The Use of MSCs, iPSCs, and EVs in the Repair of Human MSK Tissues: Is Ultimate Success Dependent on Developing Excellent Implant Materials as Well as Creating an Optimal Environment for Implantation? What Is the Rationale for These Choices?
Abstract
1. Introduction
1.1. Purpose of the Review
1.2. Background and History
1.2.1. Mesenchymal Stem Cells
1.2.2. Extracellular Vesicles
1.2.3. Induced Pluripotent Stem Cells
2. Do Names Matter? -Scientifically and Clinically, Yes
3. Does the In Vivo Environment Matter? Factors Potentially Contributing to the Implantation Environment
4. How Can MSCs, iPSCs, and EVs Be Optimized and Matched with a Suitable Environment?
5. The Way Forward: What Is Achievable?
6. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Caplan, A.I. Stem cell delivery vehicle. Biomaterials 1990, 11, 44–46. [Google Scholar]
- Caplan, A.I. Mesenchymal stem cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef]
- Caplan, A.I. New MSC: MSCs as pericytes are sentinels and gatekeepers. J. Orthop. Res. 2017, 35, 1151–1159. [Google Scholar] [CrossRef]
- Caplan, A.I. What’s in a name? Tissue Eng. (Part A) 2010, 16, 2415–2417. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I. Mesenchymal stem cells: Time to change the name! Stem Cells Transl. Med. 2017, 6, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.A. Perspective: Is it time to rename MSC (mesenchymal stem cells/medicinal signaling cells) with a name that reflects their combined in vivo functions and their in vitro abilities?—Possibly “pluripotent mesenchymal regulatory cells (PMRC)”. J. Biomed. Sci. Eng. 2021, 14, 317–324. [Google Scholar] [CrossRef]
- Hart, D.A.; Nakamura, N. Creating an optimal in vivo environment to enhance outcomes using cell therapy to repair/regenerate injured tissues of the musculoskeletal system. Biomedicines. 2022, 10, 1570. [Google Scholar] [CrossRef]
- Tao, H.; Chen, X.; Wei, A.; Song, X.; Wang, W.; Liang, L.; Zhao, Q.; Han, Z.; Han, Z.; Wang, X.; et al. Comparison of teratoma formation between embryonic stem cells and parthenogenetic embryonic stem cells by molecular imaging. Stem Cells Int. 2018, 2018, 7906531. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, T.; Long, Y.; Huang, H.; Kandeel, F.; Yee, J.-K. Using gene editing to establish a safeguard system for pluripotent stem-cell-based therapies. iScience. 2019, 22, 409–422. [Google Scholar] [CrossRef]
- Tian, R.-C.; Zhang, R.-Y.; Ma, C.-F. Rejuvenation of bone marrow mesenchymal stem cells: Mechanisms and their application in senile osteoporosis treatment. Biomolecules 2025, 15, 276. [Google Scholar] [CrossRef]
- Ossendorff, R.; Menon, A.; Schildberg, F.A.; Randelli, P.S.; Scheidt, S.; Burger, C.; Wirtz, D.C.; Cucchi, D. A worldwide analysis of adipose-derived stem cells and stromal vascular fraction in orthopedics: Current evidence and applications. J. Clin. Med. 2023, 12, 4719. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, K.; Ando, W.; Fujie, H.; Hart, D.A.; Yoshikawa, H.; Nakamura, N. Scaffold-free tissue engineering for injured joint surface restoration. J. Exp. Orthop. 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, K.; Ando, W.; Hart, D.A.; Yonetani, Y.; Horibe, S.; Nakamura, N. Five-year outcomes after implantation of a scaffold-free tissue-engineered construct generated from autologous synovial mesenchymal stromal cells for repair of knee chondral lesions. Orthop. J. Sports Med. 2023, 11, 23259671231189474. [Google Scholar] [CrossRef]
- Liao, Z. Clinical research progress of umbilical cord blood mesenchymal stem cells in knee articular cartilage repair: A review. Medicine 2025, 104, e41402. [Google Scholar] [CrossRef] [PubMed]
- Liau, L.L.; Ruszymah, B.H.I.; Ng, M.H.; Law, J.X. Characteristics and clinical applications of Wharton’s jelly-derived mesenchymal stromal cells. Curr. Res. Transl. Med. 2020, 68, 5–16. [Google Scholar] [CrossRef]
- Dallatana, A.; Cremonesi, L.; Pezzini, F.; Fortana, G.; Innamorati, G.; Giacomello, L. The placenta as a source of human material for neuronal repair. Biomedicines 2024, 12, 1567. [Google Scholar] [CrossRef]
- Ando, W.; Kutcher, J.J.; Krawetz, R.; Sen, A.; Nakamura, N.; Frank, C.B.; Hart, D.A. Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/progenitor cell phenotypes in a porcine model: A cell source with enhanced commitment to the chondrogenic lineage. Cytotherapy 2014, 16, 776–788. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y.; Duan, L.; Jiang, B. Amniotic fluid-derived stem cells: An overlooked source of stem cells for translational research. DNA Cell Biol. 2025, 44, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.A. Is adipocyte differentiation the default lineage for mesenchymal stem/progenitor cells after loss of mechanical loading? A perspective from space flight and model systems. J. Biomed. Sci. Eng. 2014, 7, 799–808. [Google Scholar] [CrossRef]
- Hart, D.A. What molecular recognition systems do mesenchymal stem cells/medicinal signaling cells (MSC) use to facilitate cell-cell and cell matrix interactions? A review of evidence and options. Int. J. Mol. Sci. 2021, 22, 8637. [Google Scholar] [CrossRef]
- Riggle, C.; McLellan, M.; Bohlen, H.; Wang, D. Complications of stem cell-based injections for knee osteoarthritis: A systematic review. HSS. J. 2024, 16, 15563316241271058. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, J.; Yin, L.; Liu, H. Transplantation of three mesenchymal stem cells for knee osteoarthritis, which cell and type are more beneficial? A systematic review and network meta-analysis. J. Orthop. Surg. Res. 2024, 19, 366. [Google Scholar] [CrossRef]
- Wu, K.-C.; Chang, Y.-H.; Ding, D.-C.; Lin, S.-Z. Mesenchymal stromal cells for aging cartilage regeneration: A review. Int. J. Mol. Sci. 2024, 25, 12911. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Wang, S.; Zhou, Y.; Li, H.; Wu, Y. Mesenchymal stem cell subpopulations: Phenotype, property and therapeutic potential. Cell Mol. Life Sci. 2016, 73, 3311–3321. [Google Scholar] [CrossRef] [PubMed]
- Uder, C.; Brucker, S.; Winkler, S.; Tautenhahn, H.-M.; Christ, B. Mammalian MSC from selected species: Features and applications. Cytometry A 2018, 93, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Yong, D.; El-Jawhari, J.J.; Cuthbert, R.C.; McGonagle, D.; Naing, M.W.; Jones, E. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions. Cytotherapy 2019, 21, 803–819. [Google Scholar] [CrossRef]
- Tan, K.L.; Chia, W.C.; How, C.W.; Tor, Y.S.; Show, P.L.; Looi, Q.H.; Foo, J.B. Benchtop isolation of small extracellular vesicles from human mesenchymal stem cells. Mol. Biotechnol. 2021, 63, 780–791. [Google Scholar] [CrossRef]
- Wilson, A.J.; Rand, E.; Webster, A.J.; Genever, P.G. Characterization of mesenchymal stromal cells in clinical trial reports: Analysis of published descriptors. Stem Cell Res. Ther. 2021, 12, 360. [Google Scholar] [CrossRef]
- Fares, M.Y.; Shehade, T.H.; Daher, H.; Boufadel, P.; Koa, J.; Abboud, J.A. Mesenchymal stem cell injections for the treatment of osteoarthritis: A systematic review of clinical trials. Acta Orthop. Belg. 2024, 90, 319–333. [Google Scholar] [CrossRef]
- Whittle, S.L.; Johnston, R.V.; McDonald, S.; Worthley, D.; Campbell, T.M.; Cyril, S.; Bapna, T.; Zhang, J.; Buchbinder, R. Stem cell injections for osteoarthritis of the knee. Cochrane Database Syst. Rev. 2025, 4, CD013342. [Google Scholar] [CrossRef]
- Shimomura, K.; Moriguchi, Y.; Ando, W.; Nannsai, R.; Fujie, H.; Hart, D.A.; Bobbi, A.; Kita, K.; Horibe, S.; Shino, K.; et al. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng. Part A 2014, 20, 2291–2304. [Google Scholar] [CrossRef]
- Shimomura, K.; Yasui, Y.; Koizumi, K.; Chijimatsu, R.; Hart, D.A.; Yonetani, Y.; Ando, W.; Nishii, T.; Kanamoto, T.; Horibe, S.; et al. First-in-human pilot study of implantation of a scaffold-free tissue-engineered construct generated from autologous synovial mesenchymal stem cells for repair of knee chondral lesions. Am. J. Sports Med. 2018, 46, 2384–2393. [Google Scholar] [CrossRef]
- Shimomura, K.; Hamada, H.; Hart, D.A.; Ando, W.; Nishii, T.; Trattnig, S.; Nehner, S.; Nakamura, N. Histological analysis of cartilage defects repaired with an autologous human stem cell construct 48 weeks postimplantation reveals structural details not detected by T2-mapping MRI. Cartilage 2021, 13 (Suppl. S1), 694S–706S. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, K.; Ando, W.; Hart, D.A.; Nakamura, N. A novel scaffold-free mesenchymal stem cell-derived tissue engineered construct for articular cartilage restoration- from basic to clinic. Regen Ther. 2024, 26, 124–131. [Google Scholar] [CrossRef]
- Ando, W.; Fujie, H.; Moriguchi, Y.; Nansai, R.; Shimomura, K.; Hart, D.A.; Yoshikawa, H.; Nakamura, N. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells. Eur. Cells Mater. 2012, 24, 292–307. [Google Scholar] [CrossRef] [PubMed]
- Fujie, H.; Nansai, R.; Ando, W.; Shimomura, K.; Moriguchi, Y.; Hart, D.A.; Nakmura, N. Zone-specific integrated cartilage repair using a scaffold-free tissue engineered construct derived all allogenic mesenchymal stem cells: Biomechanical and histological assessments. J. Biomech. 2015, 48, 4101–4108. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, K.; Ando, W.; Tateishi, K.; Nansai, R.; Fujie, H.; Hart, D.A.; Kohda, H.; Kita, K.; Kanamoto, T.; Mae, T.; et al. The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 2010, 31, 8004–8011. [Google Scholar] [CrossRef]
- Yasui, Y.; Chijimatsu, R.; Hart, D.A.; Koizumi, K.; Sugita, N.; Shimomura, K.; Myoui, A.; Yoshikawa, H.; Nakamura, N. Preparation of scaffold-free tissue-engineered constructs derived from human synovial mesenchymal stem cells under low oxygen tension enhances their chondrogenic differentiation capacity. Tissue Eng. Part A 2016, 22, 490–500. [Google Scholar] [CrossRef]
- Shimomura, K.; Rothrauff, B.; Hart, D.A.; Hamamoto, S.; Kobayashi, M.; Yoshikawa, H.; Tuan, R.S.; Nakamura, N. Enhanced repair of meniscal hoop structure injuries using an aligned electrospun nanofibrous scaffold combined with a mesenchymal stem cell-derived tissue engineered construct. Biomaterials 2019, 192, 346–354. [Google Scholar] [CrossRef]
- Moriguchi, Y.; Tateishi, K.; Ando, W.; Shimomura, K.; Yonetani, Y.; Tanaka, Y.; Kita, K.; Hart, D.A.; Gobbi, A.; Shino, K.; et al. Repair of meniscal lesions using a scaffold-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model. Biomaterials 2013, 34, 2185–2193. [Google Scholar] [CrossRef]
- Shimomura, K.; Hamamoto, S.; Hart, D.A.; Yoshikawa, H.; Nakamura, N. Meniscal repair and regeneration: Current strategies and future perspectives. J. Clin. Orthop. Trauma 2018, 9, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.; Withrow, J.; Hunter, M.; Liu, Y.; Tang, Y.L.; Fulzele, S.; Hamrick, M.W. Emerging role of extracellular vesicles in musculoskeletal diseases. Mol. Aspects Med. 2018, 60, 123–128. [Google Scholar] [CrossRef]
- Herrmann, M.; Diederichs, S.; Melnik, S.; Riegger, J.; Trivanovic, D.; Li, S.; Jenei-Lanzi, Z.; Brenner, R.E.; Huber-Lang, M.; Zaucke, F.; et al. Extracellular vesicles in musculoskeletal pathologies and regeneration. Front. Bioeng. Biotechnol. 2021, 8, 624096. [Google Scholar] [CrossRef] [PubMed]
- Sarcinella, A.; Femmino, S.; Brizzi, M.F. Extracellular vesicles: Emergent and multiple sources in wound healing treatment. Int. J. Mol. Sci. 2023, 24, 15709. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Chen, Q.; Zhang, Q.; Tian, W.; Chen, T.; Liu, Z. Therapeutic potential of adipose-derived stem cell extracellular vesicles: From inflammation regulation to tissue repair. Stem Cell Res. Ther. 2024, 15, 249. [Google Scholar] [CrossRef]
- Eirin, A.; Zhu, X.-Y.; Puranik, A.S.; Woollard, J.R.; Tang, H.; Dasari, S.; Leman, A.; van Wijnen, A.J.; Lerman, L.O. Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells. Sci. Rep. 2016, 6, 36120. [Google Scholar] [CrossRef]
- Oryan, A.; Kalhorniagolkar, M.; Maffulli, N. Efficacy of adipose, bone marrow, and tendon stem cell-derived exosomes on tendon healing. J. Drug Deliv. Sci. Technol. 2025, 107, 106844. [Google Scholar] [CrossRef]
- Alibhai, F.J.; Lim, F.; Yeganeh, A.; DiStefano, P.V.; Binesh-Marvasti, T.; Belfiore, A.; Wlodarek, L.; Gustafson, D.; Millar, S.; Li, S.-H.; et al. Cellular senescence contributes to age-dependent changes in circulating extracellular vesicle cargo and function. Aging Cell. 2020, 19, e13103. [Google Scholar] [CrossRef]
- Boulestreau, J.; Maumus, M.; Rozier, P.; Jorgensen, C.; Noel, D. Mesenchymal stem cell derived extracellular vesicles in aging. Front. Cell Dev. Biol. 2020, 8, 107. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Bollati, V.; Pergoli, L.; Iodice, S.; De Col, A.; Tamini, S.; Cicolini, S.; Tringali, G.; De Micheli, R.; Cella, S.G.; et al. Effects of an acute bout of exercise on circulating extracellular vesicles: Tissue-, sex-, and BMI-related differences. Int. J. Obes. 2020, 44, 1108. [Google Scholar] [CrossRef]
- Holcar, M.; Maric, I.; Terel, T.; Goricar, K.; Primozic, U.C.; Cere, D.; Giebel, B.; Lenassi, M. Comprehensive phenotyping of extracellular vesicles in plasma of healthy humans- insights into cellular origin and biological variation. J. Extracell. Vesicles. 2025, 14, e70039. [Google Scholar] [CrossRef] [PubMed]
- Murali, V.P.; Holmes, C.A. Mesenchymal stromal cell-derived extracellular vesicles for bone regeneration therapy. Bone Rep. 2021, 14, 101093. [Google Scholar] [CrossRef] [PubMed]
- Phelps, J.; Leonard, C.; Shah, S.; Krawetz, R.; Hart, D.A.; Duncan, N.A.; Sen, A. Production of mesenchymal progenitor cell-derived extracellular vesicles in suspension bioreactors for use in articular cartilage repair. Stem. Cells Transl. Med. 2022, 11, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Phelps, J.; Hart, D.A.; Mitha, A.P.; Duncan, N.A.; Sen, A. Physiologic oxygen conditions enhance the angiogenic properties of extracellular vesicles from human mesenchymal stem cells. Stem Cell Res. Ther. 2023, 14, 218. [Google Scholar] [CrossRef]
- Hanai, H.; Hart, D.A.; Jacob, G.; Shimomura, K.; Ando, W.; Yoshioka, Y.; Ochiya, T.; Nakagawa, S.; Nakamura, M.; Okada, S.; et al. Small extracellular vesicles derived from human adipose-derived mesenchymal stromal cells cultured in a new chemically-defined contaminate-free media exhibit enhanced biological and therapeutic effects on human chondrocytes in vitro and in a mouse osteoarthritis model. J. Extracell. Vesicles. 2023, 12, 12337. [Google Scholar] [CrossRef]
- Ragni, E.; Orfei, C.P.; De Luca, P.; Colombini, A.; Vigzano, M.; de Girolamo, L. Secreted factors and EV-miRNAs orchestrate the healing capacity of adipose mesenchymal stem cells for the treatment of knee osteoarthritis. Int. J. Mol. Sci. 2020, 21, 1582. [Google Scholar] [CrossRef]
- Alcaraz, M.J. Control of articular degeneration by extracellular vesicles from stem/stromal cells as a potential strategy for the treatment of osteoarthritis. Biochem. Pharmacol. 2024, 228, 116226. [Google Scholar] [CrossRef]
- Zhang, W.H.; Xiang, W.Y.; Yi, L.; Fang, R. The status and hotspot analysis of research on extracellular vesicles and osteoarthritis: A bibliometric analysis. Front. Pharmacol. 2025, 16, 1484437. [Google Scholar] [CrossRef]
- DiStefano, T.J.; Vaso, K.; Danias, G.; Chionuma, H.N.; Weisere, J.R.; Iatridis, J.C. Extracellular vesicles as an emerging treatment option for intravertebral disc degeneration: Therapeutic potential, translational pathways, and regulatory consideration. Adv. Healthc. Mater. 2022, 11, e2100596. [Google Scholar] [CrossRef]
- Chen, S.-H.; Chen, Z.-Y.; Lin, Y.-H.; Chen, S.-H.; Chou, R.-Y.; Kao, H.-K.; Lin, F.-H. Extracellular vesicles of adipose-derived stem cells promote the healing of traumatized Achilles tendons. Int. J. Mol. Sci. 2021, 22, 12373. [Google Scholar] [CrossRef]
- Yanuar, A.; Agustina, H.; Budhiparama, N.C.; Atik, N. Prospect of exosome in ligament healing: A systematical review. Stem Cells Cloning 2023, 16, 91–101. [Google Scholar] [CrossRef]
- Ren, J.; Yu, R.; Xue, J.; Tang, Y.; Su, S.; Liao, C.; Guo, Q.; Guo, W.; Zheng, J. How do extracellular vesicles play a role in the maintenance of bone homeostasis and regeneration? A comprehensive review of literature. Int. J. Nanomed. 2022, 17, 5375–5389. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Zhang, W.; Dai, L.; Chen, L. The role of extracellular vesicles in bone regeneration and associated bone diseases. Curr. Issues Mol. Biol. 2024, 46, 9269–9285. [Google Scholar] [CrossRef] [PubMed]
- Emami, A.; Arabpour, Z.; Izadi, E. Extracellular vesicles: Essential agents in critical bone defect repair and therapeutic enhancement. Mol. Biol. Rep. 2025, 52, 113. [Google Scholar] [CrossRef] [PubMed]
- Kawata, K.; Koga, H.; Tsuji, K.; Myyatake, K.; Nakagawa, Y.; Yokota, T.; Sekiya, I.; Katagiri, H. Extracellular vesicles derived from mesenchymal stromal cells mediate endogenous cell growth and migration via the CXCL5 and CXCL6/CXCL2 axes and repair menisci. Stem Cell Res. Ther. 2021, 12, 414. [Google Scholar] [CrossRef]
- Betensky, D.J.; Chen, M.D.; Trivedi, J.; Desai, S.; Twomey-Kozak, J.; Wen, S.; Jayasuriya, C.T. Extracellular vesicles from cartilage progenitors stimulate type II collagen expression and wound healing in meniscal cells. J. Orthop. Res. 2025, 43, 682–697. [Google Scholar] [CrossRef]
- Schwartz, G.; Rana, S.; Jackson, A.R.; Lenero, C.; Best, T.M.; Kouroupis, D.; Travascio, F. Human mesenchymal stem/stromal cell-derived extracellular vesicle transport in meniscus fibrocartilage. J. Orthop. Res. 2025, 43, 457–465. [Google Scholar] [CrossRef]
- Bray, E.R.; Kirsner, R.S.; Badiavas, E.V. Mesenchymal stem cell-derived extracellular vesicles as an advanced therapy for chronic wounds. Cold Spring Harb. Perspect. Biol. 2022, 14, a041227. [Google Scholar] [CrossRef]
- Mahindran, E.; Zaman, W.S.W.K.; Noordin, K.B.A.A.; Tan, Y.-F.; Nordin, F. Mesenchymal stem cell-derived extracellular vesicles: Hype or hope for skeletal muscle anti-frailty. Int. J. Mol. Sci. 2023, 24, 7833. [Google Scholar] [CrossRef]
- Yang, D.; Chen, Z.; Xu, Z.; Qin, L.; Yi, W.; Long, Y. Roles of stem cell exosomes and their microRNA carrier in bone and cartilage regeneration. Curr. Stem Cell Res. Ther. 2023, 18, 917–925. [Google Scholar] [CrossRef]
- Wang, H.-S.; Lin, S.; Yu, H.-M. Exosome-mediated repair of intervertebral disc degeneration: The potential role of miRNAs. Curr. Stem Cell Res. 2024, 19, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Jacob, G.; Shimomura, K.; Hanai, H.; Akimori, T.; Ohori, T.; Tsujii, A.; Moriguchi, Y.; Nakamura, N. Therapeutic potential of microRNA in meniscal repair and regeneration. Knee 2025, 55, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Ando, W.; Shimomura, K.; Hart, D.A.; Hanai, H.; Jacob, G.; Chijimatsu, R.; Yarimutu, S.; Fujie, H.; Okada, S.; et al. Repair of osteochondral defects: Efficacy of a tissue-engineered hybrid implant containing both human MSC and human iPSC-cartilaginous particles. NPJ Regen. Med. 2023, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Nakagawa, M.; Koyanagi, M.; Tanabe, K.; Takahashi, K.; Ishisaka, T.; Aoi, T.; Okita, K.; Mochiduki, Y.; Takizawa, N.; Yamanaka, S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 2008, 26, 101–106. [Google Scholar] [CrossRef]
- Shi, Y.; Inoue, H.; Wu, J.C.; Yamanaka, S. Induced pluripotent stem cell technology: A decade of progress. Nat. Rev. Drug Discov. 2017, 16, 115–130. [Google Scholar] [CrossRef]
- Karagiannis, P.; Takahashi, K.; Saito, M.; Yoshida, Y.; Okita, K.; Watanabe, A.; Inoue, H.; Yamashita, J.K.; Todani, M.; Nakagawa, M.; et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol. Rev. 2019, 99, 79–114. [Google Scholar] [CrossRef]
- Yamanaka, S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 2020, 27, 523–531. [Google Scholar] [CrossRef]
- Hui, K.K.; Yamanaka, S. iPS cell therapy 2.0: Preparing for next-generation regenerative medicine. Bioessays 2024, 46, e2400072. [Google Scholar] [CrossRef]
- Song, H.W.; Solomon, J.N.; Masri, F.; Mack, A.; Durand, N.; Cameau, E.; Dianat, N.; Hunter, A.; Oh, S.; Schoen, B.; et al. Bioprocessing considerations for generation of iPSCs intended for clinical application: Perspectives from ISCT Emerging Regenerative Medicine Technology working group. Cytotherapy 2024, 26, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Ku, C.-C.; Wuputra, K.; Liu, C.-J.; Wu, D.-C.; Satou, M.; Mitsui, Y.; Saito, S.; Yokoyama, K.K. Possible strategies to reduce the tumorigenic risk of reprogrammed normal and cancer cells. Int. J. Mol. Sci. 2024, 25, 5177. [Google Scholar] [CrossRef]
- Washizu, K.; Yamanaka, S.; Kunitomi, A. Protocol for generating transgene-free naïve human induced pluripotent stem cells from somatic cells using modified Sendai viral system. STAR Protoc. 2025, 6, 103700. [Google Scholar] [CrossRef]
- Sanjurjo-Rodriguez, C.; Castro-Vinurlas, R.; Pineiro-Ramil, M.; Rodriguez-Fernandes, S.; Fuentes-Boquete, I.; Blanco, F.; Diaz-Prado, S. Versatility of induced pluripotent stem cells (iPSCs) for improving the knowledge on musculoskeletal diseases. Int. J. Mol. Sci. 2020, 21, 6124. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Richardson, D.W. Comparative analysis of tenogenic gene expression in tenocyte-derived induced pluripotent stem cells and bone marrow-derived mesenchymal stem cells in response to biochemical and biomechanical stimuli. Stem Cell Int. 2021, 2021, 8835576. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhou, B.; Hou, Y.; Xu, L. Stem cells in tendon regeneration and factors governing tenogenesis. Curr. Stem. Cell. Res. Ther. 2022, 17, 503–512. [Google Scholar] [CrossRef]
- Kaneda, G.; Chan, J.L.; Castaneda, C.M.; Papalamprou, A.; Sheyn, J.; Shelest, O.; Huang, D.; Kluser, N.; Yu, V.; Ignacio, G.C.; et al. iPSC-derived tenocytes seeded on microgroved 3D printed scaffolds for Achilles tendon regeneration. J. Orthop. Res. 2023, 41, 2205–2220. [Google Scholar] [CrossRef]
- Spater, T.; Del Rio, P.; Shelest, O.; Wechsler, J.T.; Kaneda, G.; Chavez, M.; Yu, V.; Metzger, W.; Huang, D. Collagen scaffold-seeded iTenocytes accelerate the healing and functional recovery of Achilles tendon defects in a rat model. Front. Bioeng. Biotechnol. 2024, 12, 1407729. [Google Scholar] [CrossRef]
- Saito, T.; Yano, F.; Mori, D.; Kawata, M.; Hoshi, K.; Takato, T.; Masaki, H.; Otsu, M.; Eto, K.; Nakauchi, H.; et al. Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells. Biomed. Res. 2015, 36, 179–186. [Google Scholar] [CrossRef]
- Abe, K.; Tsumaki, N. Regeneration of joint surface defects by transplantation of allogeneic cartilage: Application of iPS cell-derived cartilage and immunogenicity. Inflamm. Regen. 2023, 43, 56. [Google Scholar] [CrossRef]
- Reina-Mahecha, A.; Beers, M.J.; van der Veen, H.C.; Zuhorn, I.S.; van Kooten, T.G.; Sharma, P.K. A review of the role of bioreactors for iPSC-based tissue-engineered articular cartilage. Tissue Eng. Regen. Med. 2023, 20, 1041–1052. [Google Scholar] [CrossRef]
- Raftery, R.M.; Pregizer, S.K.; Kocher, S.; Craft, A.M. Regenerative capacity of human pluripotent stem cell-derived articular chondrocytes in vitro. J. Orthop. Res. 2024, 42, 1841–1851. [Google Scholar] [CrossRef]
- Hanaki, S.; Yamada, D.; Takao, T.; Iwai, R.; Takarada, T. Efficient production of chondrocyte particles from human iPSC-derived chondroprogenitors using a plate-based cell elf-aggregation technique. Int. J. Mol. Sci. 2024, 25, 12063. [Google Scholar] [CrossRef] [PubMed]
- Skoracka, J.; Bajewska, K.; Kulawik, M.; Suchorska, W.; Kulcenty, K. Advances in cartilage tissue regeneration: A review of stem cell therapies, tissue engineering, biomaterials, and clinical trials. EXCLI. J. 2024, 23, 1170–1182. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-S.; Lin, E.C.-Y.; Sivapatham, A.; Leifman, E.M.; Jiao, H.; Lu, Y.; Nemke, B.W.; Leifman, M.; Markel, M.D.; Li, W.-L. Autologous iPSC- and MSC-derived chondrocyte implants for cartilage repair in a miniature pig model. Stem Cell Res. Ther. 2025, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fu, S.; Rahaman, M.N.; Mao, J.J.; Bal, B.S. Native nucleus pulposus tissue matrix promotes notochordal differentiation of human induced pluripotent stem cells with potential for treating intervertebral disc degeneration. J. Biomed. Mater. Res. A 2015, 103, 1053–1059. [Google Scholar] [CrossRef]
- Xia, K.; Gong, Z.; Zhu, J.; Yu, W.; Wang, Y.; Wang, J.; Xu, A.; Zhou, X.; Tao, H.; Li, F.; et al. Differentiation of pluripotent stem cells into nucleus pulposus progenitor cells for intervertebral disc regeneration. Curr. Stem Cell Res. Ther. 2019, 14, 57–64. [Google Scholar] [CrossRef]
- Rana, D.; Kumar, S.; Webster, T.J.; Ramalingam, M. Impact of induced pluripotent stem cells in bone repair and regeneration. Curr. Osteoporos. Rep. 2019, 17, 226–234. [Google Scholar] [CrossRef]
- Hou, Y.; Yan, Z.; Wu, Z. Concise review; the recent methods that enhance the osteogenic differentiation of human induced pluripotent stem cell. Curr. Stem Cell Res. Ther. 2021, 16, 949–957. [Google Scholar] [CrossRef]
- Chow, S.K.-H.; Gao, Q.; Pius, A.; Monita, M.; Ergul, Y.; Murayama, M.; Shinohara, I.; Cekuc, M.S.; Ma, C.; Susuki, Y.; et al. The advantages and shortcomings of stem cell therapy for enhanced bone healing. Tissue Eng. Part C Methods 2024, 30, 415–430. [Google Scholar] [CrossRef]
- Sugiura, R.; Hamano, S.; Tomokiyo, A.; Hasegawa, D.; Yoshida, S.; Sugi, H.; Fujino, S.; Adachi, O.; Kadowaki, M.; Yamashita, D.; et al. PAX9 is involved in periodontal ligament stem cell-like differentiation of human-induced pluripotent stem cells by regulating extracellular matrix. Biomedicines 2022, 10, 2366. [Google Scholar] [CrossRef] [PubMed]
- Lago, E.P.; Jelbert, E.R.; Baird, A.; Lam, P.Y.; Guest, D.J. Equine induced pluripotent stem cells are responsive to inflammatory cytokines before and after musculoskeletal cell types. In Vitro Cell Dev. Biol. Anim. 2023, 59, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Falk, J.; Donadeu, F.X. Equine induced pluripotent stem cell culture. Methods Mol. Biol. 2024, 2749, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, N.; Choudhary, S.; Luhach, P.; Choudhary, R.T. Understanding, status, and therapeutic potential of stem cells in the goat. Curr. Stem Cell Res. Ther. 2023, 18, 947–957. [Google Scholar] [CrossRef]
- Barrachina, L.; Arshaghi, T.E.; O’Brien, A.; Ivanovska, A.; Barry, F. Induced pluripotent stem cells in companion animals: How can we move the field forward? Front. Vet. Sci. 2023, 10, 1176772. [Google Scholar] [CrossRef]
- Hu, L.; Liu, L.; Wang, S. Stem cell-based tooth and periodontal regeneration. Oral Dis. 2018, 24, 696–705. [Google Scholar] [CrossRef]
- Takahashi, J. iPSC-based cell replacement therapy: From basic research to clinical applications. Cytotherapy 2025. [Google Scholar] [CrossRef]
- Enosawa, S. Clinical trials of stem cell therapy in Japan: The decade of progress under the national program. J. Clin. Med. 2022, 11, 7030. [Google Scholar] [CrossRef]
- Bi, Y.; Qiao, X.; Liu, Q.; Song, S.; Zhu, K.; Qiu, X.; Zhang, X.; Jia, C.; Wang, H.; Yang, Z.; et al. Systemic proteomics and miRNA profile analysis of exosomes derived from human pluripotent stem cells. Stem Cell Res. Ther. 2022, 13, 449. [Google Scholar] [CrossRef]
- Muok, L.; Sun, L.; Esmonde, C.; Worden, H.; Vied, C.; Duke, L.; Ma, S.; Zeng, O.; Driscoll, T.; Jung, S.; et al. Extracellular vesicle biogenesis of three-dimensional human pluripotent stem cells in a novel vertical-wheel bioreactor. J. Extracell. Biol. 2024, 3, e133. [Google Scholar] [CrossRef]
- Barilani, M.; Peli, V.; Manzini, P.; Pistoni, C.; Rusconi, F.; Pinatel, E.M.; Pischiutta, F.; Tace, D.; Iachini, M.C.; Elia, N.; et al. Extracellular vesicles from human induced pluripotent stem cells exhibit a unique miRNA and circRNA signature. Int. J. Biol. Sci. 2024, 20, 6255–6278. [Google Scholar] [CrossRef]
- Gupta, S.; Krishnakumar, V.; Soni, N.; Rao, E.P.; Banerjee, A.; Mohanty, S. Comparative proteomic profiling of small extracellular vesicles derived from iPSCs and tissue specific mesenchymal stem cells. Exp. Cell Res. 2022, 420, 113354. [Google Scholar] [CrossRef] [PubMed]
- Winston, T.; Song, Y.; Shi, H.; Yang, J.; Alsudais, M.; Kontaridis, M.; Wu, Y.; Gaborski, T.R.; Meng, Q.; Cooney, R.N.; et al. Lineage-specific mesenchymal stromal cells derived from human iPSCs showed distinct patterns in transcriptomic profile and extracellular vesicle production. Adv. Sci. 2024, 11, e2308975. [Google Scholar] [CrossRef]
- Hart, D.A.; Nakamura, N.; Shrive, N.G. Perspective: Challenges presented for regeneration of heterogenous musculoskeletal tissues that normally develop in unique biomechanical environments. Front. Bioeng. Biotechnol. 2021, 9, 760273. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.A. One of the primary functions of tissue-resident pluripotent pericyte cells may be to regulate normal organ growth and maturation: Implications for attempts to repair tissues later in life. Int. J. Med. Sci. 2022, 23, 5496. [Google Scholar] [CrossRef]
- Raval, A.P.; Martinez, C.C.; Meijas, N.H.; de Rivero Vaccari, J.P. Sexual dimorphism in inflammasome-containing extracellular vesicles and the regulation of innate immunity in the brain of reproductive senescent females. Neurochem. Int. 2019, 127, 29–37. [Google Scholar] [CrossRef]
- Kolhe, R.; Owens, V.; Sharma, A.; Lee, T.J.; Zhi, W.; Ghilzai, U.; Mondal, A.K.; Liu, Y.; Isales, C.M.; Hamrick, M.W.; et al. Sex-specific differences in extracellular vesicle protein cargo in synovial fluid of patients with osteoarthritis. Life 2020, 10, 337. [Google Scholar] [CrossRef] [PubMed]
- Groux-Degroote, S.; Martin, K.; Yamakawa, N.; Codderville, B.; Guerardel, Y.; Sackstein, R. Ganglioside expression delineates human mesenchymal stem/stromal cell populations derived from different tissue sources. Cytotherapy 2025, 27, 446–456. [Google Scholar] [CrossRef]
- Mak, K.; Manji, A.; Gallant-Behm, C.; Weibe, C.; Hart, D.A.; Larjava, H.; Hakkinen, L. Scarless healing of oral mucosa is characterized by faster resolution f inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. J. Dermatol. Sci. 2009, 56, 168–180. [Google Scholar] [CrossRef]
- Larjava, H.; Wiebe, C.; Gallant-Behm, C.; Hart, D.A.; Heino, J.; Hakkinen, L. Exploring scarless healing of oral soft tissues. J. Can. Dent. Assoc. 2011, 77, b18. [Google Scholar]
- Yin, J.-L.; Wu, Y.; Yuan, Z.-W.; Gao, X.-H.; Chen, H.-D. Advances in scarless foetal wound healing and prospects for scar reduction in adults. Cell Prolif. 2020, 53, e12916. [Google Scholar] [CrossRef] [PubMed]
- Moretti, L.; Stalfort, J.; Barker, T.H.; Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 2022, 298, 101530. [Google Scholar] [CrossRef]
- Kosykh, A.V.; Tereshina, M.B.; Gurskaya, N.G. Potential role of AGR2 for mammalian skin wound healing. Int. J. Mol. Sci. 2023, 26, 7895. [Google Scholar] [CrossRef] [PubMed]
- Wilgus, T.A.; Bergdall, V.K.; Tober, K.L.; Hill, K.J.; Mitra, S.; Flavahan, N.A.; Oberyszyn, T.M. The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am. J. Pathol. 2004, 165, 753–761. [Google Scholar] [CrossRef]
- Ulrich, M.M.W. Fetal wound healing. In Textbook on Scar Management: State of the Art Management and Emerging Technologies; Teot, L., Mustoe, T.A., Middlekoop, E., Gauglitz, G., Eds.; Springer: Cham, Switzerland, 2020; Chapter 1. [Google Scholar] [CrossRef]
- Gomes, M.L.N.P.; Krijnen, P.A.; Middlekoop, E.; Niessen, H.W.M.; Boekema, B.K.H.L. Fetal skin wound healing: Key extracellular matrix components and regulators in scarless healing. J. Invest. Dermatol. 2025, 145, 280–302. [Google Scholar] [CrossRef]
- Heard, B.J.; Barton, K.I.; Chung, M.; Achari, Y.; Shrive, N.G.; Frank, C.B.; Hart, D.A. Single intra-articular dexamethasone injection immediately post-surgery in a rabbit model mitigates early inflammatory response and post-traumatic osteoarthritis-like alterations. J. Orthop. Res. 2015, 33, 1826–1834. [Google Scholar] [CrossRef] [PubMed]
- Heard, B.J.; Solbak, N.M.; Chung, M.; Achari, Y.; Shrive, N.G.; Frank, C.B.; Hart, D.A. The infrapatellar fat pad is affected by injury induced inflammation in the rabbit knee: Use of dexamethasone to mitigate damage. Inflamm. Res. 2016, 65, 459–470. [Google Scholar] [CrossRef]
- Heard, B.J.; Barton, K.I.; Agbojo, O.M.; Chung, M.; Sevick, J.L.; Bader, T.J.; Martin, C.R.; Shrive, N.G.; Hart, D.A. Molecular response of rabbit menisci to surgically induced hemarthrosis and a single intra-articular dexamethasone treatment. J. Orthop. Res. 2019, 37, 2042–2043. [Google Scholar] [CrossRef]
- Heard, B.J.; Barton, K.I.; Abubacker, S.; Chung, M.; Martin, C.R.; Schmidt, T.A.; Shrive, N.G.; Hart, D.A. Synovial and cartilage responsiveness to peri-operative hyaluronic acid +/− dexamethasone administration following a limited injury to the rabbit stifle joint. J. Orthop. Res. 2022, 40, 838–845. [Google Scholar] [CrossRef]
- Barton, K.I.; Heard, B.J.; Sevick, J.L.; Martin, C.R.; Shekarforoush, S.M.M.; Chung, M.; Achari, Y.; Frank, C.B.; Shrive, N.G.; Hart, D.A. Posttraumatic osteoarthritis development and progression in an ovine model of partial anterior cruciate ligament transection and effect of repeated intra-articular methylprednisolone acetate injection on early disease. Am. J. Sports Med. 2018, 46, 1596–1605. [Google Scholar] [CrossRef]
- Sieker, J.T.; Ayturk, U.M.; Proffen, B.L.; Weissenberger, M.H.; Kiapour, A.M.; Murray, M.M. Immediate administration of intraarticular triamcinolone acetonide after joint injury modulates molecular outcomes associated with early synovitis. Arthritis Rheumatol. 2016, 68, 1637–1647. [Google Scholar] [CrossRef] [PubMed]
- Kydd, A.S.; Achari, Y.; Lu, T.; Sciore, P.; Rattner, J.B.; Hart, D.A. The healing rabbit medial collateral ligament of the knee response to systemically administered glucocorticoids differently than the uninjured tissues of the same joint or the uninjured MCL: A paradoxical shift in impact on specific mRNA levels and MMP-13 protein expression in injured tissues. Biochim. Biophys. Acta 2005, 1741, 289–299. [Google Scholar] [CrossRef]
- Yasui, Y.; Hart, D.A.; Sugita, N.; Chijimatsu, R.; Koizumi, K.; Ando, W.; Moriguchi, Y.; Shimomura, K.; Myoui, A.; Yoshikawa, H.; et al. Time-dependent recovery of human synovial membrane mesenchymal stem cell function after high-dose steroid therapy: Case report and laboratory study. Am. J. Sports Med. 2018, 46, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. A clinical perspective of IL-1B as the gatekeeper of inflammation. Eur. J. Immunol. 2011, 41, 1203–1217. [Google Scholar] [CrossRef]
- Edwards, C. Sixty years after Hench—Corticosteroids and chronic inflammatory disease. J. Clin. Endocrinol. Metab. 2012, 97, 1443–1451. [Google Scholar] [CrossRef]
- Yao, C.; Narumiya, S. Prostaglandin-cytokine crosstalk in chronic inflammation. Br. J. Pharmacol. 2019, 176, 337–354. [Google Scholar] [CrossRef]
- Liu, B.; Liu, T.; Li, Y.; Tan, C. Innovative biotherapies and nanotechnology in osteoarthritis: Advancements in inflammation control and cartilage regeneration. Int. J. Mol. Sci. 2024, 25, 13384. [Google Scholar] [CrossRef]
- Hu, K.; Song, M.; Song, T.; Jia, X.; Song, Y. Osteoimmunology in osteoarthritis: Unraveling the interplay of immunity, inflammation, and joint degeneration. J. Inflamm. Res. 2025, 18, 4121–4142. [Google Scholar] [CrossRef] [PubMed]
- Karmaker, V.; Chain, M.; Majie, A.; Ghosh, A.; Sengupta, P.; Dutta, S.; Mazumber, P.M.; Gorain, B. Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis. Inflammopharmacology 2025, 33, 461–484. [Google Scholar] [CrossRef]
- Moulin, D.; Sellam, J.; Berenbaum, F.; Guicheux, J.; Boutet, M.-A. The role of the immune system in osteoarthritis: Mechanisms, challenges and future directions. Nat. Rev. Rheumatol. 2025, 21, 221–236. [Google Scholar] [CrossRef]
- Lin, J.; Huang, J.; Jiao, Z.; Nian, M.; Li, C.; Dai, Y.; Jia, S.; Zhang, X. Mesenchymal stem cells for osteoarthritis: Recent advances in related cell therapy. Bioeng. Transl. Med. 2024, 10, e10701. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, F.; Javaid, S.; Tariq, M.; Mustafa, M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int. Immunopharmacol. 2024, 139, 112713. [Google Scholar] [CrossRef] [PubMed]
- Porel, P.; Kaur, M.; Sharma, V.; Aran, K.R. Understanding molecular mechanism of diabetic wound healing: Addressing recent advancements in therapeutic managements. J. Diabetes Metab. Disord. 2025, 24, 76. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Li, J.; Schizas, N.; Ahmed, M.; Ostenson, C.-G.; Salo, P.; Hewitt, C.; Hart, D.A.; Ackermann, P.W. Expressional changes in growth and inflammatory mediators during Achilles tendon repair in diabetic rats: New insights into a possible basis for compromised healing. Cell Tissue Res. 2014, 357, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, J.; Hart, D.A.; Ahmed, A.S.; Ackermann, P.W. Complement factor D as a predictor of Achilles tendon healing and long-term patient outcomes. FASEB J. 2022, 36, e22365. [Google Scholar] [CrossRef]
- Chen, J.; Fu, X.; Ahmed, A.S.; Hart, D.A.; Zhou, Z.; Ackermann, P.W. Systematic review of relevant biomarkers for human connective tissue repair and healing outcome: Implications for understanding healing processes and design of healing interventions. Adv. Wound Care 2025. [Google Scholar] [CrossRef]
- Wu, X.; Chen, J.; Sun, W.; Hart, D.A.; Ackermann, P.W.; Ahmed, A.S. Network proteomic analysis identifies inter-alpha-trypsin inhibitor heavy chain 4 during early human Achilles tendon healing as a prognostic biomarker of good long-term outcomes. Front. Immunol. 2023, 14, 1191536. [Google Scholar] [CrossRef] [PubMed]
- Saarensilta, A.; Chen, J.; Reitzner, S.-M.; Hart, D.A.; Ahmed, A.S.; Ackermann, P.W. Novel tissue biomarker candidates to predict both deep venous thrombosis and healing outcome after Achilles tendon rupture. Sci. Rep. 2025, 15, 7318. [Google Scholar] [CrossRef]
- Hart, D.A.; Ahmed, A.S.; Ackermann, P.W. Optimizing repair of tendon ruptures and chronic tendinopathies: Integrating the use of biomarkers with biological interventions to improve patient outcomes and clinical trial design. Front. Sports Act. Living 2023, 4, 1081129. [Google Scholar] [CrossRef]
- Hart, D.A.; Ahmed, A.S.; Chen, J.; Ackermann, P.W. Optimizing tendon repair and regeneration: How does the in vivo environment shape outcomes following rupture of a tendon such as the Achilles tendon? Front. Bioeng. Biotechnol. 2024, 12, 1357871. [Google Scholar] [CrossRef]
- Ackermann, P.W.; Hart, D.A. Influence of comorbidities: Neuropathy, vasculopathy, and diabetes on healing quality. Adv. Wound Care 2013, 2, 410–421. [Google Scholar] [CrossRef]
- Seth, A.K.; De la Garza, M.; Fang, R.C.; Hong, S.J.; Galiano, R.D. Excisional wound healing is delayed in a murine model of chronic kidney disease. PLoS ONE 2013, 8, e59979. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Q.; Huang, X.; Feng, J.; Wang, Y.; Shao, T.; Deng, X.; Cao, Y.; Chen, X.; Zhou, M.; et al. Wounds under diabetic milieu: The role of immune cellular components and signaling pathways. Biomed. Pharmacother. 2023, 157, 114052. [Google Scholar] [CrossRef]
- Bhardwaj, H.; Khute, S.; Sahu, R.; Jangde, R.K. Advanced drug delivery system for management of chronic diabetes wound healing. Curr. Drug Targets 2023, 24, 1239–1259. [Google Scholar] [CrossRef] [PubMed]
- Goova, M.T.; Li, J.; Kislinger, T.; Qu, W.; Lu, Y.; Buccciarelli, L.G.; Nowygrod, S.; Wolf, B.M.; Caliste, X.; Yan, S.F.; et al. Blockade of receptor for advanced glycation end-productes restores effective wound healing in diabetic mice. Am. J. Pathol. 2001, 159, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Van Putte, L.; De Schrijer, S.; Moortgat, P. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: A systematic review. Scars Burn Health 2016, 2, 2059513116676828. [Google Scholar] [CrossRef]
- Rai, V.; Deepu, V.; Agrawal, D.K. Targeting RAGE-signaling pathways in the repair of rotator-cuff injury. Mol. Cell Biochem. 2025, 480, 2539–2554. [Google Scholar] [CrossRef] [PubMed]
- Harrell, C.R.; Djonov, V.; Volarevic, V. The effects of cigarette smoking and nicotine on the therapeutic potential of mesenchymal stem cells. Histol. Histopathol. 2022, 37, 93–100. [Google Scholar] [CrossRef]
- McLaughlin, D.; Sasaki, M.; Hoffman, C.; Brewster, L.; Hekman, K.E. Smoking status impacts mitochondrial function and synthetic function in mesenchymal stem cells derived from diabetics with arterial insufficiency. Adv. Wound Care 2024. [Google Scholar] [CrossRef]
- Fan, N.; Yuan, S.; Du, P.; Wu, Q.; Kong, X.; Zhu, W.; Hong, G.; Zang, L. The effects of smoking on clinical and structural outcomes after rotator cuff repair: A systematic review and meta-analysis. J. Shoulder Elbow Surg. 2022, 31, 656–667. [Google Scholar] [CrossRef]
- Jin, M.F.; Campbell, E.H.; Somani, A.-K. Is there a smoking gun for nicotine? A review of the role of nicotine in dermatologic surgery. Dermatol. Surg. 2022, 48, 1171–1175. [Google Scholar] [CrossRef]
- Anaspure, O.; Patel, S.; Baumann, A.N.; Anastasio, A.T.; Walley, K.C.; Kelly, J.D.; Lau, B.C. Examining the evidence regarding smoking and patient outcomes for isolated meniscus pathology: A comprehensive systematic review and meta-analysis. Life 2024, 14, 584. [Google Scholar] [CrossRef]
- Zhou, S.-Y.; Du, J.-M.; Li, W.-J.; Zhang, Q.Y.; Su, G.-H.; Li, Y. The roles and regulatory mechanisms of cigarette smoke constituents in vascular remodeling. Int. Immunopharmacol. 2024, 140, 112784. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Kang, M.; Jung, J.-H.; Lee, S.-J.; Hong, S.-H. Human pluripotent stem cell-derived alveolar epithelial cells as a tool to assess cytotoxicity of particular matter and cigarette smoke extract. Dev. Reprod. 2022, 26, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Taura, D.; Okamoto, K.; Fujita, H.; Honda-Kohmo, K.; Matsuo, K.; Sone, M. Nicotine reduces reactive oxygen species and enhances cell proliferation via the alpha4 nicotinic acetylcholine receptor subunit in human induced pluripotent stem cells. Stem Cells Dev. 2023, 32, 237–245. [Google Scholar] [CrossRef]
- Matsumura, S.; Yasuda, J.; Notomi, T.; Suzuki, Y.; Chen, I.-S.; Murakami, D.; Totomi, M.; Nakamura, T. Direct toxicity of cigarette smoke extract on cardiac function mediated by mitochondrial dysfunction in Sprague-Dawley rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. PLoS ONE 2024, 19, e0295737. [Google Scholar] [CrossRef] [PubMed]
- Yagi, M.; Mizukoshi, R.; Maruiwa, R.; Isogai, N.; Funao, H.; Fujita, R. Accelerated biological aging in patients with degenerative spine diseases: The impact of modifiable lifestyle factors in phenotypic age. Spine J. 2025. [Google Scholar] [CrossRef]
- Bohm, M.; Stegemann, A.; Raus, R.; Kleszczynski, K.; Maity, P.; Wlaschek, M.; Scharaffetter-Kochanek, K. Endocrine controls of skin aging. Endocr. Rev. 2025, 34, bnae034. [Google Scholar] [CrossRef]
- Chew, S.M.; Teumer, A.; Matias-Garcia, P.R.; Gieger, C.; Winckelmann, J.; Suhre, K.; Herder, C.; Rathmann, W.; Peters, A.; Waldenberger, M. Cross-sectional and longitudinal association of seven DNAm-based predictors with metabolic syndrome and type 2 diabetes. Clin. Epigenetics 2025, 17, 58. [Google Scholar] [CrossRef]
- Reuvers, J.; Thoreson, A.R.; Zhao, C.; Zhang, L.; Jay, G.D.; An, K.-A.; Warman, M.L.; Amadio, P.C. The mechanical properties of tail tendon fascicles from lubricin knockout, wild and heterozygous mice. J. Struct. Biol. 2011, 176, 41–45. [Google Scholar] [CrossRef]
- Hayashi, M.; Zhao, C.; Thoreson, A.R.; Chikenji, T.; Jay, G.D.; An, K.-A.; Amadio, P.C. The effect of lubricin on the gliding resistance of mouse intrasynovial tendon. PLoS ONE 2013, 8, e83836. [Google Scholar] [CrossRef] [PubMed]
- Thornton, G.M.; Lemmex, D.B.; Ono, Y.; Beach, C.J.; Reno, C.R.; Hart, D.A.; Lo, I.K.Y. Aging affects mechanical properties and lubricin/PRG4 gene expression in normal ligaments. J. Biomech. 2015, 48, 3306–3311. [Google Scholar] [CrossRef]
- Osakabe, T.; Hayashi, M.; Hasegawa, K.; Okuaki, T.; Ritty, T.M.; Mecham, R.P.; Wachi, R.P.; Seyama, Y. Age- and gender-related changes in ligament components. Ann. Clin. Biochem. 2001, 38, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Couppe, C.; Hansen, P.; Kongsgaard, M.; Kovanen, V.; Suetta, C.; Aagaard, P.; Kjaer, M.; Magnusson, S.P. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J. Appl. Physiol. 2009, 107, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yin, H.; Brochhausen, C.; Pfeifer, C.G.; Alt, V.; Docheva, D. Aged tendon stem/progenitor cells are less competent to form 3D tendon organoids due to cell autonomous and matrix production deficits. Front. Bioeng. Biotechnol. 2020, 8, 406. [Google Scholar] [CrossRef]
- Ashcroft, G.S.; Green-Wild, T.; Horan, M.A.; Wahl, S.M.; Ferguson, M.W. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 1999, 155, 1137–1146. [Google Scholar] [CrossRef]
- Giliver, S.C.; Ashcroft, G.S. Sex steroids and cutaneous wound healing: The contrasting influences of estrogens and androgens. Climacteric 2007, 10, 276–288. [Google Scholar] [CrossRef]
- Zhu, B.-T.; Liao, Q.-Q.; Tian, H.-Y.; Yu, D.-J.; Xie, T.; Sun, X.-L.; Zhou, X.-M.; Han, Y.-X.; Zhao, Y.-J.; El-Kassas, M.; et al. Estrogen: The forgotten player in metainflammation. Front. Pharmacol. 2024, 15, 1478819. [Google Scholar] [CrossRef]
- Okobi, O.E.; Khoury, P.; Fe la Vega, R.J.; Figueroa, R.S.; Desai, D.; Mangiliman, B.D.A.; Colon, O.L.V.; Umuela-Barrios, R.; Abudussalam, A.K.; Diaz-Miret, M.; et al. Impact of weight loss on testosterone levels: A review of BMI and testosterone. Cereus 2024, 16, e76139. [Google Scholar] [CrossRef]
- Palanisamy, S. The impact of estrogen on periodontal tissue integrity and inflammation- a mini review. Front. Dent. Med. 2025, 6, 1455755. [Google Scholar] [CrossRef]
- Jung, H.; Jung, Y.; Seo, J.; Bae, Y.; Kim, H.-S.; Jeong, W. Roles of extracellular vesicles from mesenchymal stem cells in regeneration. Mol. Cells 2024, 47, 100151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Che, X.; Zhang, S.; Wang, R.; Li, M.; Jin, Y.; Wang, T.; Song, Y. Mesenchymal stem cell-derived extracellular vesicles for human diseases. Extracell. Vesicles Circ. Nucl. Acids 2024, 5, 64–82. [Google Scholar] [CrossRef]
- Nasadiuk, K.; Kolanowski, T.; Kowalewski, C.; Wozniak, K.; Oldak, T.; Rozwadowska, N. Harnessing mesenchymal stromal cells for advanced wound healing: A comprehensive review of mechanisms and applications. Int. J. Mol. Sci. 2024, 26, 199. [Google Scholar] [CrossRef] [PubMed]
- Berglund, M.; Reno, C.; Hart, D.A.; Wiig, M. Patterns of mRNA expression for matrix molecules and growth factors in flexor tendon injury: Differences in the regulation between tendon and tendon sheath. J. Hand Surg. Am. 2006, 31, 1279–1287. [Google Scholar] [CrossRef]
- Berglund, M.; Hart, D.A.; Wiig, M. The inflammatory response and hyaluronan synthases in the rabbit flexor tendon and tendon sheath following injury. J. Hand Surg. Eur. 2007, 32, 581–587. [Google Scholar] [CrossRef]
- Berglund, M.; Hildebrand, K.A.; Zhang, M.; Hart, D.A.; Wiig, M.E. Neuropeptide, mast cell, and myofibroblast expression after rabbit deep flexor tendon repair. J. Hand Surg. Am. 2010, 35, 1842–1849. [Google Scholar] [CrossRef]
- Kuroiwa, T.; Amadio, P.C. Flexor tendon adhesion formation: Current concepts. Hand Clin. 2023, 39, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Vinitpairot, C.; Yik, J.H.N.; Haudenschild, D.R.; Szabo, R.M.; Bayne, C.O. Current trends in the prevention of adhesions after zone 2 flexor tendon repair. J. Orthop. Res. 2024, 42, 2149–2158. [Google Scholar] [CrossRef]
- Edsfelt, S.; Holm, B.; Mahlapuu, M.; Reno, C.; Hart, D.A.; Wiig, M. PXL01 in sodium hyaluronate results in increased PRG4 expression: A potential mechanism for anti-adhesion. Ups. J. Med. Sci. 2017, 122, 28–34. [Google Scholar] [CrossRef]
- Wiig, M.E.; Dahlin, L.B.; Friden, J.; Hagberg, L.; Larsen, S.E.; Wiklund, K.; Mahlapuu, M. PXL01 in sodium hyaluronate for improvement of hand recovery after flexor tendon repair surgery: A randomized controlled trial. PLoS ONE 2014, 9, e110735. [Google Scholar] [CrossRef]
- Epanomeritakis, I.E.; Eleftheriou, A.; Economou, A.; Lu, V.; Khan, W. Mesenchymal stromal cells for the enhancement of surgical flexor tendon repair in animal models: A systematic review and meta-analysis. Bioengineering 2024, 11, 656. [Google Scholar] [CrossRef]
- Hart, D.A. Osteoarthritis as an umbrella term for different subsets of humans undergoing joint degradation: The need to address the differences to develop effective conservative treatments and prevention strategies. Int. J. Mol. Sci. 2022, 23, 15365. [Google Scholar] [CrossRef] [PubMed]
- Maheshwer, B.; Polce, E.M.; Paul, K.; Williams, B.T.; Wolfson, T.S.; Yanke, A.; Verma, N.N.; Cole, B.J.; Chahla, J. Regenerative potential of mesenchymal stem cells for the treatment of knee osteoarthritis and chondral defects: A systematic review and meta-analysis. Arthroscopy 2021, 37, 362–378. [Google Scholar] [CrossRef] [PubMed]
- Schol, J.; Tamagawa, S.; Volleman, T.N.E.; Ishijima, M.; Sakai, D. A comprehensive review of cell transplantation and platelet-rich plasma therapy for the treatment of disc degeneration-related back and neck pain. A systematic evidence-based analysis. JOR Spine 2024, 7, e1348. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Wang, Y.; Liang, Q.; Mao, X. Preclinical and clinical amelioration of bone fractures with mesenchymal stromal cells: A systematic review and meta-analysis. Cell Transplant. 2022, 31, 9636897211051743. [Google Scholar] [CrossRef]
- Abe, K.; Yamashita, A.; Morioka, M.; Horike, N.; Takei, Y.; Koyamatsu, S.; Okita, K.; Matsuda, S.; Tsumaki, N. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat. Commun. 2023, 14, 804. [Google Scholar] [CrossRef]
- Takao, T.; Sata, M.; Fujisawa, Y.; Toyoda, E.; Yamada, D.; Hitsumoto, Y.; Nakata, E.; Ozaki, T.; Takarada, T. A novel chondrocyte sheet fibrication using human-induced pluripotent stem cell-derived expandable limb-bud mesenchymal cells. Stem Cell Res. Ther. 2023, 14, 34. [Google Scholar] [CrossRef]
- Shalash, W.; Ahrens, S.R.; Bardonova, L.A.; Byvaltsev, V.A.; Giers, M.B. Patient-specific apparent diffusion maps used to model nutrient availability in degenerated intervertegral discs. JOR Spine 2020, 4, e1179. [Google Scholar] [CrossRef]
- McDonnell, E.E.; Buckley, C.T. Consolidating and re-evaluating the human disc nutrient microenvironment. JOR Spine 2022, 5, e1192. [Google Scholar] [CrossRef]
- Costa, L.A.; Eiro, N.; Fraile, M.; Gonzalez, L.O.; Saa, J.; Garcia-Portabella, P.; Vega, B.; Schneider, J.; Vizoso, F.J. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: Implications for further clinical uses. Cell Mol. Life Sci. 2021, 78, 447–467. [Google Scholar] [CrossRef]
- Ou, M.; Zhao, M.; Li, C.; Tang, D.; Xu, Y.; Dai, W.; Sui, W.; Zhang, Y.; Xiang, Z.; Mo, C.; et al. Single-cell sequencing reveals the potential oncogenic expression atlas of human iPSC-derived cardiomyocytes. Biol. Open 2021, 10, bio053348. [Google Scholar] [CrossRef] [PubMed]
- Agirre, M.; Escobar, M.; Amezquita, S.F.; Cubillos, D.; Rincon, C.; Vanegas, P.; Tarazona, M.P.; Escobar, S.A.; Blanco, J.C.; Celis, L.G. Application of the Yamanaka transcription factors oct4, sox2, kif4, and c-myc from the laboratory to the clinic. Genes 2023, 14, 1697. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Wu, Y. The occurrence and development of induced pluripotent stem cells. Front. Genet. 2024, 15, 1389558. [Google Scholar] [CrossRef]
- Xiao, X.; Li, N.; Zhang, D.; Yang, B.; Guo, H.; Li, Y. Generation of induced pluripotent stem cells with substitutes for Yamanaka’s four transcription factors. Cell Reprogram 2016, 18, 281–297. [Google Scholar] [CrossRef]
- Lin, S.-L.; Chen, J.S.; Ying, S.-Y. MiR-302-mediated somatic cell reprogramming and method for generating tumor-free iPS cells using miR-302. Methods Mol. Biol. 2020, 2115, 199–219. [Google Scholar] [CrossRef] [PubMed]
- Nallakumarasamy, A.; Jeyaraman, M.; Maffulli, N.; Jeyaraman, N.; Suresh, V.; Ravichandran, S.; Gupta, M.; Potty, A.G.; El-Amin, S.F.; Kanna, M.; et al. Mesenchymal stromal cell-derived extracellular vesicles in wound healing. Life 2022, 12, 1733. [Google Scholar] [CrossRef]
- Teo, K.Y.W.; Tan, R.; Wong, K.L.; Hey, D.H.W.; Hui, J.H.P.; Toh, W.S. Small extracellular vesicles from mesenchymal stromal cells: The next therapeutic paradigm for muscluloskeletal disorders. Cytotherapy 2023, 25, 837–846. [Google Scholar] [CrossRef]
- Liao, H.-J.; Yang, Y.-P.; Liu, Y.-H.; Tseng, H.-C.; Huo, T.-I.; Chiou, S.-H.; Chang, C.-H. Harnessing ther potential of mesenchymal stem cells-derived exosomes in degenerative diseases. Regen. Ther. 2024, 26, 599–610. [Google Scholar] [CrossRef]
- Kasula, V.; Padala, V.; Gupta, N.; Doyle, D.; Bagheri, K.; Anastasio, A. The use of extracellular vesicles in Achilles tendon repair: A systematic review. Biomedicines 2024, 12, 942. [Google Scholar] [CrossRef]
- Zhang, W.; Ling, Y.; Sun, Y.; Xiao, F.; Wang, L. Extracellular vesicles derived from mesenchymal stem cells promote wound healing and skin regeneration by modulating multiple cellular changes: A brief review. Genes 2023, 14, 1516. [Google Scholar] [CrossRef]
- Antes, T.J.; Middleton, R.C.; Luther, K.M.; Ijichi, T.; Peck, K.A.; Liu, W.J.; Valle, J.; Echavez, A.K.; Marban, E. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J. Nanobiotech. 2018, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.A.; Vader, P. Extracellular vesicle-based hybrid systems for advanced drug delivery. Pharmaceutics 2022, 14, 267. [Google Scholar] [CrossRef] [PubMed]
- Abid, A.I.; Conzatti, G.; Toti, F.; Anton, N.; Vandamme, T. Mesenchymal stem cell-derived exosomes as cell free nanotherpeutics and nanocarriers. Nanomedicine 2024, 61, 102769. [Google Scholar] [CrossRef]
- Liu, X.; Cao, Y.; Wang, S.; Liu, J.; Hao, H. Extracellular vesicles: Powerful candidates in nano-drug delivery systems. Drug Deliv. Transl. Res. 2024, 14, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Rosso, G.; Cauda, V. Biomimicking extracellular vesicles with fully artificial ones: A rational design of EV-BIOMIMETICS towards effective theranostic tools in nanomedicine. ACS Biomater. Sci. Eng. 2023, 9, 5924–5932. [Google Scholar] [CrossRef]
- Hu, Z.-L.; Reecy, J.M. Animal QTLdb: Beyond a repository. A public platform for QTL comparisons and integration with diverse types of structural genomic information. Mamm. Genome 2007, 18, 1–4. [Google Scholar] [CrossRef]
- Archibald, A.L.; Bolund, L.; Churcher, C.; Fredholm, M.; Groenen, M.A.M.; Harlizius, B.; Lee, K.-T.; Milan, D.; Rogers, J.; Rothschild, M.F.; et al. Pig genome sequence—Analysis and publication strategy. BMC Genomics 2010, 11, 438. [Google Scholar] [CrossRef] [PubMed]
- Vani, A.; Kumar, A.; Mahala, S.; Janga, S.C.; Chauhan, A.; Mehrotra, A.; De, A.K.; Sahu, A.R.; Ahmed, S.-F.; Vempadapu, V.; et al. Revelation of genetic diversity and genomic footprints of adaptation in Indian pig breeds. Gene 2024, 893, 147950. [Google Scholar] [CrossRef]
- Veith, A.C.; Meudt, J.J.; Reichert, J.L.; Frank, J.M.; Ravelec, D.M.; Ladell, B.; Speers, J.; Zeller, M.; Shin, T.; Hyman, J.R.; et al. The draft genome of the Wisconsin miniature swine TM, a valuable biomedical research tool. G3 2025, 23, jka067. [Google Scholar] [CrossRef]
- Germscheid, N.M.; Thornton, G.M.; Hart, D.A.; Hildebrand, K.A. A biomechanical assessment to evaluate breed differences in normal porcine medial collateral ligaments. J. Biomech. 2011, 44, 725–731. [Google Scholar] [CrossRef]
- Germscheid, N.M.; Thornton, G.M.; Hart, D.A.; Hildebrand, K.A. Wound healing differences between Yorkshire and red Duroc porcine medial collateral ligaments identified by biomechanical assessment of scars. Clin. Biomech. 2012, 27, 91–98. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, Q.; Wang, F.; Chen, F.; Liu, K.; Yang, Q.; Zhu, L. Animal models used for testing hydrogels in cartilage regeneration. Curr. Stem Cell Res. Ther. 2018, 13, 517–525. [Google Scholar] [CrossRef]
- Dias, I.R.; Viegas, C.A.; Carvalho, P.P. Large animal models for osteochondral regeneration. Adv. Exp. Med. Biol. 2018, 1059, 441–501. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.M.; Trudel, G. Protecting the regenerative environment: Selecting the optimal delivery vehicle for cartilage repair-a narrative review. Front. Bioeng. Biotechnol. 2024, 12, 1283752. [Google Scholar] [CrossRef] [PubMed]
- Singer, J.; Knezic, N.; Layne, J.; Gohring, G.; Christiansen, J.; Rothrauff, B.; Huard, J. Enhancing cartilage repair: Surgical approaches, orthobiologics, and the promise of exosomes. Life 2024, 14, 1149. [Google Scholar] [CrossRef] [PubMed]
- Barton, K.I.; Shekarforoush, M.; Heard, B.J.; Sevick, J.L.; Vakil, P.; Atarod, M.; Martin, R.; Achari, Y.; Hart, D.A.; Frank, C.B.; et al. Use of pre-clinical surgically induced models to understand biomechanical and biological consequences of PTOA development. J. Orthop. Res. 2017, 35, 454–465. [Google Scholar] [CrossRef]
- Thompson, K.; Moore, S.; Tang, S.; Wiet, M.; Purmessur, D. The chondrodystophic dog: A clinically relevant intermediate-sized animal model for the study of intervertebral disc-associated spinal pain. JOR Spine 2018, 1, e1011. [Google Scholar] [CrossRef]
- Motie, P.; Mohaghegh, S.; Kouhestani, F.; Motamedian, S.R. Effect of mechanical forces on the behavior of osteoblasts: A systematic review of in vitro studies. Dent. Med. Probl. 2023, 60, 673–686. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, Y. The role of mechanical regulation in cartilage tissue engineering. Curr. Stem. Cell Res. Ther. 2021, 16, 939–948. [Google Scholar] [CrossRef]
- Woodbury, S.M.; Swanson, W.B.; Mishina, Y. Mechanobiology-informed biomaterial and tissue engineering strategies for influencing skeletal stem and progenitor cell fate. Front. Physiol. 2023, 14, 1220555. [Google Scholar] [CrossRef]
- She, Y.; Sun, Y.; Jiang, N. The mechanics of tissue-engineered temporomandibular joint discs: Current status and prospects for enhancement. J. Biomater. Appl. 2024, 39, 269–287. [Google Scholar] [CrossRef] [PubMed]
- Hess, R.; Douglas, T.; Myers, K.A.; Rentsch, B.; Rentsch, C.; Worch, H.; Shrive, N.G.; Hart, D.A.; Scharnweber, D. Hydrostatic pressure stimulation of human mesenchymal stem cells seeded on collagen-based artificial extracellular matrices. J. Biomech. Eng. 2010, 132, 021001. [Google Scholar] [CrossRef] [PubMed]
- Kureel, S.K.; Maroto, R.; Davis, K.; Sheetz, M. Cellular mechanical memory: A potential tool for mesenchymal stem cell-based therapy. Stem Cell Res. Ther. 2025, 16, 159. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jing, F.; Wei, D.; Zhao, X.; Tao, Y.; Liu, T.; Zhang, T. Assembled granular hydrogels loaded with growth factors for enhanced mesenchymal stem cell therapy in abdominal wall defect repair. J. Control Release 2025, 381, 113630. [Google Scholar] [CrossRef]
- Harissa, Z.; Kim, Y.; Dicks, A.R.; Steward, N.; Guilak, F. Skeletal dysplasia-causing mutations in TRPV4 alter the chondrocyte transcriptomic response to mechanical loading. Am. J. Physiol. Cell Physiol. 2025, 328, C1135–C1149. [Google Scholar] [CrossRef]
- Yu, V.; Papalamorou, A.; Sheyn, D. Generation of induced pluripotent stem cell-derived iTenocytes via a combined scleraxis overexpression and 2D uniaxial tension. J. Vis. Exp. 2024, 205, 65837. [Google Scholar] [CrossRef]
- Zhang, J.; Griesbach, J.; Ganeyev, M.; Zehnder, A.-K.; Zeng, P.; Schadli, G.N.; de Leeuw, A.; Lai, Y.; Rubert, M.; Muller, R. Long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Biofabrication 2022, 15, ac73b9. [Google Scholar] [CrossRef]
- Shahriyari, M.; Rinn, M.; Hofemeier, A.D.; Babych, A.; Zimmermann, W.-H.; Tiburcy, M. Protocol to develop force-generating human skeletal muscle organoids. STAR Protoc. 2024, 5, 102794. [Google Scholar] [CrossRef]
- Zheng, W.; Li, X.; Li, J.; Wang, X.; Liu, D.; Zhai, L.; Ding, B.; Li, G.; Sun, Y.; Yokota, H.; et al. Mechanical loading mitigates osteoarthritis symptoms by regulating the inflammatory microenvironment in a mouse model. Ann. N. Y. Acad. Sci. 2022, 1512, 141–153. [Google Scholar] [CrossRef]
- Bloks, N.G.; Harissa, Z.; Mazzini, G.; Adkar, S.; Dicks, A.R.; Hajmousa, G.; Steward, N.; Koning, R.I.; Mulder, A.; de Koning, B.B.R.; et al. A damaging COL6A3 variant alters the MIR3HG-regulated response of chondrocytes in neocartilage organoids to hyperphysiologic mechanical loading. Adv. Sci. 2024, 11, e2400720. [Google Scholar] [CrossRef]
- Laussu, J.; Michel, D.; Magne, L.; Segonds, S.; Marguet, S.; Hamel, D.; Quaranta-Nicaise, M.; Barreau, F.; Mas, E.; Velay, V.; et al. Deciphering the interplay between biology and physics with a finite element method-implemented vertex organoid model: A tool for the mechanical analysis of cell behavior on a spherical organoid shell. PLoS Comput. Biol. 2025, 21, e1012681. [Google Scholar] [CrossRef]
- Gantenbein, B.; Illien-Junger, S.; Chen, S.C.W.; Walser, J.; Haglund, L.; Ferguson, S.J.; Iatridis, J.C.; Grad, S. Organ culture bioreactors—Platforms to study human intervertebral disc degeneration and regenerative therapy. Curr. Stem. Cell Res. Ther. 2015, 10, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Natsu-ume, T.; Majima, T.; Reno, C.; Shrive, N.G.; Frank, C.B.; Hart, D.A. Menisci of the rabbit knee require mechanical loading to maintain homeostasis: Cyclic hydrostatic compression in vitro prevents derepression of catabolic genes. J. Orthop. Sci. 2005, 10, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Wunderli, S.L.; Widner, J.; Amrein, N.; Foolen, J.; Silvan, U.; Leupin, O.; Snedeker, J.G. Minimal mechanical load and tissue culture conditions preserve native cell phenotype and morphology in tendon- a novel ex vivo mouse explant model. J. Orthop. Res. 2018, 36, 1383–1390. [Google Scholar] [CrossRef]
- Avalos, P.N.; Forsthoefel, D.J. An emerging frontier in intercellular communication: Extracellular vesicles in regeneration. Front. Cell Dev. Biol. 2022, 10, 849905. [Google Scholar] [CrossRef]
- Karas, E.; Dudek, P.; Zuba-Surma, E.K. Stem cell-derived extracellular vesicles as new tools in regenerative medicine—Immunomodulatory role and future perspectives. Front. Immunol. 2023, 14, 1120175. [Google Scholar] [CrossRef]
- Patel, N.J.; Ashraf, A.; Chung, E.J. Extracellular vesicles as regulators of the extracellular matrix. Bioengineering 2023, 10, 136. [Google Scholar] [CrossRef]
- Radler, J.; Gupta, D.; Zickler, A.; El Andaloussi, S. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol. Ther. 2023, 31, 1231–1250. [Google Scholar] [CrossRef]
- Yang, B.; Lin, Y.; Huang, Y.; Zhu, N.; Shen, Y.-Q. Extracellular vesicles modulate key signaling pathways in refractory wound healing. Burns Trauma 2023, 11, tkad039. [Google Scholar] [CrossRef]
- Long, P.; Hu, J.; Piesco, N.; Buckley, M.; Agarwal, S. Low magnitude of tensile strain inhibits IL-1beta-dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human periodontal ligament cells in vitro. J. Dent. Res. 2001, 80, 1416–1420. [Google Scholar] [CrossRef]
- Torzilli, P.A.; Bhargava, M.; Park, S.; Chen, C.T.C. Mechanical load inhibits IL-1 induced matrix degradation in articular cartilage. Osteoarthr. Cartil. 2010, 18, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Kulkami, R.N.; Bakker, A.D.; Everts, V.; Klein-Nulend, J. Mechanical loading prevents the stimulating effect of IL-1B on osteocyte-modulated osteoclastogenesis. Biochem. Biophys. Res. Commun. 2012, 420, 11–16. [Google Scholar] [CrossRef]
- Andress, B.D.; Irwin, R.M.; Puranam, I.; Hoffman, B.D.; McNulty, A.L. A tale of two loads: Modulation of IL-1 induced inflammatory responses of meniscal cells in two models of dynamic physiologic loading. Front. Bioeng. Biotechnol. 2022, 10, 837619. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.A.; Hanley, S.; Tarpey, R.; Schreiber, L.H.J.; O’Dwyer, J.; Roche, E.T.; Duffy, G.P.; Dolan, E.B. Intermittent actuation attenuates fibrotic behavior of myofibroblasts. Acta Biomater. 2024, 173, 80–92. [Google Scholar] [CrossRef]
Advantages | Limitations | |
---|---|---|
Mesenchymal Stem/Stromal/Signaling Cells (MSC) | Multiple tissue sources with different characteristics and potential lineages Can be obtained from some sources using minimally invasive methods (adipose tissue, bone marrow) or otherwise discarded source (placenta, cord blood, Wharton’s jelly) Readily cultured/expanded Can be used autologously Can be used to generate EVs containing unique cargo with or without prior differentiation Continuous generation of EVs in vivo after implantation Could be obtained from young adults and stored until needed | Numbers decrease with age in some sources Heterogeneity induced by extensive culturing and passaging Subsets of MSC may exist and remain to be isolated and optimized-different functions? |
IPSC | Can be induced from specific somatic cells (i.e., skin or other tissue fibroblasts) Can be readily cultured and differentiated to specific lineages Can be used autologously Can be used to generate EVs with specific cargo ± lineage-specific differentiation Continuous generation of EVs in vivo after implantation Could be generated using young cells and then stored until needed | Initial cancer risk but risk decreasing with continued method alterations Heterogeneity resulting from continued expansion and instability? |
Extracellular Vesicles | None of the risks associated with use of cells (i.e., DNA, cancer) Can be used as either an autologous or allogeneic intervention Cargo can be tailored to fit the application (from MSC or iPSC) | “Single use” approach and would require multiple implantations if continuous exposure required to optimize endogenous cell activation to facilitate repair Still requires further optimization of “targeting” endogenous cells to enhance repair function Additional research required to optimize cargo for specific applications Additional research required to further understand “mechanisms of action” in endogenous target cells to facilitate repair in specific applications |
Inflammation | Acute inflammation associated with tissue injury Chronic inflammation associated with induction of failed repair and compromised healing, potentially due to endogenous cell impaired function |
Sufficient endogenous cells capable of responding to cellular and EV therapies | Initiating interventions early before the cellular environment is devoid of required cells Controlling inflammation so endogenous cells can respond to interventions appropriately Secondarily, there remains sufficient extracellular matrix to serve as a template for repair tissue |
Co-Morbidities | Diabetes-compromised healing a challenge to overcome Cardiovascular Disease-insufficient oxygenation and nutrients Obesity-metabolic syndrome, low grade systemic inflammation Post-menopausal Conditions-compromised bone integrity, compromised wound healing, etc. |
Other Variables | Smoking Genetics/Epigenetics Consequences of Malnutrition |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hart, D.A. The Use of MSCs, iPSCs, and EVs in the Repair of Human MSK Tissues: Is Ultimate Success Dependent on Developing Excellent Implant Materials as Well as Creating an Optimal Environment for Implantation? What Is the Rationale for These Choices? Int. J. Mol. Sci. 2025, 26, 6250. https://doi.org/10.3390/ijms26136250
Hart DA. The Use of MSCs, iPSCs, and EVs in the Repair of Human MSK Tissues: Is Ultimate Success Dependent on Developing Excellent Implant Materials as Well as Creating an Optimal Environment for Implantation? What Is the Rationale for These Choices? International Journal of Molecular Sciences. 2025; 26(13):6250. https://doi.org/10.3390/ijms26136250
Chicago/Turabian StyleHart, David A. 2025. "The Use of MSCs, iPSCs, and EVs in the Repair of Human MSK Tissues: Is Ultimate Success Dependent on Developing Excellent Implant Materials as Well as Creating an Optimal Environment for Implantation? What Is the Rationale for These Choices?" International Journal of Molecular Sciences 26, no. 13: 6250. https://doi.org/10.3390/ijms26136250
APA StyleHart, D. A. (2025). The Use of MSCs, iPSCs, and EVs in the Repair of Human MSK Tissues: Is Ultimate Success Dependent on Developing Excellent Implant Materials as Well as Creating an Optimal Environment for Implantation? What Is the Rationale for These Choices? International Journal of Molecular Sciences, 26(13), 6250. https://doi.org/10.3390/ijms26136250