Rendering NK Cells Antigen-Specific for the Therapy of Solid Tumours
Abstract
1. From NK-Cell Classification to CAR-NK Therapy: Addressing the Challenges of Immunotherapy in Solid Tumours
1.1. NK Cell Classification and the Role of Non-Manipulated NK Cells in Cancer
1.1.1. Activating NK Receptors
1.1.2. Inhibitory NK Receptors
1.1.3. The Balance Between Inhibition and Activation
1.1.4. The Interplay Between NK Cells and Tumours
1.2. Solid Tumours and Immunotherapy Challenges
1.3. Introducing Antigen Specificity by NK-Cell Engineering
1.3.1. Chimeric Antigen Receptors
Feature | CAR-T Cells | CAR-NK Cells |
---|---|---|
Cost | -High | -Low due to off-the-shelf potential |
Side effects | -GVHD 1 -ICANS 2 -CRS 3 -TLS 4 | -Flu-like symptoms -Rare cases of CRS reported |
Killing mechanism | -Single mechanism: CAR-mediated killing | -Dual mechanisms: CAR-mediated killing (direct) + NK receptor-dependent killing (indirect) → multiple tumour recognition mechanisms + natural ability against non-self |
Source | -Mainly autologous T cells | -Variety of sources (see Table 2) |
Self-recognition of normal cells | -No intrinsic self-recognition system → higher risk of on-target/off-tumour toxicity | -Self-identification of normal cells via KIRs 5 and NKG2A |
Immune escape | -High | -Low → can kill tumour cells that downregulate HLA 6 |
1.3.2. NK-Cell Sources and CAR Transfer Methods
NK Cell Sources | Advantages | Limitations |
---|---|---|
NK92 cells | -Easy to expand. -Easily genetically manipulated; allows introduction of exogenous genes through electroporation; no viral vectors needed. -Only NK-cell line applied in clinical trials; demonstrates controllable adverse effects. -Multiple doses available. | -Require irradiation before use to inhibit in vivo proliferation, limiting long-term persistence. -Lack of CD16 receptor-mediated ADCC 1 effect. |
PB 2 NK cells | -Mature NK cells ready for immediate use without differentiation. -Easy in vivo expansion. -Well-documented clinical safety and efficacy. | -Endogenous NK-cell function may be impaired by disease or treatment. -Requires T cell removal to prevent GvHD 3 in allogenic settings. -Limited to a single dose per donor. -Genetic modifications are challenging. -Lower percentage of NK cells in PB. |
UCB 4 NK cells | -High proliferation efficiency. -Robust bone marrow homing ability. -Higher percentage of NK cells. -Relatively stable NK-cell source. -Ability to cryopreserve them. | -Not fully differentiated. -Low expression of NK-cell receptors. -Limited cell inhibition ability. -Potential risk of tumourigenesis in allogenic transplantations. |
HSC 5 NK cells | -Potential for unlimited numbers. -Amenable to genetic manipulation. -Suitable for “off-the-shelf” therapy. | -Possibility of triggering unexpected immune responses due to potential immunogenicity. -Long expansion time. |
iPSC 6 NK cells | -Efficiently clone, expand, and differentiate in vitro. -Uniform cell products. -Multiple doses available from single source. -Suitable for “off-the-shelf” therapy. | -Complicated production process. -Low expression of endogenous CD16. Limiting ADCC. -Risk of malignant transformation. -Potential immunogenicity concerns. |
1.4. Key Advancements in CAR-NK Cell Therapy
2. Potential Therapeutic Implications
2.1. Preclinical Studies
2.2. Clinical Studies
2.3. Combination Therapies in Preclinical and Clinical Settings
2.3.1. CAR-NK Cells Combined with Immune Checkpoint Inhibitors
2.3.2. CAR-NK Cells Combined with Chemo- or Radiotherapy
2.3.3. CAR-NK Cells Combined with STING Agonists
2.3.4. CAR-NK Cells Combined with Enzyme Inhibitors
2.3.5. CAR-NK Cells Combined with Oncolytic Viruses
2.3.6. CAR-NK Cells Combined with CAR-T Cells or CAR-Macrophages
2.3.7. CAR-NK Cells Combined with Photothermal Therapy
3. Open Questions and Emerging Areas
3.1. Tumour Microenvironment Challenges
3.1.1. Hypoxia in the TME
3.1.2. Immunosuppressive Cytokines in the TME
3.2. Next-Generation Engineering
3.3. Emerging Targets
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADCC | Antibody-dependent cellular cytotoxicity |
ADO | Adenosine |
ATP | Adenosine triphosphate |
AXL | Tyrosine–protein kinase receptor AXL |
Bcl2 | B-cell lymphoma 2 |
CADM1 | Cell adhesion molecule 1 |
CAIX | Carbonic anhydrase IX |
CAR | Chimeric antigen receptor |
CAR-M | CAR–macrophage |
CBLB | Casitas B-lineage lymphoma proto-oncogene B |
CCCR | Chimeric costimulatory converting receptor |
cDC1 | Conventional type 1 dendritic cell |
CD28H | CD28 homologue |
CD3ζ | CD3 zeta chain |
cGMP | Cyclic GMP-AMP |
CIML | Cytokine-induced memory-like |
CISH | Cytokine-inducible SH2-containing protein |
CRISPR | Clustered regularly interspaced short palindromic repeats |
CRS | Cytokine release syndrome |
CTLA4 | Cytotoxic T-lymphocyte associated protein 4 |
CXCR3/4 | C-X-C motif chemokine receptor 3/4 |
DAP10 | DNAX-activating protein 10 |
DLL3 | Delta-like ligand 3 |
DNAM-1 | DNAX accessory molecule |
ECM | Extracellular matrix components |
EGFR | Epidermal growth factor receptor |
ERK | Extracellular signal regulated kinase |
EpCAM | Epithelial cell adhesion molecule |
FasL | Fas ligand |
GBM | Glioblastoma |
GD2 | Disialoganglioside |
GCP3 | Gamma-Tubulin complex protein |
GSC | Glioblastoma stem cells |
GvHD | Graft-versus-host disease |
haNKs | High-affinity NKs |
HER1/2 | Human epidermal growth factor 1/2 |
HLA | Human leukocyte antigen |
HSC | Haematopoietic stem cells |
IFNγ | Interferon gamma |
iKIRS | Inhibitory killer cell immunoglobulin-like receptor |
iPSC | Induced pluripotent stem cells |
ICAM1 | Intracellular adhesion molecule |
ICANS | Immune effector cell-associated neurotoxicity syndrome |
ICI | Immune checkpoint inhibitor |
IL | Interleukin |
ILC3 | Innate lymphoid cell type 3 |
iRC9 | Rapamycin-regulated Caspase-9 |
ITIM | Immunoreceptor tyrosine-based inhibitory motif |
KIR | Killer cell immunoglobulin-like receptor |
LAG-3 | Lymphocyte-activation gene 3 |
LFA-1 | Leukocyte function-associated molecule |
MMP | Matrix metalloprotease |
MICA/B | HLA class I related molecules |
MSLN | Mesothelin |
MUC1 | Mucin 1 |
NCAM | Neural cell adhesion molecule |
NCR | Natural cytotoxicity receptors |
NFAT | Nuclear factor of activated T cells |
NK | Natural killer |
NKG2 | Natural killer group 2 |
NKG2D | Natural killer group 2 membrane D |
NR3C1 | Nuclear receptor subfamily 3 group C member |
OV | Oncolytic viruses |
PB | Peripheral blood |
PD-1 | Programmed cell death protein |
PDL-1/2 | PD-1/2 ligand |
PI | Proteasome inhibitors |
PSCA | Prostate stem cell antigen |
PSMA | Prostate-specific membrane antigen |
PTT | Photothermal therapy |
PTX | Paclitaxel |
RCC | Renal cell carcinoma |
ROBO1 | Roundabout guidance receptor 1 |
ROR1 | Receptor tyrosine kinase-like orphan receptor 1 |
scFv | Single-chain variable fragment |
SHP1 | Protein tyrosine phosphatase 1 |
STAT3 | Signal transducer and activator of transcription 3 |
STING | Stimulator of interferon genes |
synNotch | Synthetic Notch receptor |
TF | Tissue factor |
TGFβ | Transforming growth factor-β |
TIGIT | T cell immunoreceptor with immunoglobulin and ITIM motifs |
TIM-3 | T-cell immunoglobulin and mucin domain 3 |
TKI | Tyrosine kinase inhibitor |
TNBC | Triple-negative breast cancer |
TME | Tumour microenvironment |
TRAIL | TNF-related apoptosis-induced ligand |
TROP2 | Trophoblast antigen 2 |
UCB | Umbilical cord blood |
ULBP | UL16-binding protein |
A-GD2 | Disialoganglioside 2 |
5T4 | Trophoblast glycoprotein |
References
- Moretta, L.; Montaldo, E.; Vacca, P.; Del Zotto, G.; Moretta, F.; Merli, P.; Locatelli, F.; Mingari, M.C. Human natural killer cells: Origin, receptors, function, and clinical applications. Int. Arch. Allergy Immunol. 2014, 164, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Dhar, P.; Wu, J.D. NKG2D and its ligands in cancer. Curr. Opin. Immunol. 2018, 51, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Galat, V.; Galat4, Y.; Lee, Y.K.A.; Wainwright, D.; Wu, J. NK cell-based cancer immunotherapy: From basic biology to clinical development. J. Hematol. Oncol. 2021, 14, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Raskov, H.; Orhan, A.; Salanti, A.; Gaggar, S.; Gögenur, I. Natural killer cells in cancer and cancer immunotherapy. cancer letters 2021, 520, 233–242. [Google Scholar] [CrossRef]
- Freud, A.G.; Mundy-Bosse, B.L.; Yu, J.; Caligiuri, M.A. The broad spectrum of human natural killer cell diversity. Immunity 2017, 47, 820–833. [Google Scholar] [CrossRef]
- Barrow, A.D.; Martin, C.J.; Colonna, M. The natural cytotoxicity receptors in health and disease. Front. Immunol. 2019, 10, 909. [Google Scholar] [CrossRef]
- Raulet, D.H.; Guerra, N. Oncogenic stress sensed by the immune system: Role of natural killer cell receptors. Nat. Rev. Immunol. 2009, 9, 568–580. [Google Scholar] [CrossRef]
- Spits, H.; Artis, D.; Colonna, M.; Diefenbach, A.; Di Santo, J.P.; Eberl, G.; Koyasu, S.; Locksley, R.M.; McKenzie, A.N.; Mebius, R.E. Innate lymphoid cells—A proposal for uniform nomenclature. Nat. Rev. Immunol. 2013, 13, 145–149. [Google Scholar] [CrossRef]
- Fujisaki, H.; Kakuda, H.; Imai, C.; Mullighan, C.G.; Campana, D. Replicative potential of human natural killer cells. Br. J. Haematol. 2009, 145, 606–613. [Google Scholar] [CrossRef]
- Rebuffet, L.; Melsen, J.E.; Escalière, B.; Basurto-Lozada, D.; Bhandoola, A.; Björkström, N.K.; Bryceson, Y.T.; Castriconi, R.; Cichocki, F.; Colonna, M. High-dimensional single-cell analysis of human natural killer cell heterogeneity. Nat. Immunol. 2024, 25, 1474–1488. [Google Scholar] [CrossRef]
- Cursons, J.; Souza-Fonseca-Guimaraes, F.; Foroutan, M.; Anderson, A.; Hollande, F.; Hediyeh-Zadeh, S.; Behren, A.; Huntington, N.D.; Davis, M.J. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol. Res. 2019, 7, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Rowaiye, A.B.; Asala, T.; Oli, A.N.; Uzochukwu, I.C.; Akpa, A.; Esimone, C.O. The activating receptors of natural killer cells and their inter-switching potentials. Curr. Drug Targets 2020, 21, 1733–1751. [Google Scholar] [CrossRef] [PubMed]
- Moretta, A.; Bottino, C.; Vitale, M.; Pende, D.; Cantoni, C.; Mingari, M.C.; Biassoni, R.; Moretta, L. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 2001, 19, 197–223. [Google Scholar] [CrossRef]
- Vitale, M.; Bottino, C.; Sivori, S.; Sanseverino, L.; Castriconi, R.; Marcenaro, E.; Augugliaro, R.; Moretta, L.; Moretta, A. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non–major histocompatibility complex–restricted tumor cell lysis. J. Exp. Med. 1998, 187, 2065–2072. [Google Scholar] [CrossRef]
- Pessino, A.; Sivori, S.; Bottino, C.; Malaspina, A.; Morelli, L.; Moretta, L.; Biassoni, R.; Moretta, A. Molecular cloning of NKp46: A novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 1998, 188, 953–960. [Google Scholar] [CrossRef]
- Brandt, C.S.; Baratin, M.; Yi, E.C.; Kennedy, J.; Gao, Z.; Fox, B.; Haldeman, B.; Ostrander, C.D.; Kaifu, T.; Chabannon, C. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 2009, 206, 1495–1503. [Google Scholar] [CrossRef]
- Sivori, S.; Vitale, M.; Morelli, L.; Sanseverino, L.; Augugliaro, R.; Bottino, C.; Moretta, L.; Moretta, A. p46, a novel natural killer cell–specific surface molecule that mediates cell activation. J. Exp. Med. 1997, 186, 1129–1136. [Google Scholar] [CrossRef]
- Zhuang, X.; Long, E.O. CD28 homolog is a strong activator of natural killer cells for lysis of B7H7+ tumor cells. Cancer Immunol. Res. 2019, 7, 939–951. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; He, Z.; Li, L.; Liu, S.; Jiang, M.; Zhao, B.; Deng, M.; Wang, W.; Mi, X. Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discov. 2024, 10, 40. [Google Scholar] [CrossRef]
- Gasser, S.; Orsulic, S.; Brown, E.J.; Raulet, D.H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005, 436, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Groh, V.; Steinle, A.; Bauer, S.; Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 1998, 279, 1737–1740. [Google Scholar] [CrossRef] [PubMed]
- Groh, V.; Rhinehart, R.; Randolph-Habecker, J.; Topp, M.S.; Riddell, S.R.; Spies, T. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat. Immunol. 2001, 2, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, S.; Pal, P.; Lal, G. Key activating and inhibitory ligands involved in the mobilization of natural killer cells for cancer immunotherapies. ImmunoTargets Ther. 2021, ume 10, 387–407. [Google Scholar] [CrossRef]
- Huntington, N.D.; Cursons, J.; Rautela, J. The cancer–natural killer cell immunity cycle. Nat. Rev. Cancer 2020, 20, 437–454. [Google Scholar] [CrossRef]
- Buckle, I.; Guillerey, C. Inhibitory receptors and immune checkpoints regulating natural killer cell responses to cancer. Cancers 2021, 13, 4263. [Google Scholar] [CrossRef]
- Moretta, A.; Tambussi, G.; Bottino, C.; Tripodi, G.; Merli, A.; Ciccone, E.; Pantaleo, G.; Moretta, L. A novel surface antigen expressed by a subset of human CD3-CD16+ natural killer cells. Role in cell activation and regulation of cytolytic function. J. Exp. Med. 1990, 171, 695–714. [Google Scholar] [CrossRef]
- Long, E.O.; Burshtyn, D.N.; Clark, W.P.; Peruzzi, M.; Rajagopalan, S.; Rojo, S.; Wagtmann, N.; Winter, C.C. Killer cell inhibitory receptors: Diversity, specificity, and function. Immunol. Rev. 1997, 155, 135–144. [Google Scholar] [CrossRef]
- Vivier, E.; Nunès, J.A.; Vély, F. Natural killer cell signaling pathways. Science 2004, 306, 1517–1519. [Google Scholar] [CrossRef]
- Kim, S.; Poursine-Laurent, J.; Truscott, S.M.; Lybarger, L.; Song, Y.-J.; Yang, L.; French, A.R.; Sunwoo, J.B.; Lemieux, S.; Hansen, T.H. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005, 436, 709–713. [Google Scholar] [CrossRef]
- Kärre, K.; Ljunggren, H.G.; Piontek, G.; Kiessling, R. Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986, 319, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Sivori, S.; Della Chiesa, M.; Carlomagno, S.; Quatrini, L.; Munari, E.; Vacca, P.; Tumino, N.; Mariotti, F.R.; Mingari, M.C.; Pende, D. Inhibitory receptors and checkpoints in human NK cells, implications for the immunotherapy of cancer. Front. Immunol. 2020, 11, 2156. [Google Scholar] [CrossRef] [PubMed]
- Greppi, M.; De Franco, F.; Obino, V.; Rebaudi, F.; Goda, R.; Frumento, D.; Vita, G.; Baronti, C.; Melaiu, O.; Bozzo, M. NK cell receptors in anti-tumor and healthy tissue protection: Mechanisms and therapeutic advances. Immunol. Lett. 2024, 270, 106932. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Lal, G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front. Immunol. 2017, 8, 1124. [Google Scholar] [CrossRef]
- Screpanti, V.; Wallin, R.; Ljunggren, H.-G.; Grandien, A. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J. Immunol. 2001, 167, 2068–2073. [Google Scholar] [CrossRef]
- Prager, I.; Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 2019, 105, 1319–1329. [Google Scholar] [CrossRef]
- Wang, W.; Erbe, A.K.; Hank, J.A.; Morris, Z.S.; Sondel, P.M. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front. Immunol. 2015, 6, 368. [Google Scholar] [CrossRef]
- Gavhane, Y.; Shete, A.; Bhagat, A.; Shinde, V.; Bhong, K.; Khairnar, G.; Yadav, A. Solid tumors: Facts, challenges and solutions. Int J Pharm Sci Res 2011, 2, 1–12. [Google Scholar]
- Tamborero, D.; Rubio-Perez, C.; Muiños, F.; Sabarinathan, R.; Piulats, J.M.; Muntasell, A.; Dienstmann, R.; Lopez-Bigas, N.; Gonzalez-Perez, A. A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin. Cancer Res. 2018, 24, 3717–3728. [Google Scholar] [CrossRef]
- Peng, L.; Sferruzza, G.; Yang, L.; Zhou, L.; Chen, S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell. Mol. Immunol. 2024, 21, 1089–1108. [Google Scholar] [CrossRef]
- Castriconi, R.; Dondero, A.; Bellora, F.; Moretta, L.; Castellano, A.; Locatelli, F.; Corrias, M.V.; Moretta, A.; Bottino, C. Neuroblastoma-derived TGF-β1 modulates the chemokine receptor repertoire of human resting NK cells. J. Immunol. 2013, 190, 5321–5328. [Google Scholar] [CrossRef] [PubMed]
- Gough, N.R.; Xiang, X.; Mishra, L. TGF-β signaling in liver, pancreas, and gastrointestinal diseases and cancer. Gastroenterology 2021, 161, 434–452.e415. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Shi, L.; Xie, N.; Liu, Z.; Qian, M.; Meng, F.; Xu, Q.; Zhou, M.; Cao, X.; Zhu, W.-G. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat. Commun. 2017, 8, 318. [Google Scholar] [CrossRef] [PubMed]
- Caja, L.; Dituri, F.; Mancarella, S.; Caballero-Diaz, D.; Moustakas, A.; Giannelli, G.; Fabregat, I. TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. Int. J. Mol. Sci. 2018, 19, 1294. [Google Scholar] [CrossRef]
- Baronzio, G.; Schwartz, L.; Kiselevsky, M.; Guais, A.; Sanders, E.; Milanesi, G.; Baronzio, M.; Freitas, I. Tumor interstitial fluid as modulator of cancer inflammation, thrombosis, immunity and angiogenesis. Anticancer Res. 2012, 32, 405–414. [Google Scholar]
- Melero, I.; Rouzaut, A.; Motz, G.T.; Coukos, G. T-cell and NK-cell infiltration into solid tumors: A key limiting factor for efficacious cancer immunotherapy. Cancer Discov. 2014, 4, 522–526. [Google Scholar] [CrossRef]
- Gentles, A.J.; Newman, A.M.; Liu, C.L.; Bratman, S.V.; Feng, W.; Kim, D.; Nair, V.S.; Xu, Y.; Khuong, A.; Hoang, C.D. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 2015, 21, 938–945. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, D.L.; De Lara, C.M.; Ghattas, H.; Asquith, B.; Worth, A.; Griffin, G.E.; Taylor, G.P.; Tough, D.F.; Beverley, P.C. In vivo kinetics of human natural killer cells: The effects of ageing and acute and chronic viral infection. Immunology 2007, 121, 258–265. [Google Scholar] [CrossRef]
- Gill, S.; Vasey, A.E.; De Souza, A.; Baker, J.; Smith, A.T.; Kohrt, H.E.; Florek, M.; Gibbs Jr, K.D.; Tate, K.; Ritchie, D.S. Rapid development of exhaustion and down-regulation of eomesodermin limit the antitumor activity of adoptively transferred murine natural killer cells. Blood J. Am. Soc. Hematol. 2012, 119, 5758–5768. [Google Scholar] [CrossRef]
- Esmaeilzadeh, A.; Hadiloo, K.; Jabbari, M.; Elahi, R. Current progress of chimeric antigen receptor (CAR) T versus CAR NK cell for immunotherapy of solid tumors. Life Sci. 2024, 337, 122381. [Google Scholar] [CrossRef]
- Maalej, K.M.; Merhi, M.; Inchakalody, V.P.; Mestiri, S.; Alam, M.; Maccalli, C.; Cherif, H.; Uddin, S.; Steinhoff, M.; Marincola, F.M. CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances. Mol. Cancer 2023, 22, 20. [Google Scholar] [CrossRef] [PubMed]
- Sadelain, M.; Rivière, I.; Riddell, S. Therapeutic T cell engineering. Nature 2017, 545, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Andrea, A.E.; Chiron, A.; Sarrabayrouse, G.; Bessoles, S.; Hacein-Bey-Abina, S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: Companions or competitors? Front. Immunol. 2024, 15, 1459818. [Google Scholar] [CrossRef] [PubMed]
- Berrien-Elliott, M.M.; Becker-Hapak, M.; Cashen, A.F.; Jacobs, M.; Wong, P.; Foster, M.; McClain, E.; Desai, S.; Pence, P.; Cooley, S. Systemic IL-15 promotes allogeneic cell rejection in patients treated with natural killer cell adoptive therapy. Blood J. Am. Soc. Hematol. 2022, 139, 1177–1183. [Google Scholar] [CrossRef]
- Schmidt, P.; Raftery, M.J.; Pecher, G. Engineering NK cells for CAR therapy—Recent advances in gene transfer methodology. Front. Immunol. 2021, 11, 611163. [Google Scholar] [CrossRef]
- Bexte, T.; Reindl, L.M.; Ullrich, E. Nonviral technologies can pave the way for CAR-NK cell therapy. J. Leukoc. Biol. 2023, 114, 475–486. [Google Scholar] [CrossRef]
- Hinnekens, C.; De Smedt, S.C.; Fraire, J.C.; Braeckmans, K. Non-viral engineering of NK cells. Biotechnol. Adv. 2023, 68, 108212. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, M.; Zhang, W.; Liu, N.; Wang, D.; Jing, L.; Xu, N.; Yang, N.; Ren, T. Chimeric antigen receptor-based natural killer cell immunotherapy in cancer: From bench to bedside. Cell Death Dis. 2024, 15, 50. [Google Scholar] [CrossRef]
- Veluchamy, J.P.; Kok, N.; van der Vliet, H.J.; Verheul, H.M.; de Gruijl, T.D.; Spanholtz, J. The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: Recent innovations and future developments. Front. Immunol. 2017, 8, 631. [Google Scholar] [CrossRef]
- Lee, M.Y.; Robbins, Y.; Sievers, C.; Friedman, J.; Sater, H.A.; Clavijo, P.E.; Judd, N.; Tsong, E.; Silvin, C.; Soon-Shiong, P. Chimeric antigen receptor engineered NK cellular immunotherapy overcomes the selection of T-cell escape variant cancer cells. J. Immunother. Cancer 2021, 9, e002128. [Google Scholar] [CrossRef]
- Cooper, M.A.; Fehniger, T.A.; Caligiuri, M.A. The biology of human natural killer-cell subsets. Trends Immunol. 2001, 22, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, T.; Tagaya, Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu. Rev. Immunol. 1999, 17, 19–49. [Google Scholar] [CrossRef] [PubMed]
- Ranson, T.; Vosshenrich, C.A.; Corcuff, E.; Richard, O.; Muller, W.; Di Santo, J.P. IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 2003, 101, 4887–4893. [Google Scholar] [CrossRef] [PubMed]
- Siegler, E.L.; Wang, P. Abstract A59: Expression of membrane-bound IL-15/IL-15Rα complex in chimeric antigen receptor-engineered natural killer cells for enhanced efficacy against solid tumors. Cancer Immunol. Res. 2018, 6, A59. [Google Scholar] [CrossRef]
- Sahm, C.; Schönfeld, K.; Wels, W.S. Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunol. Immunother. 2012, 61, 1451–1461. [Google Scholar] [CrossRef]
- Silvestre, R.N.; Eitler, J.; de Azevedo, J.T.C.; Tirapelle, M.C.; Fantacini, D.M.C.; de Souza, L.E.B.; Swiech, K.; Covas, D.T.; Calado, R.T.; Montero, P.O. Engineering NK-CAR. 19 cells with the IL-15/IL-15Rα complex improved proliferation and anti-tumor effect in vivo. Front. Immunol. 2023, 14, 1226518. [Google Scholar] [CrossRef]
- Van den Eynde, A.; Gehrcken, L.; Verhezen, T.; Lau, H.W.; Hermans, C.; Lambrechts, H.; Flieswasser, T.; Quatannens, D.; Roex, G.; Zwaenepoel, K. IL-15-secreting CAR natural killer cells directed toward the pan-cancer target CD70 eliminate both cancer cells and cancer-associated fibroblasts. J. Hematol. Oncol. 2024, 17, 8. [Google Scholar] [CrossRef]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Nassif Kerbauy, L.; Overman, B.; Thall, P.; Kaplan, M. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef]
- Teng, K.-Y.; Mansour, A.G.; Zhu, Z.; Li, Z.; Tian, L.; Ma, S.; Xu, B.; Lu, T.; Chen, H.; Hou, D. Off-the-shelf prostate stem cell antigen–directed chimeric antigen receptor natural killer cell therapy to treat pancreatic cancer. Gastroenterology 2022, 162, 1319–1333. [Google Scholar] [CrossRef]
- He, B.; Chen, H.; Deng, S.; Li, C.; Xu, N.; Liu, X.; Zhou, H.; Liu, Q. CD19-specific CAR NK cells coexpressing IL-21 exhibit superior expansion and antitumor activity against CD19-postive lymphoma. Blood 2023, 142, 6824. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; He, M.; Xing, W.; Hou, R.; Zhang, H. Co-expression of IL-21-Enhanced NKG2D CAR-NK cell therapy for lung cancer. BMC Cancer 2024, 24, 119. [Google Scholar] [CrossRef] [PubMed]
- Cerwenka, A.; Lanier, L.L. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 2016, 16, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Farber, D.L.; Netea, M.G.; Radbruch, A.; Rajewsky, K.; Zinkernagel, R.M. Immunological memory: Lessons from the past and a look to the future. Nat. Rev. Immunol. 2016, 16, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Ham, J.D.; Hu, G.; Xie, G.; Vergara, J.; Liang, Y.; Ali, A.; Tarannum, M.; Donner, H.; Baginska, J. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2022, 119, e2122379119. [Google Scholar] [CrossRef]
- Wang, S.A. Synergizing CAR with memory-like NK cells. Theor. Nat. Sci. 2023, 20, 234–239. [Google Scholar] [CrossRef]
- Yao, X.; Matosevic, S. Chemokine networks modulating natural killer cell trafficking to solid tumors. Cytokine Growth Factor Rev. 2021, 59, 36–45. [Google Scholar] [CrossRef]
- Yoon, J.H.; Yoon, H.-N.; Kang, H.J.; Yoo, H.; Choi, M.J.; Chung, J.-Y.; Seo, M.; Kim, M.; Lim, S.O.; Kim, Y.J. Empowering pancreatic tumor homing with augmented anti-tumor potency of CXCR2-tethered CAR-NK cells. Mol. Ther. Oncol. 2024, 32, 200777. [Google Scholar] [CrossRef]
- Robertson, M.J. Role of chemokines in the biology of natural killer cells. J. Leukoc. Biol. 2002, 71, 173–183. [Google Scholar] [CrossRef]
- Ng, Y.Y.; Tay, J.C.; Wang, S. CXCR1 expression to improve anti-cancer efficacy of intravenously injected CAR-NK cells in mice with peritoneal xenografts. Mol. Ther.-Oncolytics 2020, 16, 75–85. [Google Scholar] [CrossRef]
- Franzén, A.S.; Boulifa, A.; Radecke, C.; Stintzing, S.; Raftery, M.J.; Pecher, G. Next-generation CEA-CAR-NK-92 cells against solid tumors: Overcoming Tumor Microenvironment challenges in Colorectal Cancer. Cancers 2024, 16, 388. [Google Scholar] [CrossRef]
- Duan, J.; Zhao, S.; Duan, Y.; Sun, D.; Zhang, G.; Yu, D.; Lou, Y.; Liu, H.; Yang, S.; Liang, X. Mnox Nanoenzyme Armed CAR-NK Cells Enhance Solid Tumor Immunotherapy by Alleviating the Immunosuppressive Microenvironment. Adv. Healthc. Mater. 2024, 13, 2303963. [Google Scholar] [CrossRef] [PubMed]
- Nandagopal, S.; Li, C.G.; Xu, Y.; Sodji, Q.H.; Graves, E.E.; Giaccia, A.J. C3aR signaling inhibits NK-cell infiltration into the tumor microenvironment in mouse models. Cancer Immunol. Res. 2022, 10, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, H.; Lian, K.; Zhang, D.; Hu, P.; He, Z.; Zhang, Z.; Wang, Y. CAR-NK cells in combination therapy against cancer: A potential paradigm. Heliyon 2024, 10, e27196. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Tong, Y.; Dotti, G.; Shaim, H.; Savoldo, B.; Mukherjee, M.; Orange, J.; Wan, X.; Lu, X.; Reynolds, A. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 2018, 32, 520–531. [Google Scholar] [CrossRef]
- Meropol, N.J.; Porter, M.; Blumenson, L.E.; Lindemann, M.J.; Perez, R.P.; Vaickus, L.; Loewen, G.M.; Creaven, P.J.; Wilkes, K.A.; Giedlin, M.A. Daily subcutaneous injection of low-dose interleukin 2 expands natural killer cells in vivo without significant toxicity. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1996, 2, 669–677. [Google Scholar]
- Carson, W.E.; Giri, J.G.; Lindemann, M.; Linett, M.L.; Ahdieh, M.; Paxton, R.; Anderson, D.; Eisenmann, J.; Grabstein, K.; Caligiuri, M.A. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med. 1994, 180, 1395–1403. [Google Scholar] [CrossRef]
- Ojo, E.O.; Sharma, A.A.; Liu, R.; Moreton, S.; Checkley-Luttge, M.-A.; Gupta, K.; Lee, G.; Lee, D.A.; Otegbeye, F.; Sekaly, R.-P. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci. Rep. 2019, 9, 14916. [Google Scholar] [CrossRef]
- Senju, H.; Kumagai, A.; Nakamura, Y.; Yamaguchi, H.; Nakatomi, K.; Fukami, S.; Shiraishi, K.; Harada, Y.; Nakamura, M.; Okamura, H. Effect of IL-18 on the expansion and phenotype of human natural killer cells: Application to cancer immunotherapy. Int. J. Biol. Sci. 2018, 14, 331. [Google Scholar] [CrossRef]
- Yang, M.; Guan, T.; Chen, C.-F.; He, L.-F.; Wu, H.-M.; Zhang, R.-D.; Li, Y.; Lin, Y.-C.; Zeng, H.; Wu, J.-D. Mesothelin-targeted CAR-NK cells derived from induced pluripotent stem cells have a high efficacy in killing triple-negative breast cancer cells as shown in several preclinical models. J. Immunother. 2023, 46, 285–294. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Tian, J.; Hao, Y.; Ma, X.; Zhou, Y.; Feng, L. Engineered CAR-NK cells with tolerance to H2O2 and hypoxia can suppress postoperative relapse of triple-negative breast cancers. Cancer Immunol. Res. 2024, 12, 1574–1588. [Google Scholar] [CrossRef]
- Raftery, M.J.; Franzén, A.S.; Radecke, C.; Boulifa, A.; Schönrich, G.; Stintzing, S.; Blohmer, J.-U.; Pecher, G. Next generation CD44v6-specific CAR-NK cells effective against triple negative breast cancer. Int. J. Mol. Sci. 2023, 24, 9038. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci. Rep. 2020, 10, 2815. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Y.; Huang, K.H.; Fang, X.; Li, Y.; Wang, F.; An, L.; Chen, Q.; Zhang, Y.; Shi, A. Targeting epidermal growth factor-overexpressing triple-negative breast cancer by natural killer cells expressing a specific chimeric antigen receptor. Cell Prolif. 2020, 53, e12858. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Han, J.; Chu, J.; Zhang, L.; Zhang, J.; Chen, C.; Chen, L.; Wang, Y.; Wang, H.; Yi, L. A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 2016, 7, 27764. [Google Scholar] [CrossRef]
- Burger, M.C.; Forster, M.-T.; Romanski, A.; Straßheimer, F.; Macas, J.; Zeiner, P.S.; Steidl, E.; Herkt, S.; Weber, K.J.; Schupp, J. Intracranial injection of natural killer cells engineered with a HER2-targeted chimeric antigen receptor in patients with recurrent glioblastoma. Neuro-Oncology 2023, 25, 2058–2071. [Google Scholar] [CrossRef]
- Zhang, C.; Burger, M.C.; Jennewein, L.; Genßler, S.; Schönfeld, K.; Zeiner, P.; Hattingen, E.; Harter, P.N.; Mittelbronn, M.; Tonn, T. ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J. Natl. Cancer Inst. 2016, 108, djv375. [Google Scholar] [CrossRef]
- Strecker, M.; Wlotzka, K.; Strassheimer, F.; Roller, B.; Ludmirski, G.; König, S.; Röder, J.; Opitz, C.; Alekseeva, T.; Reul, J. AAV-mediated gene transfer of a checkpoint inhibitor in combination with HER2-targeted CAR-NK cells as experimental therapy for glioblastoma. Oncoimmunology 2022, 11, 2127508. [Google Scholar] [CrossRef]
- Han, J.; Chu, J.; Keung Chan, W.; Zhang, J.; Wang, Y.; Cohen, J.B.; Victor, A.; Meisen, W.H.; Kim, S.-h.; Grandi, P. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci. Rep. 2015, 5, 11483. [Google Scholar] [CrossRef]
- Müller, N.; Michen, S.; Tietze, S.; Töpfer, K.; Schulte, A.; Lamszus, K.; Schmitz, M.; Schackert, G.; Pastan, I.; Temme, A. Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. J. Immunother. 2015, 38, 197–210. [Google Scholar] [CrossRef]
- Ma, R.; Lu, T.; Li, Z.; Teng, K.-Y.; Mansour, A.G.; Yu, M.; Tian, L.; Xu, B.; Ma, S.; Zhang, J. An oncolytic virus expressing IL15/IL15Rα combined with off-the-shelf EGFR-CAR NK cells targets glioblastoma. Cancer Res. 2021, 81, 3635–3648. [Google Scholar] [CrossRef]
- Tachi, T.; Kijima, N.; Kuroda, H.; Ikeda, S.; Murakami, K.; Nakagawa, T.; Yaga, M.; Nakagawa, K.; Utsugi, R.; Hirayama, R. Antitumor effects of intracranial injection of B7-H3-targeted Car-T and Car-Nk cells in a patient-derived glioblastoma xenograft model. Cancer Immunol. Immunother. 2024, 73, 256. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Cao, B.; Zhou, G.; Zhu, L.; Wang, L.; Zhang, L.; Kwok, H.F.; Zhang, Z.; Zhao, Q. Targeting B7-H3 immune checkpoint with chimeric antigen receptor-engineered natural killer cells exhibits potent cytotoxicity against non-small cell lung cancer. Front. Pharmacol. 2020, 11, 1089. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, K.; Geiger, A.; Dowlati, E.; Lang, H.; Sohai, D.K.; Hwang, E.I.; Lazarski, C.A.; Yvon, E.; Holdhoff, M.; Jones, R. Co-transducing B7H3 CAR-NK cells with the DNR preserves their cytolytic function against GBM in the presence of exogenous TGF-β. Mol. Ther. Methods Clin. Dev. 2022, 27, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.R.; Alam, S.; Vu, B.; Bonan, N.; Marin, N.; Dey, S.; Dash, P. 300 Development of CAR-NK cells for the treatment of human glioblastoma multiforme. BMJ Spec. J. 2024. [Google Scholar]
- Lima, V.A.; Mitsugi, T.G.; Okamoto, O.K. Abstract B034: Assessing the cytotoxic potential of novel CAR-NK cells targeting glioblastoma stem cell antigens. Cancer Immunol. Res. 2024, 12, B034. [Google Scholar] [CrossRef]
- Lu, C.; Guo, C.; Chen, H.; Zhang, H.; Zhi, L.; Lv, T.; Li, M.; Niu, Z.; Lu, P.; Zhu, W. A novel chimeric PD1-NKG2D-41BB receptor enhances antitumor activity of NK92 cells against human lung cancer H1299 cells by triggering pyroptosis. Mol. Immunol. 2020, 122, 200–206. [Google Scholar] [CrossRef]
- Liu, M.; Huang, W.; Guo, Y.; Zhou, Y.; Zhi, C.; Chen, J.; Li, J.; He, J.; Lian, H.; Zhou, J. CAR NK-92 cells targeting DLL3 kill effectively small cell lung cancer cells in vitro and in vivo. J. Leukoc. Biol. 2022, 112, 901–911. [Google Scholar] [CrossRef]
- Zolov, S.; Chuikov, S.; Katkam, S.K.; Shield, D.; Keshamouni, V.G. A novel CAR-NK cell therapy to target lung adenocarcinoma cells. Cancer Res. 2024, 84 (Suppl. S6), 6360. [Google Scholar] [CrossRef]
- Chambers, A.M.; Lupo, K.B.; Wang, J.; Cao, J.; Utturkar, S.; Lanman, N.; Bernal-Crespo, V.; Jalal, S.; Pine, S.R.; Torregrosa-Allen, S. Engineered natural killer cells impede the immunometabolic CD73-adenosine axis in solid tumors. Elife 2022, 11, e73699. [Google Scholar] [CrossRef]
- Da, Y.; Liu, Y.; Hu, Y.; Liu, W.; Ma, J.; Lu, N.; Zhang, C.; Zhang, C. STING agonist cGAMP enhances anti-tumor activity of CAR-NK cells against pancreatic cancer. Oncoimmunology 2022, 11, 2054105. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Z.-Z.; Zhou, M.-L.; Lin, J.-W.; Chen, X.-M.; Li, Z.; Gao, W.-B.; Yu, Z.-D.; Liu, T. Development of c-MET-specific chimeric antigen receptor-engineered natural killer cells with cytotoxic effects on human liver cancer HepG2 cells. Mol. Med. Rep. 2019, 20, 2823–2831. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Ni, Q.; Chen, Z.; Yang, S.; Zhang, X.; Su, H.; Zhang, Z.; Zhao, Q.; Zhu, X.; Liu, M. Development of glypican-3-specific chimeric antigen receptor-modified natural killer cells and optimization as a therapy for hepatocellular carcinoma. J. Leukoc. Biol. 2025, 117, qiae144. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Pham, K.; Xi, Y.; Wu, Q.; Liu, D.; Robertson, K.D.; Liu, C. Exploring Glypican-3 targeted CAR-NK treatment and potential therapy resistance in hepatocellular carcinoma. PLoS ONE 2025, 20, e0317401. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Liu, M.; Huang, J.; Zhou, J.; Li, J.; Lian, H.; Huang, W.; Guo, Y.; Yang, S.; Lin, L. Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer. Int. J. Biol. Sci. 2021, 17, 3850. [Google Scholar] [CrossRef]
- Ren, Y.; Xue, M.; Hui, X.; Liu, X.; Farooq, M.A.; Chen, Y.; Ji, Y.; Duan, Y.; Ajmal, I.; Yao, J. Chimeric Cytokine Receptor TGF-β RⅡ/IL-21R Improves CAR-NK Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Gastric Cancer. Pharmacol. Res. 2025, 212, 107637. [Google Scholar] [CrossRef]
- Xiao, L.; Cen, D.; Gan, H.; Sun, Y.; Huang, N.; Xiong, H.; Jin, Q.; Su, L.; Liu, X.; Wang, K. Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Mol. Ther. 2019, 27, 1114–1125. [Google Scholar] [CrossRef]
- Shiozawa, M.; Chang, C.-H.; Huang, Y.-C.; Chen, Y.-C.; Chi, M.-S.; Hao, H.-C.; Chang, Y.-C.; Takeda, S.; Chi, K.-H.; Wang, Y.-S. Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol. 2018, 19, 1–13. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Ding, J.; Liu, H.; Li, H.; Li, H.; Lu, M.; Miao, Y.; Li, L.; Zheng, J. Combination therapy with EpCAM-CAR-NK-92 cells and regorafenib against human colorectal cancer models. J. Immunol. Res. 2018, 2018, 4263520. [Google Scholar] [CrossRef]
- Zhang, Q.; Tian, K.; Xu, J.; Zhang, H.; Li, L.; Fu, Q.; Chai, D.; Li, H.; Zheng, J. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma. J. Immunol. Res. 2017, 2017, 6915912. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, L.; Jiang, B.; Wang, Y.; Wu, Q.; Hong, S.; Wang, X.; Li, Y.; Guan, T.; Zeng, H. Promising approach for targeting ROBO1 with CAR NK cells to combat ovarian cancer primary tumor cells and organoids. Future Sci. OA 2024, 10, 2340186. [Google Scholar] [CrossRef]
- Li, J.; Hu, H.; Lian, H.; Yang, S.; Liu, M.; He, J.; Cao, B.; Chen, D.; Hu, Y.; Zhi, C. NK-92MI cells engineered with anti-claudin-6 chimeric antigen receptors in immunotherapy for ovarian cancer. Int. J. Biol. Sci. 2024, 20, 1578. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, M.; Shen, X.; Xia, C.; Hu, F.; Huang, D.; Weng, Q.; Zhang, Q.; Liu, L.; Zhu, Y. Mesothelin CAR-engineered NK cells derived from human embryonic stem cells suppress the progression of human ovarian cancer in animals. Cell Prolif. 2024, 57, e13727. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, X.; Yuan, X.; Wang, W.; Wang, Y. Chimeric antigen receptor-engineered NK cells: New weapons of cancer immunotherapy with great potential. Exp. Hematol. Oncol. 2022, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Piha-Paul, S.; Mahalingam, D.; Mulcahy, M.; Kalyan, A.; Li, H.; Wu, E.; Kurman, M.; Lee, S.; Lin, Y.; Tang, S. 1006P ACE1702, a first-in-class, off-the-shelf, selected natural killer cell [oNK] product using antibody cell conjugation technology [ACC], with pre-clinical and early clinical activity in HER2< 3+ tumors. Ann. Oncol. 2021, 32, S851. [Google Scholar]
- Zhang, X.; Guo, Y.; Ji, Y.; Gao, Y.; Zhang, M.; Liu, Y.; Zhu, W.; Lu, P. Cytokine release syndrome after modified CAR-NK therapy in an advanced non-small cell lung cancer patient: A case report. Cell Transplant. 2022, 31, 09636897221094244. [Google Scholar] [CrossRef]
- Chocarro, L.; Bocanegra, A.; Blanco, E.; Fernández-Rubio, L.; Arasanz, H.; Echaide, M.; Garnica, M.; Ramos, P.; Piñeiro-Hermida, S.; Vera, R. Cutting-Edge: Preclinical and clinical development of the first approved Lag-3 inhibitor. Cells 2022, 11, 2351. [Google Scholar] [CrossRef]
- Wang, F.; Wu, L.; Yin, L.; Shi, H.; Gu, Y.; Xing, N. Combined treatment with anti-PSMA CAR NK-92 cell and anti-PD-L1 monoclonal antibody enhances the antitumour efficacy against castration-resistant prostate cancer. Clin. Transl. Med. 2022, 12, e901. [Google Scholar] [CrossRef]
- Liu, W.N.; So, W.Y.; Harden, S.L.; Fong, S.Y.; Wong, M.X.Y.; Tan, W.W.S.; Tan, S.Y.; Ong, J.K.L.; Rajarethinam, R.; Liu, M. Successful targeting of PD-1/PD-L1 with chimeric antigen receptor-natural killer cells and nivolumab in a humanized mouse cancer model. Sci. Adv. 2022, 8, eadd1187. [Google Scholar] [CrossRef]
- Klapdor, R.; Wang, S.; Morgan, M.A.; Zimmermann, K.; Hachenberg, J.; Büning, H.; Dörk, T.; Hillemanns, P.; Schambach, A. NK cell-mediated eradication of ovarian cancer cells with a novel chimeric antigen receptor directed against CD44. Biomedicines 2021, 9, 1339. [Google Scholar] [CrossRef]
- Klapdor, R.; Wang, S.; Hacker, U.; Büning, H.; Morgan, M.; Dörk, T.; Hillemanns, P.; Schambach, A. Improved killing of ovarian cancer stem cells by combining a novel chimeric antigen receptor–based immunotherapy and chemotherapy. Hum. Gene Ther. 2017, 28, 886–896. [Google Scholar] [CrossRef]
- Xia, N.; Haopeng, P.; Gong, J.; Lu, J.; Chen, Z.; Zheng, Y.; Wang, Z.; Sun, Y.; Yang, Z.; Hoffman, R.M. Robo1-specific CAR-NK immunotherapy enhances efficacy of 125I seed brachytherapy in an orthotopic mouse model of human pancreatic carcinoma. Anticancer Res. 2019, 39, 5919–5925. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Liu, Z.; Dong, X.; Wang, K.; Sun, Y.; Zhang, H.; Wang, F.; Chen, Y.; Ling, J.; Guo, Y. Radiotherapy enhances the anti-tumor effect of CAR-NK cells for hepatocellular carcinoma. J. Transl. Med. 2024, 22, 929. [Google Scholar] [CrossRef] [PubMed]
- Knelson, E.H.; Ivanova, E.V.; Tarannum, M.; Campisi, M.; Lizotte, P.H.; Booker, M.A.; Ozgenc, I.; Noureddine, M.; Meisenheimer, B.; Chen, M. Activation of tumor-cell STING primes NK-cell therapy. Cancer Immunol. Res. 2022, 10, 947–961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, J.; Ding, J.; Liu, H.; Li, H.; Li, H.; Lu, M.; Miao, Y.; Wang, Z.; Fu, Q. Bortezomib improves adoptive carbonic anhydrase IX-specific chimeric antigen receptor-modified NK92 cell therapy in mouse models of human renal cell carcinoma. Oncol. Rep. 2018, 40, 3714–3724. [Google Scholar] [CrossRef]
- Chu, Y.; Tian, M.; Saini, U.; Ayala-Cuesta, J.; Klose, K.; Mendelowitz, A.S.; Foley, K.; Ozkaynak, M.F.; Luo, W.; Cripe, T.P. Combinatorial immunotherapy with anti-ROR1 CAR NK cells and an IL-21 secreting oncolytic virus against neuroblastoma. Mol. Ther. Oncol. 2025, 33, 200927. [Google Scholar] [CrossRef]
- Xu, M.; Xue, B.; Wang, Y.; Wang, D.; Gao, D.; Yang, S.; Zhao, Q.; Zhou, C.; Ruan, S.; Yuan, Z. Temperature-feedback nanoplatform for NIR-II penta-modal imaging-guided synergistic photothermal therapy and CAR-NK immunotherapy of lung cancer. Small 2021, 17, 2101397. [Google Scholar] [CrossRef]
- Sun, C.; Sun, H.; Zhang, C.; Tian, Z. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell. Mol. Immunol. 2015, 12, 292–302. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Rafiq, S.; Yeku, O.O.; Jackson, H.J.; Purdon, T.J.; Van Leeuwen, D.G.; Drakes, D.J.; Song, M.; Miele, M.M.; Li, Z.; Wang, P. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 2018, 36, 847–856. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Q.; Jiang, Y.-Y.; Zhang, R.; Zhu, H.-B.; Meng, J.-X.; Li, Y.-M. CAR-T 19 combined with reduced-dose PD-1 blockade therapy for treatment of refractory follicular lymphoma: A case report. Oncol Lett 2019, 18, 4415–4420. [Google Scholar] [CrossRef]
- Song, W.; Zhang, M. Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clin. Immunol. 2020, 214, 108382. [Google Scholar] [CrossRef]
- Pesce, S.; Greppi, M.; Grossi, F.; Del Zotto, G.; Moretta, L.; Sivori, S.; Genova, C.; Marcenaro, E. PD/1-PD-Ls checkpoint: Insight on the potential role of NK cells. Front. Immunol. 2019, 10, 1242. [Google Scholar] [CrossRef] [PubMed]
- Benson Jr, D.M.; Bakan, C.E.; Mishra, A.; Hofmeister, C.C.; Efebera, Y.; Becknell, B.; Baiocchi, R.A.; Zhang, J.; Yu, J.; Smith, M.K. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: A therapeutic target for CT-011, a novel monoclonal anti–PD-1 antibody. Blood J. Am. Soc. Hematol. 2010, 116, 2286–2294. [Google Scholar] [CrossRef] [PubMed]
- Della Chiesa, M.; Pesce, S.; Muccio, L.; Carlomagno, S.; Sivori, S.; Moretta, A.; Marcenaro, E. Features of memory-like and PD-1+ human NK cell subsets. Front. Immunol. 2016, 7, 351. [Google Scholar] [CrossRef] [PubMed]
- Abdolahi, S.; Ghazvinian, Z.; Muhammadnejad, S.; Ahmadvand, M.; Aghdaei, H.A.; Ebrahimi-Barough, S.; Ai, J.; Zali, M.R.; Verdi, J.; Baghaei, K. Adaptive NK cell therapy modulated by anti-PD-1 antibody in gastric cancer model. Front. Pharmacol. 2021, 12, 733075. [Google Scholar] [CrossRef]
- Hsu, J.; Hodgins, J.J.; Marathe, M.; Nicolai, C.J.; Bourgeois-Daigneault, M.-C.; Trevino, T.N.; Azimi, C.S.; Scheer, A.K.; Randolph, H.E.; Thompson, T.W. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Investig. 2018, 128, 4654–4668. [Google Scholar] [CrossRef]
- Pesce, S.; Greppi, M.; Tabellini, G.; Rampinelli, F.; Parolini, S.; Olive, D.; Moretta, L.; Moretta, A.; Marcenaro, E. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization. J. Allergy Clin. Immunol. 2017, 139, 335–346.e333. [Google Scholar] [CrossRef]
- Oelsner, S.; Friede, M.E.; Zhang, C.; Wagner, J.; Badura, S.; Bader, P.; Ullrich, E.; Ottmann, O.G.; Klingemann, H.; Tonn, T. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy 2017, 19, 235–249. [Google Scholar] [CrossRef]
- Fabian, K.P.; Padget, M.R.; Donahue, R.N.; Solocinski, K.; Robbins, Y.; Allen, C.T.; Lee, J.H.; Rabizadeh, S.; Soon-Shiong, P.; Schlom, J. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations. J. Immunother. Cancer 2020, 8, e000450. [Google Scholar] [CrossRef]
- Strassheimer, F.; Strecker, M.; Alekseeva, T.; Macas, J.; Demes, M.; Mildenberger, I.; Tonn, T.; Wild, P.; Sevenich, L.; Reiss, Y. OS12. 6. A combination therapy of CAR-NK-cells and anti-PD-1 results in high efficacy against advanced-stage glioblastoma in a syngeneic mouse model and induces protective anti-tumor immunity in vivo. Neuro-Oncology 2021, 23, ii15. [Google Scholar] [CrossRef]
- Li, F.; Chen, Y.; Pang, M.; Yang, P.; Jing, H. Immune checkpoint inhibitors and cellular treatment for lymphoma immunotherapy. Clin. Exp. Immunol. 2021, 205, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xue, L.; Ding, X.; Zhang, J.; Jiang, L.; Liu, S.; Hou, H.; Jiang, B.; Cheng, L.; Zhu, Q. An Fc-competent anti-human TIGIT blocking antibody ociperlimab (BGB-A1217) elicits strong immune responses and potent anti-tumor efficacy in pre-clinical models. Front. Immunol. 2022, 13, 828319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bi, J.; Zheng, X.; Chen, Y.; Wang, H.; Wu, W.; Wang, Z.; Wu, Q.; Peng, H.; Wei, H. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 2018, 19, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Berclaz, L.M.; Altendorf-Hofmann, A.; Lindner, L.H.; Burkhard-Meier, A.; Di Gioia, D.; Dürr, H.R.; Klein, A.; Albertsmeier, M.; Schmidt-Hegemann, N.-S.; Klauschen, F. TIM-3 Qualifies as a Potential Immunotherapeutic Target in Specific Subsets of Patients with High-Risk Soft Tissue Sarcomas (HR-STS). Cancers 2023, 15, 2735. [Google Scholar] [CrossRef]
- Siegler, E.L.; Kim, Y.J.; Chen, X.; Siriwon, N.; Mac, J.; Rohrs, J.A.; Bryson, P.D.; Wang, P. Combination cancer therapy using chimeric antigen receptor-engineered natural killer cells as drug carriers. Mol. Ther. 2017, 25, 2607–2619. [Google Scholar] [CrossRef]
- Wang, P.; Siegler, E.; Chen, X.; Kim, Y.J. Combination Cancer Therapy Using Chimeric Antigen Receptor Engineered Natural Killer Cells as Chemotherapeutic Drug Carriers. U.S. Patent Application No. 2020US20200197533A1, 25 June 2020. [Google Scholar]
- Huang, S.; Xing, F.; Dai, Y.; Zhang, Z.; Zhou, G.; Yang, S.; Liu, Y.-C.; Yuan, Z.; Luo, K.Q.; Ying, T. Navigating chimeric antigen receptor-engineered natural killer cells as drug carriersviathree-dimensional mapping of the tumor microenvironment. J. Ophthalmol. Clin. Res. 2023, 362, 524–535. [Google Scholar]
- He, J.; Yan, Y.; Zhang, J.; Wei, Z.; Li, H.; Xing, L. Synergistic treatment strategy: Combining CAR-NK cell therapy and radiotherapy to combat solid tumors. Front. Immunol. 2023, 14, 1298683. [Google Scholar] [CrossRef]
- Yan, X.; Yao, C.; Fang, C.; Han, M.; Gong, C.; Hu, D.; Shen, W.; Wang, L.; Li, S.; Zhu, S. Rocaglamide promotes the infiltration and antitumor immunity of NK cells by activating cGAS-STING signaling in non-small cell lung cancer. Int. J. Biol. Sci. 2022, 18, 585. [Google Scholar] [CrossRef]
- Li, A.; Yi, M.; Qin, S.; Song, Y.; Chu, Q.; Wu, K. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J. Hematol. Oncol. 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J. Hematol. Oncol. 2020, 13, 1–23. [Google Scholar] [CrossRef]
- Pytel, D.; Sliwinski, T.; Poplawski, T.; Ferriola, D.; Majsterek, I. Tyrosine kinase blockers: New hope for successful cancer therapy. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2009, 9, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Busse, A.; Asemissen, A.M.; Nonnenmacher, A.; Braun, F.; Ochsenreither, S.; Stather, D.; Fusi, A.; Schmittel, A.; Miller, K.; Thiel, E. Immunomodulatory effects of sorafenib on peripheral immune effector cells in metastatic renal cell carcinoma. Eur. J. Cancer 2011, 47, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Azevedo, J.; Silvestre, R.; Calado, R.; Covas, D.; Picanç-Castro, V. Anti-cd19 cars armed with nk receptor-derived activation domains demonstrate to improve car-nk antitumor effector function and are differentially enhanced by dasatinib. Hematol. Transfus. Cell Ther. 2023, 45, S517–S518. [Google Scholar] [CrossRef]
- Huang, Y.; Zhong, Y.; Qin, C.; Wang, H. Combination Therapy with EGFR Specific CAR_NK_92 Cells and Cabozantinib against Human Renal Cell Carcinoma. Tob. Regul. Sci. (TRS) 2021, 7, 1811–1828. [Google Scholar] [CrossRef]
- by Proteasome, C.-M.K. Sensitization of Tumor Cells to NK. J. Immunol. 2008, 180, 163–170. [Google Scholar]
- Chang, S.; Hou, J.; Chen, G.; Yu, D.; Wu, H.; Xie, Y.; Hu, L.; Gao, L.; Xiao, W.; Kong, Y. Carfilzomib combined with ex vivo-expanded patient autologous natural killer cells for myeloma immunotherapy. Neoplasma 2018, 65, 720–729. [Google Scholar] [CrossRef]
- Motais, B.; Charvátová, S.; Walek, Z.; Hájek, R.; Bagó, J.R. NK92 expressing anti-BCMA CAR and secreted TRAIL for the treatment of multiple myeloma: Preliminary in vitro assessment. Cells 2023, 12, 2748. [Google Scholar] [CrossRef]
- Sedloev, D.; Chen, Q.; Unglaub, J.M.; Schanda, N.; Hao, Y.; Besiridou, E.; Neuber, B.; Schmitt, A.; Raffel, S.; Liu, Y. Proteasome inhibition enhances the anti-leukemic efficacy of chimeric antigen receptor (CAR) expressing NK cells against acute myeloid leukemia. J. Hematol. Oncol. 2024, 17, 85. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Z.; Chen, Y.; Xu, J.; Wang, J.; Wang, Z. Enhancing cancer therapy: The integration of oncolytic virus therapy with diverse treatments. Cancer Cell Int. 2024, 24, 242. [Google Scholar] [CrossRef]
- Mamola, J.A.; Chen, C.-Y.; Currier, M.A.; Cassady, K.; Lee, D.A.; Cripe, T.P. Opportunities and challenges of combining adoptive cellular therapy with oncolytic virotherapy. Mol. Ther.-Oncolytics 2023, 29, 118–124. [Google Scholar] [CrossRef]
- Chaurasiya, S.; Woo, Y.; Choong, K.; Deshpande, S.; Fong, Y. Combining oncolytic viruses with immune cell therapy as treatments for cancer: OV, CAR T-cell, and NK combinations. In NK Cells in Cancer Immunotherapy: Successes and Challenges; Elsevier: Amsterdam, The Netherlands, 2023; pp. 321–333. [Google Scholar]
- Wang, X.; Wei, G.; Karki, K.B.; Chan, W.; Viskovska, M.; Williams, A.; Chang, N.; Jiang, H. Developing a novel combination therapy using engineered chimeric antigen receptor natural killer cells targeting avsialidase with avsialidase-armed oncolytic vaccinia virus in solid tumor models. Cancer Res. 2022, 82, 6225. [Google Scholar] [CrossRef]
- Bachiller, M.; Perez-Amill, L.; Battram, A.M.; Carné, S.C.; Najjar, A.; Verhoeyen, E.; Juan, M.; Urbano-Ispizua, A.; Martin-Antonio, B. NK cells enhance CAR-T cell antitumor efficacy by enhancing immune/tumor cells cluster formation and improving CAR-T cell fitness. J. Immunother. Cancer 2021, 9, e002866. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, X.; Chan, I.H.; Trager, J.B. A combination of CAR-NK and CAR-T cells results in rapid and persistent anti-tumor efficacy while reducing CAR-T cell mediated cytokine release and T-cell proliferation. Am. Assoc. Cancer Res. 2020, 80, 4235. [Google Scholar] [CrossRef]
- van Ravenswaay Claasen, H.; Kluin, P.M.; Fleuren, G. Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Lab. Investig. J. Tech. Methods Pathol. 1992, 67, 166–174. [Google Scholar]
- Yang, L.; Zhang, Y. Tumor-associated macrophages: From basic research to clinical application. J. Hematol. Oncol. 2017, 10, 1–12. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, Q.; Dukhovlinova, E.; Chen, G.; Ahn, S.; Wang, C.; Ogunnaike, E.A.; Ligler, F.S.; Dotti, G.; Gu, Z. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 2019, 31, 1900192. [Google Scholar] [CrossRef]
- Miller, I.C.; Zamat, A.; Sun, L.-K.; Phuengkham, H.; Harris, A.M.; Gamboa, L.; Yang, J.; Murad, J.P.; Priceman, S.J.; Kwong, G.A. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat. Biomed. Eng. 2021, 5, 1348–1359. [Google Scholar] [CrossRef]
- Kong, J.C.; Sa’ad, M.A.; Vijayan, H.M.; Ravichandran, M.; Balakrishnan, V.; Tham, S.K.; Tye, G.J. Chimeric antigen receptor-natural killer cell therapy: Current advancements and strategies to overcome challenges. Front. Immunol. 2024, 15, 1384039. [Google Scholar] [CrossRef]
- Meng, W.; Hao, Y.; He, C.; Li, L.; Zhu, G. Exosome-orchestrated hypoxic tumor microenvironment. Mol. Cancer 2019, 18, 1–14. [Google Scholar] [CrossRef]
- Teng, R.; Wang, Y.; Lv, N.; Zhang, D.; Williamson, R.A.; Lei, L.; Chen, P.; Lei, L.; Wang, B.; Fu, J. Hypoxia Impairs NK Cell Cytotoxicity through SHP-1-Mediated Attenuation of STAT3 and ERK Signaling Pathways. J. Immunol. Res. 2020, 2020, 4598476. [Google Scholar] [CrossRef]
- Baginska, J.; Viry, E.; Berchem, G.; Poli, A.; Noman, M.Z.; van Moer, K.; Medves, S.; Zimmer, J.; Oudin, A.; Niclou, S.P. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc. Natl. Acad. Sci. USA 2013, 110, 17450–17455. [Google Scholar] [CrossRef] [PubMed]
- Balsamo, M.; Manzini, C.; Pietra, G.; Raggi, F.; Blengio, F.; Mingari, M.C.; Varesio, L.; Moretta, L.; Bosco, M.C.; Vitale, M. Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur. J. Immunol. 2013, 43, 2756–2764. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Lu, A.; Li, Y.; Bronevetsky, Y. 398 Expansion of therapeutic NK cell line under hypoxic and hyperbaric culture conditions enhances anti-tumor potency. BMJ Spec. J. 2022. [Google Scholar]
- Moon, Y.; Lim, S.A.; Lee, K.-M.; Park, H. Hypoxia-enhanced proliferation and effector function of NK cells. Cancer Res. 2018, 78, 122. [Google Scholar] [CrossRef]
- Solocinski, K.; Padget, M.R.; Fabian, K.P.; Wolfson, B.; Cecchi, F.; Hembrough, T.; Benz, S.C.; Rabizadeh, S.; Soon-Shiong, P.; Schlom, J. Overcoming hypoxia-induced functional suppression of NK cells. J. Immunother. Cancer 2020, 8, e000246. [Google Scholar] [CrossRef]
- Yvon, E.S.; Burga, R.; Powell, A.; Cruz, C.R.; Fernandes, R.; Barese, C.; Nguyen, T.; Abdel-Baki, M.S.; Bollard, C.M. Cord blood natural killer cells expressing a dominant negative TGF-β receptor: Implications for adoptive immunotherapy for glioblastoma. Cytotherapy 2017, 19, 408–418. [Google Scholar] [CrossRef]
- Rouce, R.H.; Shaim, H.; Sekine, T.; Weber, G.; Ballard, B.; Ku, S.; Barese, C.; Murali, V.; Wu, M.-F.; Liu, H. The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia 2016, 30, 800–811. [Google Scholar] [CrossRef]
- Thangaraj, J.L.; Coffey, M.; Kaufman, D.S. 311 Disruption of TGF-b signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. BMJ Spec. J. 2023. [Google Scholar]
- Shaim, H.; Shanley, M.; Basar, R.; Daher, M.; Gumin, J.; Zamler, D.B.; Uprety, N.; Wang, F.; Huang, Y.; Gabrusiewicz, K. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J. Clin. Investig. 2021, 131, e142116. [Google Scholar] [CrossRef]
- Viel, S.; Marçais, A.; Guimaraes, F.S.-F.; Loftus, R.; Rabilloud, J.; Grau, M.; Degouve, S.; Djebali, S.; Sanlaville, A.; Charrier, E. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal. 2016, 9, ra19. [Google Scholar] [CrossRef]
- Otegbeye, F.; Ojo, E.; Moreton, S.; Mackowski, N.; Lee, D.A.; De Lima, M.; Wald, D.N. Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS ONE 2018, 13, e0191358. [Google Scholar]
- Selfridge, J.E.; Bajor, D.L.; Mohamed, A.; Chakrabarti, S.; Reese, J.; Lazarus, H.M.; Dowlati, A.; Mahipal, A.; Wald, D. Trial in progress: Natural killer (NK) cells with TGFβ receptor I inhibitor vactosertib and IL-2 in patients with metastatic colorectal cancer or hematologic malignancies. J. Clin. Oncol. 2023, 41, 4. [Google Scholar] [CrossRef]
- Oh, M.-S.; Seo, M.; Yoon, S.; Jang, M. 292 Unleashing CAR-NK cells against solid tumors by disrupting TGF-β signaling in the tumor microenvironment. BMJ Spec. J. 2023. [Google Scholar]
- hun Shin, S.; Lee, Y.E.; Yoon, H.N.; Yuk, C.M.; An, J.Y.; Seo, M.; Yoon, S.; Oh, M.S.; Shin, S.C.; Kim, J.H. An innovative strategy harnessing self-activating CAR-NK cells to mitigate TGF-β1-driven immune suppression. Biomaterials 2025, 314, 122888. [Google Scholar] [CrossRef]
- Poth, J.M.; Brodsky, K.; Ehrentraut, H.; Grenz, A.; Eltzschig, H.K. Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease. J. Mol. Med. 2013, 91, 183–193. [Google Scholar] [CrossRef]
- Leone, R.D.; Emens, L.A. Targeting adenosine for cancer immunotherapy. J. Immunother. Cancer 2018, 6, 1–9. [Google Scholar] [CrossRef]
- Chambers, A.M.; Wang, J.; Lupo, K.B.; Yu, H.; Atallah Lanman, N.M.; Matosevic, S. Adenosinergic signaling alters natural killer cell functional responses. Front. Immunol. 2018, 9, 2533. [Google Scholar] [CrossRef]
- Nachef, M.; Ali, A.K.; Almutairi, S.M.; Lee, S.-H. Targeting SLC1A5 and SLC3A2/SLC7A5 as a potential strategy to strengthen anti-tumor immunity in the tumor microenvironment. Front. Immunol. 2021, 12, 624324. [Google Scholar] [CrossRef]
- Cichocki, F.; Goodridge, J.P.; Bjordahl, R.; Mahmood, S.; Davis, Z.B.; Gaidarova, S.; Abujarour, R.; Groff, B.; Witty, A.; Wang, H. Dual antigen–targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia. Blood J. Am. Soc. Hematol. 2022, 140, 2451–2462. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Liu, T.; Wang, C.; Wang, H.; Wang, Q.; Wang, Q.; Ye, G.; Tang, R.; Cao, Z. Dual-targeted CAR-NK cell therapy: Optimized CAR design to prevent antigen escape and elicit a deep and durable response in multiple myeloma. Cancer Res. 2023, 83, 4077. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, C.; Zhang, Y.; Fan, Y.; Zhang, J.; Lin, X.; Guo, T.; Gu, Y.; Wu, J.; Gao, J. CD19/CD20 dual-targeted chimeric antigen receptor-engineered natural killer cells exhibit improved cytotoxicity against acute lymphoblastic leukemia. J. Transl. Med. 2024, 22, 274. [Google Scholar] [CrossRef] [PubMed]
- Zuccolotto, G.; Penna, A.; Fracasso, G.; Dalla Santa, S.; Carpanese, D.; Montagner, I.M.; Rossi, V.; Tosi, A.; Rosato, A. CT-227 Dual CAR-Engineered NK92 Cells: An Off-the-Shelf Cell Therapy for Cancer. Clin. Lymphoma Myeloma Leuk. 2022, 22, S440. [Google Scholar] [CrossRef]
- Eitler, J.; Ben-Horin, I.; Freudenberg, K.; Ortiz-Montero, P.; Loureiro, L.R.; Rackwitz, W.; Künzel, S.R.; Hölig, K.; Feldmann, A.; Bachmann, M. 256 Dual targeting of PD-L1 and ErbB2 by CAR-NK cells enables specific elimination of solid tumor cells and overcomes immune escape via antigen loss. BMJ Spec. J. 2024. [Google Scholar]
- Zhi, L.; Zhang, Z.; Gao, Q.; Shang, C.; He, W.; Wang, Y.; Guo, C.; Niu, Z.; Zhu, W. CAR-NK cells with dual targeting of PD-L1 and MICA/B in lung cancer tumor models. BMC Cancer 2025, 25, 337. [Google Scholar]
- Li, Y.; Basar, R.; Wang, G.; Liu, E.; Moyes, J.S.; Li, L.; Kerbauy, L.N.; Uprety, N.; Fathi, M.; Rezvan, A. KIR-based inhibitory CARs overcome CAR-NK cell trogocytosis-mediated fratricide and tumor escape. Nat. Med. 2022, 28, 2133–2144. [Google Scholar] [CrossRef]
- Goodridge, J.P.; Mahmood, S.; Zhu, H.; Gaidarova, S.; Blum, R.; Bjordahl, R.; Cichocki, F.; Chu, H.-y.; Bonello, G.; Lee, T. FT596: Translation of first-of-kind multi-antigen targeted off-the-shelf CAR-NK cell with engineered persistence for the treatment of B cell malignancies. Blood 2019, 134, 301. [Google Scholar] [CrossRef]
- Mitwasi, N.; Feldmann, A.; Arndt, C.; Koristka, S.; Berndt, N.; Jureczek, J.; Loureiro, L.R.; Bergmann, R.; Máthé, D.; Hegedüs, N. “UniCAR”-modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumour cells. Sci. Rep. 2020, 10, 2141. [Google Scholar] [CrossRef]
- Kang, H.Y.; Lee, S.Y.; Kim, H.M.; Lee, S.U.; Lee, H.; Cho, M.Y.; Oh, S.-C.; Kim, S.-M.; Park, H.S.; Han, E.H. A modifiable universal cotinine-chimeric antigen system of NK cells with multiple targets. Front. Immunol. 2023, 13, 1089369. [Google Scholar] [CrossRef]
- Wang, X.; Jasinski, D.L.; Medina, J.L.; Spencer, D.M.; Foster, A.E.; Bayle, J.H. Inducible MyD88/CD40 synergizes with IL-15 to enhance antitumor efficacy of CAR-NK cells. Blood Adv. 2020, 4, 1950–1964. [Google Scholar] [CrossRef]
- Khoshandam, M.; Soltaninejad, H.; Hamidieh, A.A.; Hosseinkhani, S. CRISPR, CAR-T, and NK: Current applications and future perspectives. Genes Dis. 2024, 11, 101121. [Google Scholar] [CrossRef]
- Choi, E.; Chang, J.-W.; Krueger, J.; Lahr, W.S.; Pomeroy, E.; Walsh, M.; Khamhoung, A.; Johnson, J.; Franco, C.; Swiech, L. Engineering CD70-directed CAR-NK cells for the treatment of hematological and solid malignancies. Blood 2021, 138, 1691. [Google Scholar] [CrossRef]
- Guo, C.; Fan, Y.; Aronov, A.; Buren, L.; Xie, M.-H.; Chan, I.; Lazetic, S.; Trager, J. CISH gene-knockout anti-CD70-CAR NK cells demonstrate potent anti-tumor activity against solid tumor cell lines and provide partial resistance to tumor microenvironment inhibition. J. Immunother. Cancer 2021, 9, A123. [Google Scholar]
- Shankar, K.; Zingler-Hoslet, I.; Tabima, D.M.; Zima, S.; Shi, L.; Gimse, K.; Forsberg, M.H.; Katta, V.; Davis, S.Z.; Maldonado, D. Virus-free CRISPR knockin of a chimeric antigen receptor into KLRC1 generates potent GD2-specific natural killer cells. Mol. Ther. 2024, 33, 1014–1030. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.; Smith, L.; Ryan, M. Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr.-Relat. Cancer 2004, 11, 659–687. [Google Scholar] [CrossRef]
- Arigoni, M.; Ratto, M.L.; Riccardo, F.; Balmas, E.; Calogero, L.; Cordero, F.; Beccuti, M.; Calogero, R.A.; Alessandri, L. A single cell RNAseq benchmark experiment embedding “controlled” cancer heterogeneity. Sci. Data 2024, 11, 159. [Google Scholar] [CrossRef]
- Slamon, D.J. Studies of the HER-2/neu proto-oncogene in human breast cancer. Cancer Investig. 1990, 8, 253–254. [Google Scholar] [CrossRef]
- Schönfeld, K.; Sahm, C.; Zhang, C.; Naundorf, S.; Brendel, C.; Odendahl, M.; Nowakowska, P.; Bönig, H.; Köhl, U.; Kloess, S. Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol. Ther. 2015, 23, 330–338. [Google Scholar] [CrossRef]
- Kruschinski, A.; Moosmann, A.; Poschke, I.; Norell, H.; Chmielewski, M.; Seliger, B.; Kiessling, R.; Blankenstein, T.; Abken, H.; Charo, J. Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas. Proc. Natl. Acad. Sci. USA 2008, 105, 17481–17486. [Google Scholar] [CrossRef]
- Portillo, A.L.; Hogg, R.; Poznanski, S.M.; Rojas, E.A.; Cashell, N.J.; Hammill, J.A.; Chew, M.V.; Shenouda, M.M.; Ritchie, T.M.; Cao, Q.T. Expanded human NK cells armed with CAR uncouple potent anti-tumor activity from off-tumor toxicity against solid tumors. Iscience 2021, 24, 102619. [Google Scholar] [CrossRef]
- Zhang, C.; Röder, J.; Scherer, A.; Bodden, M.; Serrahima, J.P.; Bhatti, A.; Waldmann, A.; Müller, N.; Oberoi, P.; Wels, W.S. Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity. J. Immunother. Cancer 2021, 9, e002980. [Google Scholar] [CrossRef]
- Rav, E.S.; Anjier, A.; Acharya, S.; Basar, R.; Wang, Y.; Daw, N.; Rezvani, K.; Gopalakrishnan, V.; Gorlick, R.; Kleinerman, E.S. Targeting CD70 using CAR NK cells to enhance NK cells cytolytic effect against osteosarcoma. J. Immunol. 2023, 210, 142.102. [Google Scholar] [CrossRef]
- Montagner, I.M.; Penna, A.; Fracasso, G.; Carpanese, D.; Dalla Pietà, A.; Barbieri, V.; Zuccolotto, G.; Rosato, A. Anti-PSMA CAR-engineered NK-92 cells: An off-the-shelf cell therapy for prostate cancer. Cells 2020, 9, 1382. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Guan, T.; Li, Y.; Lin, Y.; Huang, G.; Lin, Y.; Sun, P.; Li, C.; Gu, J.; Zeng, H. Efficacy of MUC1-targeted CAR-NK cells against human tongue squamous cell carcinoma. Front. Immunol. 2024, 15, 1337557. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Liu, M.; Wang, L.; Liang, B.; Feng, Y.; Chen, X.; Shi, Y.; Zhang, J.; Ye, X.; Tian, Y. Use of chimeric antigen receptor NK-92 cells to target mesothelin in ovarian cancer. Biochem. Biophys. Res. Commun. 2020, 524, 96–102. [Google Scholar] [CrossRef]
- Söhngen, C.; Thomas, D.J.; Skowron, M.A.; Bremmer, F.; Eckstein, M.; Stefanski, A.; Driessen, M.D.; Wakileh, G.A.; Stühler, K.; Altevogt, P. CD24 targeting with NK-CAR immunotherapy in testis, prostate, renal and (luminal-type) bladder cancer and identification of direct CD24 interaction partners. FEBS J. 2023, 290, 4864–4876. [Google Scholar] [CrossRef]
- Lam, P.Y.; Omer, N.; Wong, J.K.; Tu, C.; Alim, L.; Rossi, G.R.; Victorova, M.; Tompkins, H.; Lin, C.Y.; Mehdi, A.M. Enhancement of anti-sarcoma immunity by NK cells engineered with mRNA for expression of a EphA2-targeted CAR. Clin. Transl. Med. 2025, 15, e70140. [Google Scholar] [CrossRef]
- Lee, J.; Song, J.; Yoo, W.; Choi, H.; Jung, D.; Choi, E.; Jo, S.-G.; Gong, E.-Y.; Jeoung, Y.-H.; Park, Y.-S. Therapeutic potential of anti-ErbB3 chimeric antigen receptor natural killer cells against breast cancer. Cancer Immunol. Immunother. 2025, 74, 1–15. [Google Scholar] [CrossRef]
- Tousley, A.M.; Rotiroti, M.C.; Labanieh, L.; Rysavy, L.W.; Kim, W.-J.; Lareau, C.; Sotillo, E.; Weber, E.W.; Rietberg, S.P.; Dalton, G.N. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 2023, 615, 507–516. [Google Scholar] [CrossRef]
- Roybal, K.T.; Williams, J.Z.; Morsut, L.; Rupp, L.J.; Kolinko, I.; Choe, J.H.; Walker, W.J.; McNally, K.A.; Lim, W.A. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 2016, 167, 419–432.e416. [Google Scholar] [CrossRef]
- Ahmadnia, A.; Mohammadi, S.; Yamchi, A.; Kalani, M.R.; Farazmandfar, T.; Khosravi, A.; Memarian, A. Augmenting the antitumor efficacy of natural killer cells via synNotch receptor engineering for targeted IL-12 secretion. Curr. Issues Mol. Biol. 2024, 46, 2931–2945. [Google Scholar] [CrossRef]
- Shahzadi, M.; Rafique, H.; Waheed, A.; Naz, H.; Waheed, A.; Zokirova, F.R.; Khan, H. Artificial intelligence for chimeric antigen receptor-based therapies: A comprehensive review of current applications and future perspectives. Ther. Adv. Vaccines Immunother. 2024, 12, 25151355241305856. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.; Grajek, M. Artificial intelligence and chimeric antigen receptor T-cell therapy. Acta Haematol. Pol. 2022, 53, 176–179. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, X.; Liu, C.; Huang, Y.; Li, L.; Zhu, Y. Peptide-based CAR-NK cells: A novel strategy for the treatment of solid tumors. Biochem. Pharmacol. 2025, 232, 116741. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | CAR Construct | Target Antigen | Cell Source | Clinical Trial Phase | NCT | Status | Study |
---|---|---|---|---|---|---|---|
Solid tumours | ROBO1 1 CAR-NK cells | ROBO1 | Human primary NK cells | Phase 1/2 | NCT03940820 | Unknown | Evaluation of the safety and effectiveness of ROBO1 CAR-NK cells in targeting ROBO1-expressing solid tumours |
Pancreatic cancer | BICAR-NK cells ROBO1 CAR-NK cells | ROBO1 | NK92 cell line | Phase 1/2 | NCT03941457 | Unknown | Evaluation of ROBO1 specific BiCAR-NK cells in patients with pancreatic cancer |
MUC1 2-positive solid tumours | Allogenic anti-MUC1 CAR-pNK cells | MUC1 | NK92 cell line | Phase 1/2 | NCT02839954 | Unknown | Evaluation of the efficacy and safety of chimeric antigen receptor-modified pNK cells in MUC1 positive advanced refractory or relapsed solid tumour |
Epithelial ovarian cancer | Mesothelin CAR-NK cells | Mesothelin | Human primary NK cells | Early phase 1 | NCT03692637 | Unknown | Investigation of the safety and efficacy of anti-mesothelin CAR-NK cells with epithelial ovarian cancer |
Advanced gastric cancer, advanced pancreatic cancer | CAR- NK182 cells | Claudin18.2 | Cord blood derived NK cells | Phase 1 | NCT06464965 | Recruiting | Evaluation the efficacy of CB CAR-NK182 in patients with advanced gastric cancer and advanced pancreatic cancer |
Stage IV ovarian cancer, Testis cancer, Refractory endometrial cancer | Claudin6, GPC3 3, Mesothelin, or AXL 4 targeting CAR-NK cells | Claudin6, GPC3, Mesothelin, AXL | Human primary NK cells | Phase1 | NCT05410717 | Recruiting | Evaluation the safety and preliminary efficacy of claudin6, GPC3, mesothelin, or AXL targeting CAR-NK cells in patients with claudin6, GPC3, mesothelin, or AXL-positive advanced solid tumours |
Advanced or metastatic HER2 5-expressing solid tumours | anti-HER2 NK cells | HER2 | -- | Phase 1 | NCT04319757 | Completed | A phase I, open label, dose escalation study of ACE1702 cell immunotherapy in subjects with advanced or metastatic HER2-expressing solid tumours |
Non-resectable pancreatic cancer | NKG2D 6 CAR-NK cells | -- | Early phase 1 | NCT06478459 | Recruiting | Evaluate the safety and anti-tumour efficacy of intratumoural NKG2D CAR-NK cell injection guided by EUS in the treatment of locally advanced pancreatic cancer. | |
Refractory metastatic colorectal cancer | NKG2D CAR-NK cells | NKG2D-ligand | -- | Phase 1 | NCT05213195 | Recruiting | NKG2D CAR-NK cell therapy in patients with refractory metastatic colorectal cancer |
Relapsed/refractory solid tumours | NKG2D-CAR NK92 cells | NK92 cell line | Phase 1 | NCT05528341 | Recruiting | Evaluation of the safety and effects of NKG2D-CAR-NK92 infusions in the treatment of relapsed/refractory solid tumours | |
Metastatic solid tumours | NKG2DL CAR-NK cells | NKG2D-ligand | Autologous or allogeneic NK cells | Phase 1 | NCT03415100 | Unknown | Evaluation the safety and feasibility of CAR-NK-cell treatment in subjects with metastatic solid tumours |
Metastatic castration-resistant prostate cancer | PSMA 7 CAR-NK cells | PSMA | Human primary NK cells | Early phase 1 | NCT03692663 | Unknown | Evaluation the safety, tolerability and preliminary efficacy of TABP EIC in patients with metastatic castration-resistant prostate cancer |
Advanced solid tumours | Anti-5T4 8 CAR-NK cells | 5T4 | -- | Early phase 1 | NCT05194709 | Unknown | Evaluation the safety, tolerability, initial efficacy and pharmacokinetics (PK) of anti-5T4 CAR-NK cells in patients with advanced solid tumours |
Locally advanced or metastatic solid tumours | Anti-5T4 CAR-raNK cells | 5T4 | -- | Early phase 1 | NCT05137275 | Unknown | Dose escalation and extension study to evaluate the safety, tolerability, and initial efficacy of anti-5T4 CAR-raNK-cell therapy in locally advanced or metastatic solid tumours |
Recurrent or unresectable solid tumours | CAR-NK cells | -- | -- | Early phase 1 | NCT06572956 | Active | Clinical study on the safety and efficacy of CAR-T/CAR-NK cells in the treatment of recurrent refractory or unresectable solid tumours |
Solid tumours with high TROP2 expression | TROP2 9-CAR NK cells | TROP2 | Cord blood derived NK cells | Phase 1 | NCT06066424 | Recruiting | Dose escalation and expansion study of TROP2 CAR engineered IL-15-transduced cord blood-derived NK cells in patients with advanced solid tumours |
Platinum resistant ovarian cancer, mesonephric-like adenocarcinoma, pancreatic cancer | TROP2-CAR/IL-15-NK cells | TROP2 | Cord blood derived NK cells | Phase 1/2 | NCT05922930 | Recruiting | Study of TROP2 CAR engineered IL-15-transduced cord blood-derived NK cells delivered intraperitoneally for the management of platinum resistant ovarian cancer, mesonephric-like adenocarcinoma, and pancreatic cancer |
Hepatocellular carcinoma | SN301A | Glypican-3 | -- | Early phase 1 | NCT06652243 | Recruiting | Evaluation of the safety and efficacy of SN301A cell injection in the treatment of subjects with GPC3-positive advanced hepatocellular carcinoma |
Ovarian epithelial carcinoma | SZ011 CAR-NK cells | -- | -- | Early phase 1 | NCT05856643 | Recruiting | Observation and investigation of the clinical safety and efficacy of SZ011 in the treatment of ovarian epithelial carcinoma |
Pancreatic cancer | CAR-NK cells (CL-NK-001) | -- | -- | Phase 1 | NCT06816823 | Not yet recruiting | Evaluation of the safety, tolerability and efficacy of CAR-NK cells (CL-NK-001) in patients with locally advanced, metastatic, or recurrent pancreatic cancer |
Non-small cell lung carcinoma | CCCR 10-NK cells | CCCR | NK92 cell line | Phase 1 | NCT03656705 | Completed | Evaluation of the safety and effects of CCCR-modified NK92(CCCR-NK92) infusions in previously treated advanced non-small cell lung carcinoma (NSCLC) |
Cancer Type | CAR Construct | Target Antigen | Cell Source | Drug Category | Drugs | Reference (PMDI/NTC + Status) | Intention |
---|---|---|---|---|---|---|---|
Castration-resistant prostate cancer | CAR NK92 cells | PSMA 1 | NK92 cell line | Immune checkpoint inhibitors | Anti-PD-L1 2 mAb; Atezolizumab | [126] | Anti-PD-L1 mAb markedly boosted the anti-tumour efficacy of CAR-NK92 cells |
Recurrent HER2 3-positive glioblastoma | NK92/5.28.z cells | HER2 | NK92 cell line | Immune checkpoint inhibitors | Anti-PD-1 Ab; Ezabenlimab | NCT03383978 Active, not recruiting | Intracranial injection of NK92/5.28.z cells in combination with intravenous Ezabenlimab in patients with recurrent HER2-positive glioblastoma |
Nasopharyngeal cancer mouse model | CAR pNK cells | PD-L1 | Haematopoietic stem cells | Immune checkpoint inhibitors | Anti-PD-1 Ab: Nivolumab | [127] | CAR pNK cells and Nivolumab resulted in a synergistic anti-solid tumour response |
Recurrent/metastatic gastric cancer, head and neck cancer | PD-L1 CAR-NK cells (PD-L1 t-haNK) | PD-L1 | -- | Immune checkpoint inhibitors | Pembrolizumab, N-803 | NCT04847466, recruiting | Testing effectiveness of irradiated PD-L1 CAR-NK cells, combined with Pembrolizumab and N-803, in people with advanced forms of gastric or head and neck cancer |
Anaplastic thyroid carcinoma | NKG2D 4 CAR-NK cells | NKG2D ligands | -- | Immune checkpoint inhibitors | Anti-PD-1 Ab | NCT06856278, not yet recruiting, new | Clinical study of NKG2D CAR-NK combined with PD-1 monoclonal antibody in the treatment of ATC |
Colorectal cancer | TROP2 5-CAR-NK cells | TROP2 | Cord-blood derived NK cells | Monoclonal Ab | Cetuximab | NCT06358430, recruiting | Dose escalation and expansion study of TROP2 CAR engineered IL-15-transduced cord blood-derived NK cells in combination with Cetuximab in patient with colorectal cancer |
Ovarian cancer | anti-CD44 CAR cells | CD44 | NK92 cell line | Chemotherapy | Cisplatin | [128] | Treatment with CD44NK and cisplatin exhibited greater anti-tumour activity compared to sequential administration |
Ovarian cancer | anti-CD133-CAR cells | CD133 | NK92 cell line | Chemotherapy | Cisplatin | [129] | Cisplatin followed by CAR-NK-cell treatment resulted in the strongest killing effect |
Relapsed/refractory non-small lung cancer | anti-Trop2 U-CAR-NK cells | TROP2 | -- | Chemotherapy | -- | NCT06454890, not yet recruiting | Evaluating the efficacy and safety of Anti-Trop2 universal CAR-NK (U-CAR-NK) cells therapy combined with chemotherapy for relapsed/refractory non-small cell lung cancer |
Pancreatic cancer | NKG2D CAR-NK cells | NKG2D ligands | -- | Chemotherapy | -- | NCT06503497, recruiting | Second-line chemotherapy sequential NKG2D CAR-NK-cell therapy for Pancreatic Cancer |
Advanced Renal cell carcinoma, Advanced mesothelioma, Advanced osteosarcoma | CAR.70/IL-15-transduced CB-derived NK cells | CD70 | Cord-blood derived NK cells | Chemotherapy | Cyclophosphamide, Fludarabine phosphate | NCT05703854, recruiting | Study of CAR.70-engineered IL-15-transduced cord blood-derived NK cells in conjunction with lymphodepleting chemotherapy for the management of advanced renal cell carcinoma, mesothelioma and osteosarcoma |
Pancreatic carcinoma | ROBO1 6 specific CAR-NK cells | ROBO1 | NK92 cell line | Radiotherapy | 125I Seed Brachytherapy | [130] | CAR-NK cells achieved the strongest killing effect, enhancing the efficacy of 125I seed brachytherapy in an orthotropic model |
Hepatocellular carcinoma | CXCR2 7-armed GPC3-targeting CAR-NK92 cells | Glypican-3 | NK92 cell line | Radiotherapy | 8 Gy | [131] | Evidence that irradiation could efficiently enhance the anti-tumour effect of CAR-NK cells in solid tumour model |
Pancreatic cancer | CAR-NK92 cells | Mesothelin, cGAMP | NK92 cell line | STING 8 agonists | cyclic GMP-AMP | [109] | cGAMP could directly activate NK cells and enhance the sensitivity of pancreatic cancer cells to NK-cell cytotoxicity |
Malignant pleural mesothelioma (patient samples) | anti-MSLN 9 CAR-NK cells | Mesothelin | -- | STING agonists | TAK-676 | [132] | NK-cell therapies (CAR-NKs) benefit from STING agonist enhancement of NK-cell migration and killing |
Colorectal cancer | EpCAM 10-CAR-NK92 cells | EpCAm | NK92 cell line | Tyrosine-kinase inhibitor | Regorafenib | [117] | Improve the therapeutic effectiveness of CAR-engineered immune effector cells against solid tumours |
Renal cell carcinoma | CAR-NK92 cells | EGFR 11 | NK92 cell line | Tyrosine-kinase inhibitor | Cabozantinib | [118] | Boost the cytotoxicity of CAR-NK92 cells against RCC cells |
Advanced renal cell carcinoma | CAR-NK92 cells | CAIX 12 | NK92 cell line | Protease inhibitor | Bortezomib | [133] | Bortezomib enhances the efficacy of CAR-NK92 cells against RCC both in vitro and in vivo. |
Glioblastoma | EGFR-CAR NK cells | EGFR | Peri-pheral-blood derived NK cells | Oncolytic virus | OV-IL-15C | [99] | The combination of an oncolytic virus expressing the IL-15/IL-15Rα complex and frozen, ready-to-use EGFR-CAR NK cells elicit strong anti-tumour responses in glioblastoma |
Breast cancer brain metastasis | EGFR-CAR NK92 cells | EGFR | NK92 cell line | Oncolytic virus | Oncolytic herpes simplex virus oHSV-1 | [93] | Demonstration that regional administration of EGFR-CAR NK92 cells combined with oHSV-1 therapy is a potentially promising strategy to treat breast cancer brain metastasis |
Recurrent/metastatic neuroblastoma | anti-ROR1 13 CAR-NK cells | ROR1 | - | Oncolytic virus | Oncolytic herpes simplex virus C021 | [134] | The combination of an oncolytic virus expressing hL-21 and anti-ROR1-CAR-NK cells is an effective immunotherapeutic approach |
Lung cancer | CAR-NK cells | B7-H3 | NK92MI cell line | Photothermal therapy | Near infrared (NIR-II) | [135] | Synergistic CAR-NK immunotherapy is designed to specifically eliminate any residual tumour cells following PTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doeppner, C.A.; Binder, A.K.; Bremm, F.; Feuchter, N.; Dörrie, J.; Schaft, N. Rendering NK Cells Antigen-Specific for the Therapy of Solid Tumours. Int. J. Mol. Sci. 2025, 26, 6290. https://doi.org/10.3390/ijms26136290
Doeppner CA, Binder AK, Bremm F, Feuchter N, Dörrie J, Schaft N. Rendering NK Cells Antigen-Specific for the Therapy of Solid Tumours. International Journal of Molecular Sciences. 2025; 26(13):6290. https://doi.org/10.3390/ijms26136290
Chicago/Turabian StyleDoeppner, Carina A., Amanda Katharina Binder, Franziska Bremm, Niklas Feuchter, Jan Dörrie, and Niels Schaft. 2025. "Rendering NK Cells Antigen-Specific for the Therapy of Solid Tumours" International Journal of Molecular Sciences 26, no. 13: 6290. https://doi.org/10.3390/ijms26136290
APA StyleDoeppner, C. A., Binder, A. K., Bremm, F., Feuchter, N., Dörrie, J., & Schaft, N. (2025). Rendering NK Cells Antigen-Specific for the Therapy of Solid Tumours. International Journal of Molecular Sciences, 26(13), 6290. https://doi.org/10.3390/ijms26136290