kandeel, M.; Alhojaily, S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023, 14, 1269581. [Google Scholar] [CrossRef]
- Adhikari, D.; Lee Iwon Yuen, W.S.; Carroll, J. Oocyte mitochondria—Key regulators of oocyte function and potential therapeutic targets for improving fertility. Biol. Reprod. 2022, 106, 366–377. [Google Scholar] [CrossRef]
- Bernardi, P.; Gerle, C.; Halestrap, A.P.; Jonas, E.A.; Karch, J.; Mnatsakanyan, N.; Pavlov, E.; Sheu, S.S.; Soukas, A.A. Identity, structure, and function of the mitochondrial permeability transition pore: Controversies, consensus, recent advances, and future directions. Cell Death Differ. 2023, 30, 1869–1885. [Google Scholar] [CrossRef]
- Gorbacheva EYu Sventitskaya, M.A.; Biryukov, N.S.; Ogneva, I.V. The Oxidative Phosphorylation and Cytoskeleton Proteins of Mouse Ovaries after 96 Hours of Hindlimb Suspension. Life 2023, 13, 2332. [Google Scholar] [CrossRef] [PubMed]
- Nissanka, N.; Moraes, C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018, 592, 728–742. [Google Scholar] [CrossRef] [PubMed]
- Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]
- Mustafa, M.; Ahmad, R.; Tantry, I.Q.; Ahmad, W.; Siddiqui, S.; Alam, M.; Abbas, K.; Hassan, M.I.; Habib, S.; Islam, S. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024, 13, 1838. [Google Scholar] [CrossRef] [PubMed]
- Kirova, D.G.; Judasova, K.; Vorhauser, J.; Zerjatke, T.; Leung, J.K.; Glauche, I.; Mansfeld, J. A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Dev. Cell 2022, 57, 1712–1727.e9. [Google Scholar] [CrossRef]
- Sanchez, V.; McElroy, A.K.; Spector, D.H. Mechanisms Governing Maintenance of Cdk1/Cyclin B1Kinase Activity in Cells Infected with HumanCytomegalovirus. J. Virol. 2003, 77, 13214–13224. [Google Scholar] [CrossRef]
- Sha, Q.Q.; Dai, X.X.; Dang, Y.; Tang, F.; Liu, J.; Zhang, Y.L.; Fan, H.Y. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development 2017, 144, 452–463. [Google Scholar] [CrossRef]
- Tavakoli, P.; Leifert, W.; Fenech, M.; François, M. Guanine-Quadruplexes and Possible Role in Nutritional Epigenetics and Aging. In Handbook of Nutrition, Diet, and Epigenetics; Patel, V., Preedy, V., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–17. [Google Scholar] [CrossRef]
- Gorini, F.; Scala, G.; Cooke, M.S.; Majello, B.; Amente, S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2′-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair. 2021, 97, 103027. [Google Scholar] [CrossRef]
- Spies, J.; Polasek-Sedlackova, H.; Lukas, J.; Somyajit, K. Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication. Genes 2021, 12, 1960. [Google Scholar] [CrossRef]
- David, S.S.; O’Shea, V.L.; Kundu, S. Base-excision repair of oxidative DNA damage. Nature 2007, 447, 941–950. [Google Scholar] [CrossRef]
- Svetlova, M.P.; Solovjeva, L.V.; Tomilin, N.V. Mechanism of elimination of phosphorylated histone H2AX from chromatin after repair of DNA double-strand breaks. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2010, 685, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Perfettini, J.L.; Kroemer, R.T.; Kroemer, G. Fatal liaisons of p53 with Bax and Bak. Nat. Cell Biol. 2004, 6, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Crowe, D.L.; Sinha, U.K. p53 apoptotic response to DNA damage dependent on bcl2 but not bax in head and neck squamous cell carcinoma lines. Head Neck 2006, 28, 15–23. [Google Scholar] [CrossRef]
- Sallmyr, A.; Fan, J.; Rassool, F.V. Genomic instability in myeloid malignancies: Increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett. 2008, 270, 1–9. [Google Scholar] [CrossRef]
- Gillberg, L.; Ørskov, A.D.; Liu, M.; Harsløf, L.B.S.; Jones, P.A.; Grønbæk, K. Vitamin C—A new player in regulation of the cancer epigenome. Semin. Cancer Biol. 2018, 51, 59–67. [Google Scholar] [CrossRef]
- Voros, C.; Athanasiou, D.; Mavrogianni, D.; Varthaliti, A.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papadimas, G.; Gkirgkinoudis, A.; Papapanagiotou, I.; et al. Exosomal Communication Between Cumulus–Oocyte Complexes and Granulosa Cells: A New Molecular Axis for Oocyte Competence in Human-Assisted Reproduction. Int. J. Mol. Sci. 2025, 26, 5363. [Google Scholar] [CrossRef]
- Frankel, L.B.; Christoffersen, N.R.; Jacobsen, A.; Lindow, M.; Krogh, A.; Lund, A.H. Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells. J. Biol. Chem. 2008, 283, 1026–1033. [Google Scholar] [CrossRef]
- Li, Y.; Fang, Y.; Liu, Y.; Yang, X. MicroRNAs in ovarian function and disorders. J. Ovarian Res. 2015, 8, 51. [Google Scholar] [CrossRef]
- Ciesielska, S.; Slezak-Prochazka, I.; Bil, P.; Rzeszowska-Wolny, J. Micro RNAs in Regulation of Cellular Redox Homeostasis. Int. J. Mol. Sci. 2021, 22, 6022. [Google Scholar] [CrossRef]
- Gorre, N.; Adhikari, D.; Lindkvist, R.; Brännström, M.; Liu, K.; Shen, Y. mTORC1 Signaling in Oocytes Is Dispensable for the Survival of Primordial Follicles and for Female Fertility. PLoS ONE 2014, 9, e110491. [Google Scholar] [CrossRef]
- Kallen, A.N.; Zhou, X.B.; Xu, J.; Qiao, C.; Ma, J.; Yan, L.; Lu, L.; Liu, C.; Yi, J.S.; Zhang, H.; et al. The Imprinted H19 LncRNA Antagonizes Let-7 MicroRNAs. Mol. Cell 2013, 52, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Arun, G.; Mao, Y.S.; Lazar, Z.; Hung, G.; Bhattacharjee, G.; Xiao, X.; Booth, C.J.; Wu, J.; Zhang, C.; et al. The lncRNA Malat1 Is Dispensable for Mouse Development but Its Transcription Plays a cis-Regulatory Role in the Adult. Cell Rep. 2012, 2, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthi, S.; Jessop, C.E.; Bulleid, N.J. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep. 2006, 7, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.J.; Won, Y.S.; Kim, E.K.; Park, S.I.; Lee, S.J. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Satori, C.P.; Henderson, M.M.; Krautkramer, E.A.; Kostal, V.; Distefano, M.M.; Arriaga, E.A. Bioanalysis of Eukaryotic Organelles. Chem. Rev. 2013, 113, 2733–2811. [Google Scholar] [CrossRef]
- Marei, W.F.A.; Van Den Bosch, L.; Pintelon, I.; Mohey-Elsaeed, O.; Bols, P.E.J.; Leroy, J.L.M.R. Mitochondria-targeted therapy rescues development and quality of embryos derived from oocytes matured under oxidative stress conditions: A bovine in vitro model. Hum. Reprod. 2019, 34, 1984–1998. [Google Scholar] [CrossRef]
- Shang, Y.; Song, N.; He, R.; Wu, M. Antioxidants and Fertility in Women with Ovarian Aging: A Systematic Review and Meta-Analysis. Adv. Nutr. 2024, 15, 100273. [Google Scholar] [CrossRef]
- Neyroud, A.S.; Chiechio, R.M.; Moulin, G.; Ducarre, S.; Heichette, C.; Dupont, A.; Budzynski, M.; Even-Hernandez, P.; Faro, M.J.; Yefimova, M.; et al. Diversity of Extracellular Vesicles in Human Follicular Fluid: Morphological Analysis and Quantification. Int. J. Mol. Sci. 2022, 23, 11676. [Google Scholar] [CrossRef]
- Muraoka, A.; Yokoi, A.; Yoshida, K.; Kitagawa, M.; Asano-Inami, E.; Murakami, M.; Bayasula Miyake, N.; Nakanishi, N.; Nakamura, T.; Osuka, S. Small extracellular vesicles in follicular fluids for predicting reproductive outcomes in assisted reproductive technology. Commun. Med. 2024, 4, 33. [Google Scholar] [CrossRef]
- Meseguer, M.; De Los Santos, M.J.; Simón, C.; Pellicer, A.; Remohí, J.; Garrido, N. Effect of sperm glutathione peroxidases 1 and 4 on embryo asymmetry and blastocyst quality in oocyte donation cycles. Fertil. Steril. 2006, 86, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Yalcinkaya, E.; Cakiroglu, Y.; Doger, E.; Budak, O.; Cekmen, M.; Caliskan, E. Effect of Follicular Fluid NO, MDA and GSH Levels on in vitro Fertilization Outcomes. J. Turk. Ger. Gynecol. Assoc. 2013, 14, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Nori, W.; Helmi, Z.R. Can follicular fluid 8-oxo-2′-deoxyguanosine predict the clinical outcomes in ICSI cycle among couples with normospermia male? Obs. Gynecol. Sci. 2023, 66, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Tenório, M.C.D.S.; Graciliano, N.G.; Moura, F.A.; Oliveira, A.C.M.D.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef]
- Song, C.; Peng, W.; Yin, S.; Zhao, J.; Fu, B.; Zhang, J.; Mao, T.; Wu, H.; Zhang, Y. Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice. Sci. Rep. 2016, 6, 35165. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, C.; Zheng, Y.; Wu, D.; Chen, X.; Lan, H.; Zheng, X.; Wu, H.; Li, S. Glycine regulates lipid peroxidation promoting porcine oocyte maturation and early embryonic development. J. Anim. Sci. 2023, 101, skac425. [Google Scholar] [CrossRef]
- Yan, F.; Zhao, Q.; Li, Y.; Zheng, Z.; Kong, X.; Shu, C.; Liu, Y.; Shi, Y. The role of oxidative stress in ovarian aging: A review. J. Ovarian Res. 2022, 15, 100. [Google Scholar] [CrossRef]
- Mauchart, P.; Vass, R.A.; Nagy, B.; Sulyok, E.; Bódis, J.; Kovács, K. Oxidative Stress in Assisted Reproductive Techniques, with a Focus on an Underestimated Risk Factor. Curr. Issues Mol. Biol. 2023, 45, 1272–1286. [Google Scholar] [CrossRef]
- Fan, J.; Chen, C.; Zhong, Y. A cohort study on IVF outcomes in infertile endometriosis patients: The effects of rapamycin treatment. Reprod. Biomed. Online 2024, 48, 103319. [Google Scholar] [CrossRef]
- Wang, Y.C.; Ma, Y.D.; Liu, H.; Cui, Z.H.; Zhao, D.; Zhang, X.Q.; Zhang, L.X.; Guo, W.J.; Long, Y.; Tu, S.S.; et al. Hyperandrogen-induced polyol pathway flux increase affects ovarian function in polycystic ovary syndrome via excessive oxidative stress. Life Sci. 2023, 313, 121224. [Google Scholar] [CrossRef]
- Khan, M.Z.; Khan, A.; Chen, W.; Chai, W.; Wang, C. Advancements in Genetic Biomarkers and Exogenous Antioxidant Supplementation for Safeguarding Mammalian Cells against Heat-Induced Oxidative Stress and Apoptosis. Antioxidants 2024, 13, 258. [Google Scholar] [CrossRef] [PubMed]
- Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Yan, X.; Wintergerst, K.A.; Cai, L.; Keller, B.B.; Tan, Y. Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. Trends Mol. Med. 2020, 26, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Savant, S.; Sriramkumar, S.; O’Hagan, H. The Role of Inflammation and Inflammatory Mediators in the Development, Progression, Metastasis, and Chemoresistance of Epithelial Ovarian Cancer. Cancers 2018, 10, 251. [Google Scholar] [CrossRef]
- Thiefes, A.; Wolter, S.; Mushinski, J.F.; Hoffmann, E.; Dittrich-Breiholz, O.; Graue, N.; Dörrie, A.; Schneider, H.; Wirth, D.; Luckow, B.; et al. Simultaneous Blockade of NFκB, JNK, and p38 MAPK by a Kinase-inactive Mutant of the Protein Kinase TAK1 Sensitizes Cells to Apoptosis and Affects a Distinct Spectrum of Tumor Necrosis Target Genes. J. Biol. Chem. 2005, 280, 27728–27741. [Google Scholar] [CrossRef]
- Dong, H.; Qiang, Z.; Chai, D.; Peng, J.; Xia, Y.; Hu, R.; Jiang, H. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging 2020, 12, 12943–12959. [Google Scholar] [CrossRef]
- Magata, F.; Shimizu, T. Effect of lipopolysaccharide on developmental competence of oocytes. Reprod. Toxicol. 2017, 71, 1–7. [Google Scholar] [CrossRef]
- Yong, W.; Ma, H.; Na, M.; Gao, T.; Zhang, Y.; Hao, L.; Yu, H.; Yang, H.; Deng, X. Roles of melatonin in the field of reproductive medicine. Biomed. Pharmacother. 2021, 144, 112001. [Google Scholar] [CrossRef]
- Kobylińska, A.; Posmyk, M.M. Melatonin Protects Tobacco Suspension Cells against Pb-Induced Mitochondrial Dysfunction. Int. J. Mol. Sci. 2021, 22, 13368. [Google Scholar] [CrossRef]
- Sun, T.C.; Liu, X.C.; Yang, S.H.; Song, L.L.; Zhou, S.J.; Deng, S.L.; Tian, L.; Cheng, L.Y. Melatonin Inhibits Oxidative Stress and Apoptosis in Cryopreserved Ovarian Tissues via Nrf2/HO-1 Signaling Pathway. Front. Mol. Biosci. 2020, 7, 163. [Google Scholar] [CrossRef]
- Farhadi, M.; Sohbatzadeh, F.; Moghaddam, A.H.; Firouzjaei, Y.; Cheng, C. Enhancing the efficacy of low doses of N-acetyl-L-cysteine in mitigating CCl4-induced hepatotoxicity in animal model using physical cold plasma. Ecotoxicol. Environ. Saf. 2025, 289, 117642. [Google Scholar] [CrossRef] [PubMed]
- Reyes, R.C.; Cittolin-Santos, G.F.; Kim, J.E.; Won, S.J.; Brennan-Minnella, A.M.; Katz, M.; Glass, G.A.; Swanson, R.A. Neuronal Glutathione Content and Antioxidant Capacity can be Normalized In Situ by N-acetyl Cysteine Concentrations Attained in Human Cerebrospinal Fluid. Neurotherapeutics 2016, 13, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Jarmuszkiewicz, W.; Dominiak, K.; Budzinska, A.; Wojcicki, K.; Galganski, L. Mitochondrial Coenzyme Q Redox Homeostasis and Reactive Oxygen Species Production. Front. Biosci. (Landmark Ed.) 2023, 28, 61. [Google Scholar] [CrossRef]
- Mantle, D.; Dewsbury, M.; Hargreaves, I.P. The Ubiquinone-Ubiquinol Redox Cycle and Its Clinical Consequences: An Overview. Int. J. Mol. Sci. 2024, 25, 6765. [Google Scholar] [CrossRef]
- Wen, H.; Deng, H.; Li, B.; Chen, J.; Zhu, J.; Zhang, X.; Yoshida, S.; Zhou, Y. Mitochondrial diseases: From molecular mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 9. [Google Scholar]
- Coppé, J.P.; Rodier, F.; Patil, C.K.; Freund, A.; Desprez, P.Y.; Campisi, J. Tumor Suppressor and Aging Biomarker p16INK4a Induces Cellular Senescence without the Associated Inflammatory Secretory Phenotype. J. Biol. Chem. 2011, 286, 36396–36403. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, W.; Liao, Y.; Wang, W.; Deng, X.; Wang, C.; Shi, W. Autophagy: A double-edged sword in ischemia–reperfusion injury. Cell Mol. Biol. Lett. 2025, 30, 42. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, X.; Wang, R.; Wei, Y.; Peng, H.; Wang, K.; Li, H.; Ji, Y. Metabolomic profiling of exosomes reveals age-related changes in ovarian follicular fluid. Eur. J. Med. Res. 2024, 29, 4. [Google Scholar] [CrossRef]
Affected System | Primary ROS Effect | Developmental Consequence |
---|---|---|
Mitochondrial Function | mtDNA damage, ΔΨm loss, mPTP opening | ATP depletion, reduced blastocyst cell number |
DNA Methylation | Inhibition of TET, impaired 5-hmC generation | Persistent methylation, transcriptional errors |
Histone Modification | Inactivation of HDACs, histone hyperacetylation | Chromatin decondensation, faulty gene regulation |
Cytoskeleton | Oxidation of tubulin and actin, spindle disruption | Fragmentation, aneuploidy, mitotic arrest |
Zygotic Genome Activation | Epigenetic dysregulation, asynchronous gene expression | Delayed or failed embryo cleavage |
Cellular Apoptosis | Cytochrome c release, caspase-9 activation | Blastomere loss, developmental arrest |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voros, C.; Athanasiou, D.; Papapanagiotou, I.; Mavrogianni, D.; Varthaliti, A.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papadimas, G.; Gkirgkinoudis, A.; et al. Cracking the Code of Oocyte Quality: The Oxidative Stress Link to IVF Success. Int. J. Mol. Sci. 2025, 26, 6377. https://doi.org/10.3390/ijms26136377
Voros C, Athanasiou D, Papapanagiotou I, Mavrogianni D, Varthaliti A, Bananis K, Athanasiou A, Athanasiou A, Papadimas G, Gkirgkinoudis A, et al. Cracking the Code of Oocyte Quality: The Oxidative Stress Link to IVF Success. International Journal of Molecular Sciences. 2025; 26(13):6377. https://doi.org/10.3390/ijms26136377
Chicago/Turabian StyleVoros, Charalampos, Diamantis Athanasiou, Ioannis Papapanagiotou, Despoina Mavrogianni, Antonia Varthaliti, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, and et al. 2025. "Cracking the Code of Oocyte Quality: The Oxidative Stress Link to IVF Success" International Journal of Molecular Sciences 26, no. 13: 6377. https://doi.org/10.3390/ijms26136377
APA StyleVoros, C., Athanasiou, D., Papapanagiotou, I., Mavrogianni, D., Varthaliti, A., Bananis, K., Athanasiou, A., Athanasiou, A., Papadimas, G., Gkirgkinoudis, A., Migklis, K., Vaitsis, D., Koulakmanidis, A.-M., Tsimpoukelis, C., Ivanidou, S., Stepanyan, A. J., Daskalaki, M. A., Theodora, M., Antsaklis, P., ... Daskalakis, G. (2025). Cracking the Code of Oocyte Quality: The Oxidative Stress Link to IVF Success. International Journal of Molecular Sciences, 26(13), 6377. https://doi.org/10.3390/ijms26136377