Development of a γ-Cyclodextrin-Based Cryogel Loaded with Trimethoprim for Acne Treatment: Design, Synthesis, and In Vitro Evaluation
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of Monomer and Characterization
2.2. Synthesis and Characterization of Cryogels
2.3. Swelling
2.4. Drug Release Profile
2.5. Antimicrobial Activity
2.6. Cytotoxic Activity
3. Materials and Methods
3.1. Materials
3.2. Chemistry
3.2.1. Synthesis of γ-CD-Acrylate Monomers (CDA)
3.2.2. Synthesis of γ-CD–Acrylate–Trimethoprim Inclusion Complex (CDA/TMP)
3.2.3. Synthesis of CDA/TMP-Based Cryogel (C_AETMA-CDA/TMP)
3.3. Characterization
3.3.1. MALDI-TOF MS
- m/z 1373, consistent with monoacrylated γ-CD;
- m/z 1427, assigned to diacrylated γ-CD;
- m/z 1481, corresponding to triacrylated γ-CD.
3.3.2. Infrared Spectroscopy (FT-IR)
3.3.3. Thermogravimetric Analysis (TGA)
3.3.4. Cryogel’s Morphologies
3.4. Swelling Measurement
3.5. Drug Release Experiments
3.6. Antimicrobial Assay
3.7. Cytotoxic Activity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omidian, H.; Akhzarmehr, A.; Gill, E.J. Cyclodextrin–Hydrogel Hybrids in Advanced Drug Delivery. Gels 2025, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, Natural Compounds, and Plant Bioactives—A Nutritional Perspective. Biomolecules 2021, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Duchêne, D. Cyclodextrins and Their Pharmaceutical Applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Chaudhari, P.; Ghate, V.M.; Lewis, S.A. Supramolecular Cyclodextrin Complex: Diversity, Safety, and Applications in Ocular Therapeutics. Exp. Eye Res. 2019, 189, 107829. [Google Scholar] [CrossRef] [PubMed]
- Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. A Review on the Use of Cyclodextrins in Foods. Food Hydrocoll. 2009, 23, 1631–1640. [Google Scholar] [CrossRef]
- Bottomley, W.W.; Cunliffe, W.J. Oral Trimethoprim as a Third-Line Antibiotic in the Management of Acne Vulgaris. Dermatology 2009, 187, 193–196. [Google Scholar] [CrossRef]
- Zaenglein, A.L.; Pathy, A.L.; Schlosser, B.J.; Alikhan, A.; Baldwin, H.E.; Berson, D.S.; Bowe, W.P.; Graber, E.M.; Harper, J.C.; Kang, S.; et al. Guidelines of Care for the Management of Acne Vulgaris. J. Am. Acad. Dermatol. 2016, 74, 945–973.e33. [Google Scholar] [CrossRef]
- McCarty, M.; Rosso, J.Q.D. Chronic Administration of Oral Trimethoprim-Sulfamethoxazole for Acne Vulgaris. J. Clin. Aesthet. Dermatol. 2011, 4, 58–66. [Google Scholar]
- DEL GIUDICE, P. Skin Infections Caused by Staphylococcus Aureus. Acta Derm. Venereol. 2020, 100, 5725. [Google Scholar] [CrossRef]
- Khorvash, F.; Abdi, F.; Kashani, H.H.; Naeini, F.F.; Narimani, T. Staphylococcus Aureus in Acne Pathogenesis: A Case-Control Study. N. Am. J. Med. Sci. 2012, 4, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Arti, S.; Kaur, K.; Kaur, J.; Ghosh, T.K.; Banipal, T.S.; Banipal, P.K. Host-Guest Interaction of Trimethoprim Drug with Cyclodextrins in Aqueous Solutions: Calorimetric, Spectroscopic, Volumetric and Theoretical Approach. J. Mol. Liq. 2021, 329, 115431. [Google Scholar] [CrossRef]
- Oliveri, V.; D’Agata, R.; Giglio, V.; Spoto, G.; Vecchio, G. Cyclodextrin-Functionalised Gold Nanoparticles via Streptavidin: A Supramolecular Approach. Supramol. Chem. 2013, 25, 465–473. [Google Scholar] [CrossRef]
- Zagni, C.; Patamia, V.; Dattilo, S.; Fuochi, V.; Furnari, S.; Furneri, P.M.; Carroccio, S.C.; Floresta, G.; Rescifina, A. Supramolecular Biomaterials as Drug Nanocontainers with Iron Depletion Properties for Antimicrobial Applications. Mater. Adv. 2024, 5, 3675–3682. [Google Scholar] [CrossRef]
- Omidian, H.; Dey Chowdhury, S.; Babanejad, N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023, 15, 1836. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Charreyre, M.-T.; Favier, A.; Baleizão, C.; Farinha, J.P.S. Temperature-Responsive Copolymers without Compositional Drift by RAFT Copolymerization of 2-(Acryloyloxy)Ethyl Trimethylammonium Chloride and 2-(Diethylamino)Ethyl Acrylate. Polym. Chem. 2019, 10, 2106–2116. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Y.; Shen, Y.; Yang, J.; Zhang, Z.; You, Y.; Lv, Z.; Yao, L. Robust Hydrogel Adhesive with Dual Hydrogen Bond Networks. Molecules 2021, 26, 2688. [Google Scholar] [CrossRef]
- Zhang, R.; Liberski, A.; Sanchez-Martin, R.; Bradley, M. Microarrays of over 2000 Hydrogels—Identification of Substrates for Cellular Trapping and Thermally Triggered Release. Biomaterials 2009, 30, 6193–6201. [Google Scholar] [CrossRef] [PubMed]
- Tomarchio, E.G.; Zagni, C.; Dattilo, S.; Vitiello, L.; Fuochi, V.; Furnari, S.; Furneri, P.M.; Granata, G.; Carroccio, S.C.; Rescifina, A. Advanced Cyclodextrin-Based Multiloaded Hydrogels for Targeted Drug Delivery in the Fight against Vaginal Fungal Infections. Carbohydr. Polym. 2025, 356, 123412. [Google Scholar] [CrossRef]
- Zagni, C.; Coco, A.; Mecca, T.; Curcuruto, G.; Patamia, V.; Mangano, K.; Rescifina, A.; Carroccio, S.C. Sponge-like Macroporous Cyclodextrin-Based Cryogels for Controlled Drug Delivery. Mater. Chem. Front. 2023, 7, 2693–2705. [Google Scholar] [CrossRef]
- Jug, M.; Mura, P.A. Grinding as Solvent-Free Green Chemistry Approach for Cyclodextrin Inclusion Complex Preparation in the Solid State. Pharmaceutics 2018, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Spitaleri, F.; Dattilo, S.; Aleo, D.; Saita, M.G.; Patti, A. Cyclodextrin-Based Iodophors with High Iodine Retention in Solid State and in Dilute Solutions. Carbohydr. Polym. 2025, 349, 122969. [Google Scholar] [CrossRef]
- Ding, Y.; Ma, Y.; Ding, C.; Nie, J.; Xu, Z. Preparation of Trimethoprim/Methyl β-Cyclodextrin Complexes, In Vitro and In Vivo Pharmacokinetic Study, and Evaluation of Antibacterial Activity in Combination with the Complex of Sulfamethoxazole/Methyl β-Cyclodextrin. J. Mol. Struct. 2025, 1321, 140105. [Google Scholar] [CrossRef]
- Dattilo, S.; Spitaleri, F.; Aleo, D.; Saita, M.G.; Patti, A. Solid-State Preparation and Characterization of 2-Hydroxypropylcyclodextrins-Iodine Complexes as Stable Iodophors. Biomolecules 2023, 13, 474. [Google Scholar] [CrossRef]
- Dattilo, S.; Zagni, C.; Mecca, T.; Patamia, V.; Floresta, G.; Nicotra, P.; Carroccio, S.C.; Rescifina, A. Solvent-Free Conversion of CO2 in Carbonates through a Sustainable Macroporous Catalyst. Giant 2024, 18, 100258. [Google Scholar] [CrossRef]
- Ferrero, C.; Massuelle, D.; Doelker, E. Towards Elucidation of the Drug Release Mechanism from Compressed Hydrophilic Matrices Made of Cellulose Ethers. II. Evaluation of a Possible Swelling-Controlled Drug Release Mechanism Using Dimensionless Analysis. J. Control Release 2010, 141, 223–233. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical Applications of Cyclodextrins: Basic Science and Product Development. J. Pharm. Pharmacol. 2010, 62, 1607–1621. [Google Scholar] [CrossRef]
- Szente, L.; Szejtli, J. Cyclodextrins as Food Ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Hoare, T.R.; Kohane, D.S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef]
- Qiu, Y.; Park, K. Environment-Sensitive Hydrogels for Drug Delivery. Adv. Drug Deliv. Rev. 2012, 64, 49–60. [Google Scholar] [CrossRef]
- Jablan, J.; Bačić, I.; Kujundžić, N.; Jug, M. Zaleplon Co-Ground Complexes with Natural and Polymeric β-Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 353–362. [Google Scholar] [CrossRef]
- Zagni, C.; Scamporrino, A.A.; Riccobene, P.M.; Floresta, G.; Patamia, V.; Rescifina, A.; Carroccio, S.C. Portable Nanocomposite System for Wound Healing in Space. Nanomaterials 2023, 13, 741. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices. International Organization for Standardization: Geneva, Switzerland, 2009. Available online: https://www.iso.org/standard/36406.html (accessed on 26 May 2025).
Model | R2 | k | n |
---|---|---|---|
Zero-order | 0.2220 | −0.06605 | — |
First-order | 0.1956 | −0.002385 | — |
Korsmeyer–Peppas | 0.9915 | 20.54 | 0.05889 |
Higuchi | −0.4793 | 2.954 | — |
Sample | Inhibition Zone (mm) |
---|---|
C_AETMA-CDA/TMP | 25.2 |
C_AETMA | NA |
C_AETMA-CDA | NA |
TMP (standard disk) | 16.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomarchio, E.G.; Giglio, V.; Fuochi, V.; Furnari, S.; Furneri, P.M.; Mecca, T.; Dattilo, S.; Zagni, C.; Rescifina, A. Development of a γ-Cyclodextrin-Based Cryogel Loaded with Trimethoprim for Acne Treatment: Design, Synthesis, and In Vitro Evaluation. Int. J. Mol. Sci. 2025, 26, 6319. https://doi.org/10.3390/ijms26136319
Tomarchio EG, Giglio V, Fuochi V, Furnari S, Furneri PM, Mecca T, Dattilo S, Zagni C, Rescifina A. Development of a γ-Cyclodextrin-Based Cryogel Loaded with Trimethoprim for Acne Treatment: Design, Synthesis, and In Vitro Evaluation. International Journal of Molecular Sciences. 2025; 26(13):6319. https://doi.org/10.3390/ijms26136319
Chicago/Turabian StyleTomarchio, Elisabetta Grazia, Valentina Giglio, Virginia Fuochi, Salvatore Furnari, Pio Maria Furneri, Tommaso Mecca, Sandro Dattilo, Chiara Zagni, and Antonio Rescifina. 2025. "Development of a γ-Cyclodextrin-Based Cryogel Loaded with Trimethoprim for Acne Treatment: Design, Synthesis, and In Vitro Evaluation" International Journal of Molecular Sciences 26, no. 13: 6319. https://doi.org/10.3390/ijms26136319
APA StyleTomarchio, E. G., Giglio, V., Fuochi, V., Furnari, S., Furneri, P. M., Mecca, T., Dattilo, S., Zagni, C., & Rescifina, A. (2025). Development of a γ-Cyclodextrin-Based Cryogel Loaded with Trimethoprim for Acne Treatment: Design, Synthesis, and In Vitro Evaluation. International Journal of Molecular Sciences, 26(13), 6319. https://doi.org/10.3390/ijms26136319