Advances in Traditional Chinese Medicine for Modulating DNA Methylation in the Treatment of Inflammatory Diseases
Abstract
1. Introduction
2. Role of DNA Methylation in Inflammatory Diseases
2.1. Role of DNA Methylation in Joint and Skeletal Inflammatory Diseases
2.1.1. Rheumatoid Arthritis
2.1.2. Osteoarthritis
2.1.3. Gouty Arthritis
2.2. Inflammatory Disorders of the Digestive System
2.2.1. Chronic Atrophic Gastritis
2.2.2. Ulcerative Colitis
2.3. Inflammatory Disorders of the Respiratory System
2.3.1. Allergic Rhinitis
2.3.2. Pneumonia
2.4. Inflammatory Disorders of the Cardiovascular System
Atherosclerosis
2.5. Inflammatory Diseases of the Skin
2.5.1. Psoriasis
2.5.2. Acne Vulgaris
2.6. Systemic Inflammatory Disorders
Systemic Lupus Erythematosus
3. Examples of Studies on Different Classes of Traditional Chinese Medicines Modulating DNA Methylation to Treat Inflammatory Diseases
3.1. Compound Traditional Chinese Medicine Formula
3.2. Active Ingredients of Traditional Chinese Medicine
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- López, P.; de Paz, B.; Rodríguez-Carrio, J.; Hevia, A.; Sánchez, B.; Margolles, A.; Suárez, A. Th17 Responses and Natural IgM Antibodies Are Related to Gut Microbiota Composition in Systemic Lupus Erythematosus Patients. Sci. Rep. 2016, 6, 24072. [Google Scholar] [CrossRef] [PubMed]
- Dor, Y.; Cedar, H. Principles of DNA Methylation and Their Implications for Biology and Medicine. Lancet 2018, 392, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Y.; Zhao, L.; Wang, F.; Li, M.; Wang, Q.; Luo, H.; Zhao, Q.; Zeng, J.; Zhao, Y.; et al. Chinese Herbal Medicines for Treating Ulcerative Colitis via Regulating Gut Microbiota-Intestinal Immunity Axis. Chin. Herb. Med. 2023, 15, 181–200. [Google Scholar] [PubMed]
- Liu, X.; Wang, Z.; Qian, H.; Tao, W.; Zhang, Y.; Hu, C.; Mao, W.; Guo, Q. Natural Medicines of Targeted Rheumatoid Arthritis and Its Action Mechanism. Front. Immunol. 2022, 13, 945129. [Google Scholar] [CrossRef]
- Vecellio, M.; Wu, H.; Lu, Q.; Selmi, C. The Multifaceted Functional Role of DNA Methylation in Immune-Mediated Rheumatic Diseases. Clin. Rheumatol. 2021, 40, 459–476. [Google Scholar] [CrossRef]
- Yang, C.; Li, D.; Teng, D.; Zhou, Y.; Zhang, L.; Zhong, Z.; Yang, G.-J. Epigenetic Regulation in the Pathogenesis of Rheumatoid Arthritis. Front. Immunol. 2022, 13, 859400. [Google Scholar] [CrossRef]
- Han, G.; Li, H.; Zhang, Y.; Cai, W. The Role of Synovium in Inflammatory Joint Disease. Guangxi Med. 2019, 41, 1545–1548. (In Chinese) [Google Scholar]
- Pitaksalee, R.; Burska, A.N.; Ajaib, S.; Rogers, J.; Parmar, R.; Mydlova, K.; Xie, X.; Droop, A.; Nijjar, J.S.; Chambers, P.; et al. Differential CpG DNA Methylation in Peripheral Naïve CD4+ T-Cells in Early Rheumatoid Arthritis Patients. Clin. Epigenetics 2020, 12, 54. [Google Scholar] [CrossRef]
- Deng, H.; Lu, L.; Liu, Z.; Zhou, H. Esearch Progress on Relationship Between DNA Methylation and Occurrence, Development, Diagnosis, Treatment and Prognosis of Rheumatoid Arthritis. Chin. J. Immunol. 2023, 39, 1752–1758. (In Chinese) [Google Scholar]
- Sun, Z.-H.; Liu, Y.-H.; Liu, J.; Xu, D.-D.; Li, X.-F.; Meng, X.-M.; Ma, T.-T.; Huang, C.; Li, J. MeCP2 Regulates PTCH1 Expression Through DNA Methylation in Rheumatoid Arthritis. Inflammation 2017, 40, 1497–1508. [Google Scholar] [CrossRef]
- Svendsen, A.J.; Gervin, K.; Lyle, R.; Christiansen, L.; Kyvik, K.; Junker, P.; Nielsen, C.; Houen, G.; Tan, Q. Differentially Methylated DNA Regions in Monozygotic Twin Pairs Discordant for Rheumatoid Arthritis: An Epigenome-Wide Study. Front. Immunol. 2016, 7, 510. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Ni, J.; Witherel, C.E.; Yang, M.; Burdick, J.A.; Wen, C.; Wong, S.H.D. Harnessing Tissue-Derived Extracellular Vesicles for Osteoarthritis Theranostics. Theranostics 2022, 12, 207–231. [Google Scholar] [CrossRef] [PubMed]
- Yi, P.; Xu, X.; Yao, J.; Qiu, B. Analysis of mRNA Expression and DNA Methylation Datasets According to the Genomic Distribution of CpG Sites in Osteoarthritis. Front. Genet. 2021, 12, 618803. [Google Scholar] [CrossRef]
- Ball, H.C.; Alejo, A.L.; Kronk, T.; Alejo, A.M.; Safadi, F.F. Epigenetic Regulation of Chondrocytes and Subchondral Bone in Osteoarthritis. Life 2022, 12, 582. [Google Scholar] [CrossRef]
- Xu, T.; Wang, C.; Shen, J.; Tong, P.; O’Keefe, R. Ablation of Dnmt3b in Chondrocytes Suppresses Cell Maturation during Embryonic Development. J. Cell. Biochem. 2018, 119, 5852–5863. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, F.; Lu, K.; Wei, A.; Jiang, Q.; Cao, W. PPARγ Preservation via Promoter Demethylation Alleviates Osteoarthritis in Mice. Ann. Rheum. Dis. 2019, 78, 1420–1429. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Hu, H.; Jiang, Y.; Yu, H.; Dai, J.; Mao, Y.; Duan, S. Elevated UMOD Methylation Level in Peripheral Blood Is Associated with Gout Risk. Sci. Rep. 2017, 7, 11196. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Meng, W.; Liu, P.; Zhu, X.; Liu, Y.; Zou, H. DNA Hypomethylation of a Transcription Factor Binding Site within the Promoter of a Gout Risk Gene NRBP1 Upregulates Its Expression by Inhibition of TFAP2A Binding. Clin. Epigenet. 2017, 9, 99. [Google Scholar] [CrossRef]
- Li, B.; Chen, X.; Jiang, Y.; Yang, Y.; Zhong, J.; Zhou, C.; Hu, H.; Duan, S. CCL2 Promoter Hypomethylation Is Associated with Gout Risk in Chinese Han Male Population. Immunol. Lett. 2017, 190, 15–19. [Google Scholar] [CrossRef]
- Peng, Y.; Zhong, X.; Qing, Y.; Zhou, J. Research Progress of the Effect of DNA Methylation in Rheumatic Diseases. Med. Recapitul. 2016, 22, 3557–3560. (In Chinese) [Google Scholar]
- Jia, J.; Zhao, H.; Li, F.; Zheng, Q.; Wang, G.; Li, D.; Liu, Y. Research on Drug Treatment and the Novel Signaling Pathway of Chronic Atrophic Gastritis. Biomed. Pharmacother. 2024, 176, 116912. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Nanjo, S.; Rehnberg, E.; Iida, N.; Takeshima, H.; Ando, T.; Maekita, T.; Sugiyama, T.; Ushijima, T. Distinct DNA Methylation Targets by Aging and Chronic Inflammation: A Pilot Study Using Gastric Mucosa Infected with Helicobacter Pylori. Clin. Epigenet. 2019, 11, 191. [Google Scholar] [CrossRef]
- Park, S.-Y.; Yoo, E.J.; Cho, N.-Y.; Kim, N.; Kang, G.H. Comparison of CpG Island Hypermethylation and Repetitive DNA Hypomethylation in Premalignant Stages of Gastric Cancer, Stratified for Helicobacter Pylori Infection. J. Pathol. 2009, 219, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Guo, A. Impact of DNA Methylation on Recurrent Cancer After Endoscopic Resection of Early Gastric Cancer. Master’s Thesis, Qingdao University, Qingdao, China, 2020. (In Chinese). [Google Scholar]
- Yang, Z.; Lin, S.; Feng, W.; Liu, Y.; Song, Z.; Pan, G.; Zhang, Y.; Dai, X.; Ding, X.; Chen, L.; et al. A Potential Therapeutic Target in Traditional Chinese Medicine for Ulcerative Colitis: Macrophage Polarization. Front. Pharmacol. 2022, 13, 999179. [Google Scholar] [CrossRef]
- Noble, A.J.; Nowak, J.K.; Adams, A.T.; Uhlig, H.H.; Satsangi, J. Defining Interactions Between the Genome, Epigenome, and the Environment in Inflammatory Bowel Disease: Progress and Prospects. Gastroenterology 2023, 165, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Zhang, Q.; Shi, Y.; Shi, Q.; Jiang, Y.; Gu, Y.; Li, Z.; Li, X.; Zhao, K.; Wang, C.; et al. Tet2 Promotes Pathogen Infection-Induced Myelopoiesis through mRNA Oxidation. Nature 2018, 554, 123–127. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, Y.; Zhu, L.; Xu, H.; Sun, K.; Li, G.; Chen, Y.; Wu, H.; Ma, Z.; Huang, Y. Effects of Acupuncture on Colonic DNA Methyltransferase in tet2 Knockout Mice with Ulcerative Colitis. China Assoc. Acupunct. Moxibustion 2024, 5, 695–699. (In Chinese) [Google Scholar]
- Morimoto, Y.; Hirahara, K.; Nakayama, T. Regulation of Pathophysiology in Allergic Airway Inflammation. Arerugi 2019, 68, 1192–1195. [Google Scholar]
- Zou, P.; Li, J.; Li, J.; Wang, J. Inhibition of DNA Methyltransferase DNMT1 Reverses Th2 Response Polarisation and Alleviates Allergic Rhinitis. Clin. Exp. Pharmacol. Physiol. 2025, 52, e70015. [Google Scholar] [CrossRef]
- Fagone, P.; Mazzon, E.; Chikovani, T.; Saraceno, A.; Mammana, S.; Colletti, G.; Mangano, K.; Bramanti, P.; Nicoletti, F. Decitabine Induces Regulatory T Cells, Inhibits the Production of IFN-Gamma and IL-17 and Exerts Preventive and Therapeutic Efficacy in Rodent Experimental Autoimmune Neuritis. J. Neuroimmunol. 2018, 321, 41–48. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, R.; Bu, Q.; Shi, H.; Jiang, X. Study on the Mechanism of 5-azacytidine on DNA Methyltransferase 1 Gene in Allergic Rhinitis Rats. Chin. J. Clin. Pharmacol. 2023, 39, 1466–1469. (In Chinese) [Google Scholar]
- Morin, A.; McKennan, C.G.; Pedersen, C.-E.T.; Stokholm, J.; Chawes, B.L.; Malby Schoos, A.-M.; Naughton, K.A.; Thorsen, J.; Mortensen, M.S.; Vercelli, D.; et al. Epigenetic Landscape Links Upper Airway Microbiota in Infancy with Allergic Rhinitis at 6 Years of Age. J. Allergy Clin. Immunol. 2020, 146, 1358–1366. [Google Scholar] [CrossRef]
- Zhou, S.; Peng, Y.; Zhan, J.; Qiu, Q. Detection of Methylated Genes Related to Allergic Rhinitis and Establishment of Methylation Profil. J. Clin. Otorhinolaryngol. Head Neck Surg. 2019, 33, 23–27. (In Chinese) [Google Scholar]
- GBD 2019 LRI Collaborators. Age-Sex Differences in the Global Burden of Lower Respiratory Infections and Risk Factors, 1990–2019: Results from the Global Burden of Disease Study 2019. Lancet Infect. Dis. 2022, 22, 1626–1647. [Google Scholar] [CrossRef]
- Wang, Q.; Han, X.; Zhang, X. Research Progress of Immune Response Regulated by Epigenetic Modification in Pneumonia. J. Shanghai Jiao Tong Univ. 2023, 43, 931–938. (In Chinese) [Google Scholar]
- Ampomah, P.B.; Cai, B.; Sukka, S.R.; Gerlach, B.D.; Yurdagul, A.; Wang, X.; Kuriakose, G.; Darville, L.N.F.; Sun, Y.; Sidoli, S.; et al. Macrophages Use Apoptotic Cell-Derived Methionine and DNMT3A during Efferocytosis to Promote Tissue Resolution. Nat. Metab. 2022, 4, 444–457. [Google Scholar] [CrossRef]
- Singer, B.D.; Mock, J.R.; Aggarwal, N.R.; Garibaldi, B.T.; Sidhaye, V.K.; Florez, M.A.; Chau, E.; Gibbs, K.W.; Mandke, P.; Tripathi, A.; et al. Regulatory T Cell DNA Methyltransferase Inhibition Accelerates Resolution of Lung Inflammation. Am. J. Respir. Cell Mol. Biol. 2015, 52, 641–652. [Google Scholar] [CrossRef]
- Cole, E.; Brown, T.A.; Pinkerton, K.E.; Postma, B.; Malany, K.; Yang, M.; Kim, Y.J.; Hamilton, R.F.; Holian, A.; Cho, Y.H. Perinatal Exposure to Environmental Tobacco Smoke Is Associated with Changes in DNA Methylation That Precede the Adult Onset of Lung Disease in a Mouse Model. Inhal. Toxicol. 2017, 29, 435–442. [Google Scholar] [CrossRef]
- Zhou, G.; Lin, L.; Wang, S.; Dong, M.; Lu, K.; Zhang, Y.; Lin, Z.; Lin, J.; Wu, W.; Peng, R.; et al. Huanglian Jiedu Decoction Enhances the Stability of Atherosclerotic Plaques through SLC2A1-Mediated Efferocytosis. Int. Immunopharmacol. 2024, 140, 112834. [Google Scholar] [CrossRef] [PubMed]
- Khyzha, N.; Alizada, A.; Wilson, M.D.; Fish, J.E. Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends Mol. Med. 2017, 23, 332–347. [Google Scholar] [CrossRef]
- Rizzacasa, B.; Amati, F.; Romeo, F.; Novelli, G.; Mehta, J.L. Epigenetic Modification in Coronary Atherosclerosis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Treatment of Cardiovascular Pathology with Epigenetically Active Agents: Focus on Natural and Synthetic Inhibitors of DNA Methylation and Histone Deacetylation. Int. J. Cardiol. 2017, 227, 66–82. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiménez, J.M.; Ou, K.; McCormick, M.E.; Zhang, L.; Davies, P.F. Hemodynamic Disturbed Flow Induces Differential DNA Methylation of Endothelial Kruppel-Like Factor 4 Promoter in Vitro and in Vivo. Circ. Res. 2014, 115, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Hamik, A.; Nayak, L.; Tian, H.; Shi, H.; Lu, Y.; Sharma, N.; Liao, X.; Hale, A.; Boerboom, L.; et al. Endothelial Kruppel-like Factor 4 Protects Against Atherothrombosis in Mice. J. Clin. Investig. 2012, 122, 4727–4731. [Google Scholar] [CrossRef]
- Tang, R.; Zhu, J.; Yang, F.; Zhang, Y.; Xie, S.; Liu, Y.; Yao, W.; Pang, W.; Han, L.; Kong, W.; et al. DNA Methyltransferase 1 and Krüppel-like Factor 4 Axis Regulates Macrophage Inflammation and Atherosclerosis. J. Mol. Cell. Cardiol. 2019, 128, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.E.M.; Christophers, E.; Barker, J.N.W.N.; Chalmers, R.J.G.; Chimenti, S.; Krueger, G.G.; Leonardi, C.; Menter, A.; Ortonne, J.-P.; Fry, L. A Classification of Psoriasis Vulgaris According to Phenotype. Br. J. Dermatol. 2007, 156, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Ekman, A.-K.; Bivik Eding, C.; Enerbäck, C. Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis. J. Investig. Dermatol. 2018, 138, 1088–1093. [Google Scholar] [CrossRef]
- Zhang, P.; Su, Y.; Chen, H.; Zhao, M.; Lu, Q. Abnormal DNA Methylation in Skin Lesions and PBMCs of Patients with Psoriasis Vulgaris. J. Dermatol. Sci. 2010, 60, 40–42. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, M.; Liang, G.; Yin, G.; Huang, D.; Su, F.; Zhai, H.; Wang, L.; Su, Y.; Lu, Q. Whole-Genome DNA Methylation in Skin Lesions from Patients with Psoriasis Vulgaris. J. Autoimmun. 2013, 41, 17–24. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, W.; Zhang, L.; Yin, X.; Luo, H. Overexpression of DNA Demethylase Ten-Eleven Translocation 3 Mediates High Expression of Krüppel-like Factor 4 in the Skin Lesions of Patients with Psoriasis Vulgaris. J. Army Med. Univ. 2024, 46, 637–643. (In Chinese) [Google Scholar]
- Gu, X.; Nylander, E.; Coates, P.J.; Fahraeus, R.; Nylander, K. Correlation between Reversal of DNA Methylation and Clinical Symptoms in Psoriatic Epidermis Following Narrow-Band UVB Phototherapy. J. Investig. Dermatol. 2015, 135, 2077–2083. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, M.; Tan, J.; Lim, J.; Kim, M.; Nadeem, I.; Bismil, R. The Prevalence, Risk Factors, and Psychosocial Impacts of Acne Vulgaris in Medical Students: A Literature Review. Int. J. Dermatol. 2021, 60, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xue, Y.; Chen, J.; Li, Y.; Chen, T.; Pan, X.; Zhong, J.; Shao, X.; Chen, Y.; Chen, J. DNA Methylation Profiling and Integrative Multi-Omics Analysis of Skin Samples Reveal Important Contribution of Epigenetics and Immune Response in the Pathogenesis of Acne Vulgaris. Clin. Immunol. 2023, 255, 109773. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B. Creening of Abnormal DNA Methylation Genes in Patients with Acne Vulgaris. Master’s Thesis, Gansu University of Chinese Medicine, Lanzhou, China, 2020. (In Chinese). [Google Scholar]
- Wang, H. Genome-Wide DNA Methylation Study of Severe Acne. Master’s Thesis, Dali University, Dali, China, 2021. (In Chinese). [Google Scholar]
- Fanouriakis, A.; Tziolos, N.; Bertsias, G.; Boumpas, D.T. Update οn the Diagnosis and Management of Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2021, 80, 14–25. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Yin, H.; Gao, F.; Wu, X.; Luo, Y.; Zhao, S.; Zhang, X.; Su, Y.; Hu, N.; et al. Overexpression of the Growth Arrest and DNA Damage-Induced 45alpha Gene Contributes to Autoimmunity by Promoting DNA Demethylation in Lupus T Cells. Arthritis Rheum. 2010, 62, 1438–1447. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Y.; Liang, Y.; Zhao, M.; Long, H.; Ding, S.; Yin, H.; Lu, Q. MicroRNA-126 Regulates DNA Methylation in CD4+ T Cells and Contributes to Systemic Lupus Erythematosus by Targeting DNA Methyltransferase 1. Arthritis Rheum. 2011, 63, 1376–1386. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Z.; Xu, J. Preliminary Study on the Expression Level of Methyl-CpG Binding Protein 2 Gene and Its Correlation with DNA Methylation in Patients with Systemic Lupus Erythematosus. J. Clin. Dermatol. 2023, 52, 402–404. (In Chinese) [Google Scholar]
- Zhao, M.; Zhou, Y.; Zhu, B.; Wan, M.; Jiang, T.; Tan, Q.; Liu, Y.; Jiang, J.; Luo, S.; Tan, Y.; et al. IFI44L Promoter Methylation as a Blood Biomarker for Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2016, 75, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, M.J.; Majewski, D.; Puszczewicz, M.; Jagodziński, P.P. Decreased mRNA Expression Levels of DNA Methyltransferases Type 1 and 3A in Systemic Lupus Erythematosus. Rheumatol. Int. 2017, 37, 775–783. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, C.; Peng, M.; Lu, Q. Translating Epigenetics into Clinic: Focus on Lupus. Clin. Epigenet. 2017, 9, 78. [Google Scholar]
- He, M.; Yang, R.; Yang, J.; An, J. Effects of Qi—Tonifying and Blood Stasis—Removing and Detoxification Therapy on DNMT3b Gene in Chronic Atrophic Gastritis Rats with Dysplasia. Hebei J. TCM 2017, 39, 411–414. (In Chinese) [Google Scholar]
- Chen, Q.; Zhang, Y.; Meng, Q.; Wang, S.; Yu, X.; Cai, D.; Cheng, P.; Li, Y.; Bian, H. Liuwei Dihuang Prevents Postmenopausal Atherosclerosis and Endothelial Cell Apoptosis via Inhibiting DNMT1-Medicated ERα Methylation. J. Ethnopharmacol. 2020, 252, 112531. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhou, M.; Wang, L.; Liu, W.; Liu, H.; Li, P. Effects of Promoting-Blood and Detoxication Chinese Medicine on Plaque Stability, Blood Lipid and Methylation Level of DNA in Mice with Atherosclerosis. Beijing J. Tradit. Chin. Med. 2014, 33, 215–219. (In Chinese) [Google Scholar]
- Zhang, Y.; Liu, H.; Kang, Q.; Ren, P.; Liu, W.; Zhou, X. Effects of Optimum Shenyuandan Decoction on Insulin Resistance, Serum TXA2/PGI2 Ratio and DNA Methylation Level of Mice with Atherosclerosis. Chin. J. Inf. Tradit. Chin. Med. 2018, 25, 53–57. (In Chinese) [Google Scholar]
- Ren, P.; Kang, Q.; Zhou, M.; Zhang, L.; Li, S.; Liu, W. Effects of Danggui Shaoyao Powder on the DNMT1 and the Expression of PPARγ in Atherosclerotic Mice. Glob. Tradit. Chin. Med. 2017, 10, 1328–1332. (In Chinese) [Google Scholar]
- Zhou, X. The Research of ShenQi Compound Recipe on The Relationship of The Dose-Effect-Time in KKAy Mice with Diabetic Macroangiopathy and The Epigenetic Mchanisms. Ph.D. Thesis, Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2015. (In Chinese). [Google Scholar]
- Liu, Y.; Wen, C.; Chen, Z.; Wang, Y.; Huang, Y.; Hu, Y.; Tu, S. Effects of Wutou Decoction on DNA Methylation and Histone Modifications in Rats with Collagen-Induced Arthritis. Evid.-Based Complement. Alternat. Med. 2016, 2016, 5836879. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ju, S.; Wei, J.; Fu, W.; Zheng, H.; Xu, S. Effect of Baihu Guizhi Decoction on Characteristic Methylation Genes Expression of Pyretic Arthralgia Rat Model. China J. Chin. Mater. Medica 2017, 42, 332–340. (In Chinese) [Google Scholar]
- Sun, J.; Shao, T.; Zhang, D.; Huang, X.; Xie, Z.; Wen, C. Effect of Lang-Chuang-Ding Decoction on DNA Methylation of CD70 Gene Promoter in Peripheral Blood Mononuclear Cells of Female Patients with Systemic Lupus Erythematosus. Chin. J. Integr. Med. 2018, 24, 348–352. [Google Scholar] [CrossRef]
- Shu, K.; Kuang, N.; Zhang, Z.; Hu, Z.; Zhang, Y.; Fu, Y.; Min, W. Therapeutic Effect of Daphnetin on the Autoimmune Arthritis through Demethylation of Proapoptotic Genes in Synovial Cells. J. Transl. Med. 2014, 12, 287. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, L.; Xu, F. Double Effect of Geniposide on Gene Methylation of Foam Cells Derived from RAW264. 7 Induced by ox-LDL. Chin. J. Integr. Tradit. West. Med. 2019, 39, 853–858. (In Chinese) [Google Scholar]
- Jiang, B. The Effect and Mechanisms of Periplogenin and Its Structural Analogues Convallatoxin in the Treatment of Psoriasis. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2020. (In Chinese). [Google Scholar]
- Zhang, W.; Wang, H.; Wang, Y. Effects of Hydroxycamptothecin on Expression and Promotor Methylation of P16 Gene in Monocytes in Patients with Systemic Lupus Erythematosus. Chin. Hosp. Pharm. J. 2015, 35, 685–689. (In Chinese) [Google Scholar]
- Luo, J.; Yao, Y.; Cheng, C.; Lio, C.; Liu, J.; Huang, Y.; He, F.; Xie, Y.; Liu, L.; Liu, Z.; et al. Sinomenine Increases the Methylation Level at Specific GCG Site in mPGES-1 Promoter to Facilitate Its Specific Inhibitory Effect on mPGES-1. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2022, 1865, 194813. [Google Scholar] [CrossRef] [PubMed]
Chinese Herbal Compound | Composition of the Prescription | Model | Target | Regulation Mechanism | References |
---|---|---|---|---|---|
Xiaopi granules | Codonopsis Radix, Codonopsis pilosula (Franch.) Nannf. (root) Lilii Bulbus, Lilium brownii F. E. Brown var. viridulum Baker (Meaty scale leaves) Linderae Radix, Lindera aggregata (Sims) Kosterm. (tuberous root) Citri Fructus, Citrus medica L. (mature fruit) Salviae Miltiorrhizae, Salvia miltiorrhiza Bge. (roots and rhizomes) Notoginseng Radix Et Rhizoma, Panax notoginseng (Burk.) F. H. Chen (roots and rhizomes) curcumae rhizoma, Curcuma zedoaria (Christm.) Rosc. (rhizoma) Taraxaci Herba, Taraxacum mongolicum Hand. -Mazz. (whole plant) Herba Hedyotidis, Oldenlandia diffusa (Willd) Roxb. (whole plant) | SPF healthy male Wistar rats (chronic atrophic gastritis model) | Regulate DNA methyltransferase DNMT3B | Inhibition of DNMT3B expression; reverse abnormal DNA methylation; regulating cell proliferation and apoptosis; inhibition of inflammation | [64] |
Liuwei Dihuang Pills | Rehmanniae Radix, Rehmannia glutinosa Libosch. (tuberous root) Corni Fructus, Cornus officinalis Sieb. et Zucc. (pulp) Dioscoreae Rhizoma, Dioscorea opposita Thunb. (rhizoma) oriental waterplantain rhizome, Alisma orientale (Sam.) Juzep. (tuber) Indian Bread, Poria cocos (Schw.) Wolf (sclerotium) Moutan Cortex, Paeonia suffruticosa Andr. (root bark) | Male ApoE−/− mice (AS mice) | Regulation of DNMT1 and ER-α gene methylation levels | Inhibition of DNMT1 expression; reverse ER-α gene methylation; up-regulate the expression of ER-α | [65] |
Xuefu Zhuyu Capsule and Siji Sanhuang Capsule | Persicae Semen, Prunus persica (L.) Batsch (mature seed) Carthami Flos, Carthamus tinctorius L. (flower) Paeoniae Radix Rubra, Paeonia veitchii Lynch (root) Chuanxiong Rhizoma, Ligusticum chuanxiong Hort. (rhizoma) Scutellariae Radix, Scutellaria baicalensis Georgi (root) Phellodendri Amurensis Cortex, Phellodendron amurense Rupr. (bark) Fructus Gardeniae, Gardenia jasminoides Ellis (mature fruit) Rhei Radix Et Rhizoma, Rheum palmatum L. (roots and rhizomes) | Male ApoE−/− mice (AS mice) | Regulation of DNA methylation and DNMT levels | Improve the level of DNA methylation; stable plaque structure; inhibition of inflammation | [66] |
Shenyuandan formula | Astmgali Radix, Astragalus membranaceus (Fisch.) Bunge (root) Codonopsis Radix, Codonopsis pilosula (Franch.) Nannf. (root) Scrophulariae Radix, Scrophularia ningpoensis Hemsl. (root) Salviae Miltiorrhizae, Salvia miltiorrhiza Bge. (roots and rhizomes) Corydalis Rhizoma, Corydalis yanhusuo W. T. Wang (tuber) Eupolyphaga, Eupolyphaga sinensis Walker (The whole body of female insects) Hirudo, Hirudo nipponica Whitman (The whole body) Pheretima, Pheretima aspergillum (E. Perrier) (The whole body) Trichosanthis Fructus, Trichosanthes kirilowii Maxim. (mature fruit) Allii Macrostemonis Bulbus, Allium macrostemon Bge. (Bulb) | Clean-grade ApoE−/− mice (AS mice) | Regulate DNMT1 level | Down-regulation of DNMT1; inhibition of inflammation | [67] |
Danggui Shaoyao San | Angelicae Sinensis Radix, Angelica sinensis (Oliv.) Diels (root) Paeoniae Radix Rubra, Paeonia veitchii Lynch (root) Indian Bread, Poria cocos (Schw.) Wolf (sclerotium) Macrocephalae Rhizoma, Atractylodes macrocephala Koidz. (rhizoma) oriental waterplantain rhizome, Alisma orientale (Sam.) Juzep. (tuber) Chuanxiong Rhizoma, Ligusticum chuanxiong Hort. (rhizoma) | Eight-week-old ApoE−/− mice (AS mice) | Regulation of methylation and DNMT1 levels | Inhibition of DNMT1 expression; reverse abnormal DNA methylation; inhibiting inflammation; reduce plaque area | [68] |
ginseng and astragalus compound | Rehmanniae Radix, Rehmannia glutinosa Libosch. (tuberous root) Dioscoreae Rhizoma, Dioscorea opposita Thunb. (rhizoma) Corni Fructus, Cornus officinalis Sieb. et Zucc. (Mature pulp) Astmgali Radix, Astragalus membranaceus (Fisch.) Bunge (root) Ginseng Radix Et Rhizoma, Panax ginseng C. A. Mey. (root) Salviae Miltiorrhizae, Salvia miltiorrhiza Bge. (roots and rhizomes) Rhei Radix Et Rhizoma, Rheum palmatum L. (roots and rhizomes) Radix Trichosanthis, Trichosanthes kirilowii Maxim. (root) | Male spontaneous type 2 diabetic KKAy mice, aged 7–8 weeks (AS mice) | Regulation of gene DNA methylation | Inhibit inflammatory damage; protect vascular endothelial cells | [69] |
Wutou decoction | Ephedrae Herba, Ephedra equisetina Bge. (herbaceous stem) Paeoniae Radix Rubra, Paeonia veitchii Lynch. (root) Paeoniae Radix Alba, Paeonia lactiflora Pall. (root) Astmgali Radix, Astragalus membranaceus (Fisch.) Bunge (root) Radix Rhizoma Glycyrrhizae, Glycyrrhiza uralensis Fisch. (roots and rhizomes) kusnezoff monkshood root, Aconitum kusnezoffii Reichb. (tuberous root) | Five-week-old female Wistar rats, weighing 130–150 g (CIA rats) | Regulates DNMT1 | Inhibition of DNMT1 expression; reverse abnormal DNA methylation; reduce joint inflammation, inhibit synovial hyperplasia | [70] |
Baihu Jia Guizhi decoction | Gypsum Fibrosum (ore) Anemarrhenae Rhizoma, Anemarrhena asphodeloides Bge. (rhizoma) Radix Rhizoma Glycyrrhizae, Glycyrrhiza uralensis Fisch. (roots and rhizomes) rice fruit, Oryza sativa L. (Dehulled seed kernels) Cmnamomi Mmulus, Cinnamomum cassia Presl (twig) | SPF SD rats, weighing 180–220 g (heat arthralgia model rats) | Regulate the expression levels of Methylation up-regulated gene ACXT and methylation down-regulated genes AHCY and RPL3 | Regulating methylated gene expression; inhibit the production and release of inflammatory factors; improve foot swelling and pathological damage | [71] |
Lang-Chuang-Ding Decoction | Rehmanniae Radix, Rehmannia glutinosa Libosch. (tuberous root) Trionycis Carapax, Trionyx sinensis Wiegmann (spinal brace) Artemisiae Annuae Herba, Artemisia annua L. (Whole grass on the ground) Herba Hedyotidis, Oldenlandia diffusa (Willd) Roxb. (whole plant) Centellae Herba, Centella asiatica (L.) Urban (whole plant) Paeoniae Radix Rubra, Paeonia veitchii Lynch (root) Coicis Semen, Coix lacryma-jobi L. var. ma-yuen (Roman.) Stapf (Mature seed kernel) Citri Sarcodactμlis Fructus, Citrus medica L. var. sarcodactylis (Noot.) Swingle (fruit) Rhizoma Cimicifugae, Cimicifuga heracleifolia Kom. (root) Radix Rhizoma Glycyrrhizae, Glycyrrhiza uralensis Fisch. (roots and rhizomes) | peripheral blood mononuclear cells. 1. Medicated Serum Preparation. 2. PBMCs Cultivation and Grouping. 3. Real-Time PCR. 4. MSP Assay for CD70 Methylation. | Regulation of CD70 gene promoter methylation level | Up-regulation of CD70 gene promoter methylation; inhibition of CD70 gene expression; inhibition of inflammation | [72] |
Chinese Herbal Medicinal Ingredient | Cell Type and Detection Index | Target | Regulation Mechanism | References |
---|---|---|---|---|
daphnetin | CIA rats’ synovial cells. 1. Cell viability assay. 2. Methylation specific PCR. 3. Flow cytometric analysis. 4. RNA extraction and gene expression analysis. 5. Apoptosis analysis by Annexin V/Propidium Iodide (PI) flow cytometry assay. | Regulate the expression of DNA methyltransferase DNMT1, DNMT3A and DNMT3B | Inhibition of DNA methyltransferase expression; inducing demethylation of pro-apoptotic genes; accelerating synovial cell apoptosis | [73] |
gardenia jasminoides | RAW264.7 source foam cells. 1. Establishment of foam cell model. 2. Methylation immunoprecipitation combined with sequencing analysis. | Regulating abnormal DNA methylation genes | Bidirectional regulation of DNA methylation; inhibition of inflammation | [74] |
periplogenin | HaCaT cells. 1. Immunofluorescence staining. 2. The level of ROS in cells was detected by flow cytometry. 3. The expression of the methylation-related gene P21 at the protein level was detected by Western blot. | To control the expression of DNA synthesis related enzymes and cell cycle regulatory proteins | Inhibition of DNA synthesis; reduce the expression of cell proliferation-related proteins; increase the level of p21 protein; promote apoptosis | [75] |
hydroxycamptothecin | peripheral blood mononuclear cells. 1. Cell survival rate was assessed using the MTT assay. 2. RNA was extracted and analyzed by real-time quantitative PCR. 3. Genomic DNA was extracted and analyzed by methylation-specific PCR. | Regulation of DNMT1 and p16 gene promoter region methylation | Inhibition of DNMT1 expression activity; induce p16 gene demethylation; up-regulation of p16 protein expression | [76] |
Sinomenine | A549 cell. 1. Cytotoxicity assay 2. Real-time PCR analysis 3. Bisulfite sequencing 4. Quantitative methylation-specific PCR (qMSP) | Regulate the DNA methylation level of mPGES-1 promoter | Inhibit the expression level of mPGES-1 gene and treat inflammation. | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Lio, C.; Li, N.; Huang, C.; Yao, X.; Luo, J. Advances in Traditional Chinese Medicine for Modulating DNA Methylation in the Treatment of Inflammatory Diseases. Int. J. Mol. Sci. 2025, 26, 6331. https://doi.org/10.3390/ijms26136331
Zhang C, Lio C, Li N, Huang C, Yao X, Luo J. Advances in Traditional Chinese Medicine for Modulating DNA Methylation in the Treatment of Inflammatory Diseases. International Journal of Molecular Sciences. 2025; 26(13):6331. https://doi.org/10.3390/ijms26136331
Chicago/Turabian StyleZhang, Cui, Chonkit Lio, Nana Li, Cong Huang, Xueming Yao, and Jinfang Luo. 2025. "Advances in Traditional Chinese Medicine for Modulating DNA Methylation in the Treatment of Inflammatory Diseases" International Journal of Molecular Sciences 26, no. 13: 6331. https://doi.org/10.3390/ijms26136331
APA StyleZhang, C., Lio, C., Li, N., Huang, C., Yao, X., & Luo, J. (2025). Advances in Traditional Chinese Medicine for Modulating DNA Methylation in the Treatment of Inflammatory Diseases. International Journal of Molecular Sciences, 26(13), 6331. https://doi.org/10.3390/ijms26136331