Regulation of Riboflavin Biosynthesis in Microorganisms and Construction of the Advanced Overproducers of This Vitamin
Abstract
1. Introduction
2. Microbial Biosynthetic Pathways and the Associated Genes Responsible for Production of Riboflavin and Its Precursors
Overview of Riboflavin Biosynthesis
3. Key Genes in Riboflavin Production
3.1. Enzymes Catalyzing Riboflavin Biosynthesis
3.2. Metabolic and Genetic Regulation of Riboflavin Biosynthesis
4. Bacillus subtilis
5. Ashbya gossypii (Eremothecium gossypii)
6. Meyerozyma (Candida, Pichia) guilliermondii
7. Candida famata (flareri)
8. Comparison of Microbial Riboflavin Producers (Advantages and Disadvantages)
9. Riboflavin Production from Waste Products
10. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Mosegaard, S.; Dipace, G.; Bross, P.; Carlsen, J.; Gregersen, N.; Olsen, R.K.J. Riboflavin Deficiency—Implications for General Human Health and Inborn Errors of Metabolism. Int. J. Mol. Sci. 2020, 21, 3847. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-S.; Xu, J.; Wang, B.; Fu, X.-Y.; Gao, J.-J.; Han, H.-J.; Li, Z.-J.; Wang, L.-J.; Zhang, F.-J.; Zhang, W.-H.; et al. Riboflavin fortification of rice endosperm by metabolic engineering. Plant Biotechnol. J. 2021, 19, 1483–1485. [Google Scholar] [CrossRef] [PubMed]
- Averianova, L.A.; Balabanova, L.A.; Son, O.M.; Podvolotskaya, A.B.; Tekutyeva, L.A. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef]
- Sharma, A. Riboflavin Vitamin B2 Market Report 2025 (Global Edition). 2025. Available online: https://www.cognitivemarketresearch.com/vitamin-b2-riboflavin-market-report (accessed on 22 June 2025).
- Schwechheimer, S.K.; Park, E.Y.; Revuelta, J.L.; Becker, J.; Wittmann, C. Biotechnology of riboflavin. Appl. Microbiol. Biotechnol. 2016, 100, 2107–2119. [Google Scholar] [CrossRef]
- Revuelta, J.L.; Ledesma-Amaro, R.; Lozano-Martinez, P.; Díaz-Fernández, D.; Buey, R.M.; Jiménez, A. Bioproduction of riboflavin: A bright yellow history. J. Ind. Microbiol. Biotechnol. 2017, 44, 659–665. [Google Scholar] [CrossRef]
- Zhang, J.-R.; Ge, Y.-Y.; Liu, P.-H.; Wu, D.-T.; Liu, H.-Y.; Li, H.-B.; Corke, H.; Gan, R.-Y. Biotechnological Strategies of Riboflavin Biosynthesis in Microbes. Engineering 2022, 12, 115–127. [Google Scholar] [CrossRef]
- Chu, R.; Li, R.; Wang, C.; Ban, R. Production of vitamin B2 (riboflavin) by Bacillus subtilis. J. Chem. Technol. Biotechnol. 2022, 97, 1941–1949. [Google Scholar] [CrossRef]
- Van Loon, A.P.G.M.; Hohmann, H.-P.; Bretzel, W.; Hümbelin, M.; Pfister, M. Development of a Fermentation Process for the Manufacture of Riboflavin. Chimia 1996, 50, 410. [Google Scholar] [CrossRef]
- Stahmann, K.-P.; Revuelta, J.L.; Seulberger, H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol. 2000, 53, 509–516. [Google Scholar] [CrossRef]
- Zhao, G.; Dong, F.; Lao, X.; Zheng, H. Strategies to Increase the Production of Biosynthetic Riboflavin. Mol. Biotechnol. 2021, 63, 909–918. [Google Scholar] [CrossRef]
- Tanner, F.W.; Vojnovich, C.; Van Lanen, J.M. Riboflavin Production by Candida Species. Science 1945, 101, 180–181. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L. Riboflavin Oversynthesis. Annu. Rev. Microbiol. 1972, 26, 369–388. [Google Scholar] [CrossRef]
- Abbas, C.A.; Sibirny, A.A. Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers. Microbiol. Mol. Biol. Rev. 2011, 75, 321–360. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Qi, X.; Gao, H.; Wang, M.; Guan, H.; Yu, B. Metabolic Engineering of Bacillus subtilis for Riboflavin Production: A Review. Microorganisms 2023, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, S.; Yonetani, Y.; Maruyama, A.; Teshiba, S. Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl. Microbiol. Biotechnol. 2000, 53, 674–679. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, Z.; Li, Y.; Wang, Z.; Chen, T.; Zhao, X. Metabolic engineering of Escherichia coli for the production of riboflavin. Microb. Cell Factories 2014, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Ying, J.; Chen, Q.; Zhang, Q.; Lu, J.; Zhu, Z.; Yu, P. Enhancing the biosynthesis of riboflavin in the recombinant Escherichia coli BL21 strain by metabolic engineering. Front. Microbiol. 2023, 13, 1111790. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Wang, K.; Yin, J.; Du, Y.; Yang, Z.; Pan, X.; You, J.; Rao, Z. Construction of antibiotic-free riboflavin producer in Escherichia coli by metabolic engineering strategies with a plasmid stabilization system. Synth. Syst. Biotechnol. 2025, 10, 346–355. [Google Scholar] [CrossRef]
- Liu, S.; Hu, W.; Wang, Z.; Chen, T. Rational Engineering of Escherichia coli for High-Level Production of Riboflavin. J. Agric. Food Chem. 2021, 69, 12241–12249. [Google Scholar] [CrossRef]
- Goodwin, T.W.; Pendlington, S. Studies on the biosynthesis of riboflavin. Nitrogen metabolism and flavinogenesis in Eremothecium ashbyii. Biochem. J. 1954, 57, 631–641. [Google Scholar] [CrossRef]
- Bacher, A.; Eberhardt, S.; Fischer, M.; Kis, K.; Richter, G. Biosynthesis of Vitamin B2 (Riboflavin). Annu. Rev. Nutr. 2000, 20, 153–167. [Google Scholar] [CrossRef]
- Fischer, M.; Römisch, W.; Illarionov, B.; Eisenreich, W.; Bacher, A. Structures and reaction mechanisms of riboflavin synthases of eubacterial and archaeal origin. Biochem. Soc. Trans. 2005, 33, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, T.W.; McEvoy, D. Studies on the biosynthesis of riboflavin. 5. General factors controlling flavinogenesis in the yeast Candida flareri. Biochem. J. 1959, 71, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Wendland, J.; Walther, A. Ashbya gossypii: A model for fungal developmental biology. Nat. Rev. Microbiol. 2005, 3, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Lienhart, W.-D.; Gudipati, V.; Macheroux, P. The human flavoproteome. Arch. Biochem. Biophys. 2013, 535, 150–162. [Google Scholar] [CrossRef]
- Shavlovsky, G.M.; Lohvynenko, E.M.; Struhovshchykova, L.M.; Kashchenko, V.E. Biosynthesis of flavins and its regulation in the yeast Pichia guilliermondii. Ukr. Biokhim. Zh. 1975, 47, 649–660. [Google Scholar]
- Foor, F.; Brown, G. Purification and properties of guanosine triphosphate cyclohydrolase II from Escherichia coli. J. Biol. Chem. 1975, 250, 3545–3551. [Google Scholar] [CrossRef]
- Sengupta, S.; Kaufmann, A.; T S, C. Live cell fluorescence imaging for early expression and localization of RIB1 and RIB3 genes in Ashbya gossypii. J. Basic Microbiol. 2014, 54, 81–87. [Google Scholar] [CrossRef]
- Voronovsky, A.Y.; Abbas, C.A.; Dmytruk, K.V.; Ishchuk, O.P.; Kshanovska, B.V.; Sybirna, K.A.; Gaillardin, C.; Sibirny, A.A. Candida famata (Debaryomyces hansenii ) DNA sequences containing genes involved in riboflavin synthesis. Yeast 2004, 21, 1307–1316. [Google Scholar] [CrossRef]
- Burrows, R.B.; Brown, G.M. Presence of Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin. J. Bacteriol. 1978, 136, 657–667. [Google Scholar] [CrossRef]
- Richter, G.; Fischer, M.; Krieger, C.; Eberhardt, S.; Lüttgen, H.; Gerstenschläger, I.; Bacher, A. Biosynthesis of riboflavin: Characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J. Bacteriol. 1997, 179, 2022–2028. [Google Scholar] [CrossRef] [PubMed]
- Dmytruk, K.V.; Abbas, C.A.; Voronovsky, A.Y.; Kshanovska, B.V.; Sybirna, K.A.; Sybirny, A.A. Cloning of structural genes involved in riboflavin synthesis of the yeast Candida famata. Ukr. Biokhim. Zh. 2004, 76, 78–87. [Google Scholar]
- Schlösser, T.; Wiesenburg, A.; Gätgens, C.; Funke, A.; Viets, U.; Vijayalakshmi, S.; Nieland, S.; Stahmann, K.-P. Growth stress triggers riboflavin overproduction in Ashbya gossypii. Appl. Microbiol. Biotechnol. 2007, 76, 569–578. [Google Scholar] [CrossRef]
- Fassbinder, F.; Kist, M.; Bereswill, S. Structural and functional analysis of the riboflavin synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin synthase (ribC), and riboflavin deaminase/reductase (ribD ) from Helicobacter pylori strain P1. FEMS Microbiol. Lett. 2000, 191, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, Y.; Lyzak, O.; Ruchala, J.; Dmytruk, K.; Sibirny, A. Co-Overexpression of RIB1 and RIB6 Increases Riboflavin Production in the Yeast Candida famata. Fermentation 2022, 8, 141. [Google Scholar] [CrossRef]
- Liu, W.; Tsyrulnyk, A.; Dmytruk, K.; Fedorovych, D.; Kang, Y.; Sibirny, A. Co-overexpression of Genes RFE1, GND1, and RIB6 Enhances Riboflavin Production in Yeast Candida famata. Cytol. Genet. 2025, 59, 63–70. [Google Scholar] [CrossRef]
- Hümbelin, M.; Griesser, V.; Keller, T.; Schurter, W.; Haiker, M.; Hohmann, H.-P.; Ritz, H.; Richter, G.; Bacher, A.; van Loon, A.P.G.M. GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J. Ind. Microbiol. Biotechnol. 1999, 22, 1–7. [Google Scholar] [CrossRef]
- Liao, D.-I.; Calabrese, J.C.; Wawrzak, Z.; Viitanen, P.V.; Jordan, D.B. Crystal Structure of 3,4-Dihydroxy-2-Butanone 4-Phosphate Synthase of Riboflavin Biosynthesis. Structure 2001, 9, 11–18. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, P.; Karthikeyan, S. Structural basis for pH dependent monomer–dimer transition of 3,4-dihydroxy 2-butanone-4-phosphate synthase domain from Mycobacterium tuberculosis. J. Struct. Biol. 2011, 174, 374–384. [Google Scholar] [CrossRef]
- Kenjić, N.; Meneely, K.M.; Wherritt, D.J.; Denler, M.C.; Jackson, T.A.; Moran, G.R.; Lamb, A.L. Evidence for the Chemical Mechanism of RibB (3,4-Dihydroxy-2-butanone 4-phosphate Synthase) of Riboflavin Biosynthesis. J. Am. Chem. Soc. 2022, 144, 12769–12780. [Google Scholar] [CrossRef]
- Bacher, A.; Mailänder, B. Biosynthesis of riboflavin in Bacillus subtilis: Function and genetic control of the riboflavin synthase complex. J. Bacteriol. 1978, 134, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Otto, M.K.; Bacher, A. Ligand-Binding Studies on Light Riboflavin Synthase from Bacillus subtilis. Eur. J. Biochem. 2005, 115, 511–517. [Google Scholar] [CrossRef]
- Bacher, A.; Eberhardt, S.; Fischer, M.; Mörtl, S.; Kis, K.; Kugelbrey, K.; Scheuring, J.; Schott, K. [36] Biosynthesis of riboflavin: Lumazine synthase and riboflavin synthase. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1997; pp. 389–399. [Google Scholar] [CrossRef]
- Kato, T.; Park, E.Y. Riboflavin production by Ashbya gossypii. Biotechnol. Lett. 2012, 34, 611–618. [Google Scholar] [CrossRef]
- Dmytruk, K.; Lyzak, O.; Yatsyshyn, V.; Kluz, M.; Sibirny, V.; Puchalski, C.; Sibirny, A. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. J. Biotechnol. 2014, 172, 11–17. [Google Scholar] [CrossRef]
- Mack, M.; van Loon, A.P.G.M.; Hohmann, H.-P. Regulation of Riboflavin Biosynthesis in Bacillus subtilis Is Affected by the Activity of the Flavokinase/Flavin Adenine Dinucleotide Synthetase Encoded by ribC. J. Bacteriol. 1998, 180, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Yatsyshyn, V.Y.; Ishchuk, O.P.; Voronovsky, A.Y.; Fedorovych, D.V.; Sibirny, A.A. Production of flavin mononucleotide by metabolically engineered yeast Candida famata. Metab. Eng. 2009, 11, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.V.; Chandra, T.S. Metabolic engineering of Ashbya gossypii for enhanced FAD production through promoter replacement of FMN1 gene. Enzyme Microb. Technol. 2020, 133, 109455. [Google Scholar] [CrossRef]
- Fedorovych, D.V.; Tsyrulnyk, A.O.; Ruchala, J.; Sobchuk, S.M.; Dmytruk, K.V.; Fayura, L.R.; Sibirny, A.A. Construction of the advanced flavin mononucleotide producers in the flavinogenic yeast Candida famata. Yeast 2023, 40, 360–366. [Google Scholar] [CrossRef]
- Bauer, S.; Kemter, K.; Bacher, A.; Huber, R.; Fischer, M.; Steinbacher, S. Crystal Structure of Schizosaccharomyces pombe Riboflavin Kinase Reveals a Novel ATP and Riboflavin-Binding Fold. J. Mol. Biol. 2003, 326, 1463–1473. [Google Scholar] [CrossRef]
- Clarebout, G.; Villers, C.; Leclercq, R. Macrolide Resistance Gene mreA of Streptococcus agalactiae Encodes a Flavokinase. Antimicrob. Agents Chemother. 2001, 45, 2280–2286. [Google Scholar] [CrossRef]
- Kashchenko, V.E.; Shavlovskiĭ, G.M. Purification and properties of the riboflavin kinase of the yeast Pichia guilliermondii. Biokhimiia 1976, 41, 376–383. [Google Scholar] [PubMed]
- Mashhadi, Z.; Zhang, H.; Xu, H.; White, R.H. Identification and Characterization of an Archaeon-Specific Riboflavin Kinase. J. Bacteriol. 2008, 190, 2615–2618. [Google Scholar] [CrossRef]
- Santos, M.A.; Jiménez, A.; Revuelta, J. Molecular Characterization of FMN1, the Structural Gene for the Monofunctional Flavokinase of Saccharomyces cerevisiae. J. Biol. Chem. 2000, 275, 28618–28624. [Google Scholar] [CrossRef] [PubMed]
- Efimov, I.; Kuusk, V.; Zhang, X.; McIntire, W.S. Proposed Steady-State Kinetic Mechanism for Corynebacterium ammoniagenes FAD Synthetase Produced by Escherichia coli. Biochemistry 1998, 37, 9716–9723. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alla, M.H.; Bagy, M.M.K.; Nafady, N.A.; Morsy, F.; Mahmoud, G.A.-E. Activation of Riboflavin Production by Bacillus subtilis (KU559874) and Bacillus tequilensis (KU559876). EC Bacteriol. Virol. Res. 2016, 2, 131–150. [Google Scholar]
- Yatsyshyn, V.Y.; Fedorovych, D.V.; Sibirny, A.A. Metabolic and bioprocess engineering of the yeast Candida famata for FAD production. J. Ind. Microbiol. Biotechnol. 2014, 41, 823–835. [Google Scholar] [CrossRef]
- Otani, S.; Kasai, S.; Matsui, K. [34] Isolation, chemical synthesis, and properties of roseoflavin. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1980; pp. 235–241. [Google Scholar] [CrossRef]
- Jankowitsch, F.; Schwarz, J.; Rückert, C.; Gust, B.; Szczepanowski, R.; Blom, J.; Pelzer, S.; Kalinowski, J.; Mack, M. Genome Sequence of the Bacterium Streptomyces davawensis JCM 4913 and Heterologous Production of the Unique Antibiotic Roseoflavin. J. Bacteriol. 2012, 194, 6818–6827. [Google Scholar] [CrossRef]
- Schwarz, J.; Konjik, V.; Jankowitsch, F.; Sandhoff, R.; Mack, M. Identification of the Key Enzyme of Roseoflavin Biosynthesis. Angew. Chem. Int. Ed. 2016, 55, 6103–6106. [Google Scholar] [CrossRef]
- Schneider, C.; Konjik, V.; Kißling, L.; Mack, M. The novel phosphatase RosC catalyzes the last unknown step of roseoflavin biosynthesis in Streptomyces davaonensis. Mol. Microbiol. 2020, 114, 609–625. [Google Scholar] [CrossRef]
- Joshi, T.; Demmer, U.; Schneider, C.; Glaser, T.; Warkentin, E.; Ermler, U.; Mack, M. The Phosphatase RosC from Streptomyces davaonensis is Used for Roseoflavin Biosynthesis and has Evolved to Largely Prevent Dephosphorylation of the Important Cofactor Riboflavin-5′-phosphate. J. Mol. Biol. 2024, 436, 168734. [Google Scholar] [CrossRef]
- Jankowitsch, F.; Kühm, C.; Kellner, R.; Kalinowski, J.; Pelzer, S.; Macheroux, P.; Mack, M. A Novel N,N-8-Amino-8-demethyl-d-riboflavin Dimethyltransferase (RosA) Catalyzing the Two Terminal Steps of Roseoflavin Biosynthesis in Streptomyces davawensis. J. Biol. Chem. 2011, 286, 38275–38285. [Google Scholar] [CrossRef] [PubMed]
- García-Angulo, V.A. Overlapping riboflavin supply pathways in bacteria. Crit. Rev. Microbiol. 2017, 43, 196–209. [Google Scholar] [CrossRef]
- Andreieva, Y.; Petrovska, Y.; Lyzak, O.; Liu, W.; Kang, Y.; Dmytruk, K.; Sibirny, A. Role of the regulatory genes SEF1, VMA1 and SFU1 in riboflavin synthesis in the flavinogenic yeast Candida famata (Candida flareri). Yeast 2020, 37, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Azegami, J.; Kano, M.; El Enshasy, H.A.; Park, E.Y. Effects of sirtuins on the riboflavin production in Ashbya gossypii. Appl. Microbiol. Biotechnol. 2021, 105, 7813–7823. [Google Scholar] [CrossRef]
- Dmytruk, K.V.; Ruchala, J.; Fedorovych, D.V.; Ostapiv, R.D.; Sibirny, A.A. Modulation of the Purine Pathway for Riboflavin Production in Flavinogenic Recombinant Strain of the Yeast Candida famata. Biotechnol. J. 2020, 15, e1900468. [Google Scholar] [CrossRef]
- Sibirny, A.A. Metabolic engineering of non-conventional yeasts for construction of the advanced producers of biofuels and high-value chemicals. BBA Adv. 2023, 3, 100071. [Google Scholar] [CrossRef]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Durjava, M.F.; Kouba, M.; López-Alonso, M.; Puente, S.L.; Marcon, F.; et al. Safety of the feed additive consisting of vitamin B2/riboflavin (produced by Bacillus subtilis KCCM 10445) for all animal species (Hubei Guangji Pharmaceutical Co. Ltd.). EFSA J. 2022, 20, e07607. [Google Scholar] [CrossRef]
- Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Durjava, M.; Kouba, M.; López-Alonso, M.; Puente, S.L.; Marcon, F.; et al. Safety and efficacy of a feed additive consisting of vitamin B2 (riboflavin) produced by Bacillus subtilis CGMCC 13326 for all animal species (Kempex Holland B.V.). EFSA J. 2023, 21, e07874. [Google Scholar] [CrossRef]
- Wang, G.; Bai, L.; Wang, Z.; Shi, T.; Chen, T.; Zhao, X. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World J. Microbiol. Biotechnol. 2014, 30, 1893–1900. [Google Scholar] [CrossRef]
- You, J.; Yang, C.; Pan, X.; Hu, M.; Du, Y.; Osire, T.; Yang, T.; Rao, Z. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation. Bioresour. Technol. 2021, 333, 125228. [Google Scholar] [CrossRef] [PubMed]
- Tännler, S.; Zamboni, N.; Kiraly, C.; Aymerich, S.; Sauer, U. Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metab. Eng. 2008, 10, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Moritz, B.; Striegel, K.; de Graaf, A.A.; Sahm, H. Kinetic properties of the glucose-6-phosphate and 6 phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur. J. Biochem. 2000, 267, 3442–3452. [Google Scholar] [CrossRef] [PubMed]
- Rakitzis, E.T.; Papandreou, P. Reactivity of 6-phosphogluconolactone with hydroxylamine: The possible involvement of glucose-6-phosphate dehydrogenase in endogenous glycation reactions. Chem. Biol. Interact. 1998, 113, 205–216. [Google Scholar] [CrossRef]
- Phégnon, L.; Pérochon, J.; Uttenweiler-Joseph, S.; Cahoreau, E.; Millard, P.; Létisse, F. 6-Phosphogluconolactonase is critical for the efficient functioning of the pentose phosphate pathway. FEBS J. 2024, 291, 4459–4472. [Google Scholar] [CrossRef]
- Nogae, I.; Johnston, M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 1990, 96, 161–169. [Google Scholar] [CrossRef]
- Ohnishi, J.; Katahira, R.; Mitsuhashi, S.; Kakita, S.; Ikeda, M. A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol. Lett. 2005, 242, 265–274. [Google Scholar] [CrossRef]
- He, W.; Wang, Y.; Liu, W.; Zhou, C.-Z. Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1. BMC Struct. Biol. 2007, 7, 38. [Google Scholar] [CrossRef]
- Duan, Y.X.; Chen, T.; Chen, X.; Zhao, X.M. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl. Microbiol. Biotechnol. 2010, 85, 1907–1914. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, T.; Ma, X.; Shen, Z.; Zhao, X. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresour. Technol. 2011, 102, 3934–3940. [Google Scholar] [CrossRef]
- Yang, B.; Sun, Y.; Fu, S.; Xia, M.; Su, Y.; Liu, C.; Zhang, C.; Zhang, D. Improving the Production of Riboflavin by Introducing a Mutant Ribulose 5-Phosphate 3-Epimerase Gene in Bacillus subtilis. Front. Bioeng. Biotechnol. 2021, 9, 704650. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, X.; Chen, X.; Li, M.; Wang, X. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway. Biotechnol. Lett. 2021, 43, 2209–2216. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Klopprogge, C.; Zelder, O.; Heinzle, E.; Wittmann, C. Amplified Expression of Fructose 1,6-Bisphosphatase in Corynebacterium glutamicum Increases In Vivo Flux through the Pentose Phosphate Pathway and Lysine Production on Different Carbon Sources. Appl. Environ. Microbiol. 2005, 71, 8587–8596. [Google Scholar] [CrossRef]
- Becker, J.; Klopprogge, C.; Herold, A.; Zelder, O.; Bolten, C.J.; Wittmann, C. Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—Over expression and modification of G6P dehydrogenase. J. Biotechnol. 2007, 132, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Wang, Y.; Wang, Z.; Wang, G.; Liu, D.; Fu, J.; Chen, T.; Zhao, X. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microb. Cell Factories 2014, 13, 101. [Google Scholar] [CrossRef]
- Saxild, H.H.; Nygaard, P. Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J. Bacteriol. 1987, 169, 2977–2983. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Shiio, I. Improved Inosine Production and Derepression of Purine Nucleotide Biosynthetic Enzymes in 8-Azaguanine Resistant Mutants of Bacillus subtilis. Agric. Biol. Chem. 1972, 36, 1511–1522. [Google Scholar] [CrossRef]
- Matsui, H.; Sato, K.; Enei, H.; Hirose, Y. Production of Guanosine by Psicofuranine and Decoyinine Resistant Mutants of Bacillus subtilis. Agric. Biol. Chem. 1979, 43, 1739–1744. [Google Scholar] [CrossRef]
- Matsui, H.; Sato, K.; Enei, H.; Hirose, Y. Mutation of an inosine-producing strain of Bacillus subtilis to DL-methionine sulfoxide resistance for guanosine production. Appl. Environ. Microbiol. 1977, 34, 337–341. [Google Scholar] [CrossRef]
- Osbourn, A.E.; Field, B. Operons. Cell. Mol. Life Sci. 2009, 66, 3755–3775. [Google Scholar] [CrossRef]
- Ebbole, D.J.; Zalkin, H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J. Biol. Chem. 1987, 262, 8274–8287. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Shen, Z.; Chen, X.; Chen, T.; Zhao, X. Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochem. Eng. J. 2009, 46, 28–33. [Google Scholar] [CrossRef]
- Bera, A.K.; Zhu, J.; Zalkin, H.; Smith, J.L. Functional Dissection of the Bacillus subtilis pur Operator Site. J. Bacteriol. 2003, 185, 4099–4109. [Google Scholar] [CrossRef]
- Mironov, V.N.; Kraev, A.S.; Chikindas, M.L.; Chernov, B.K.; Stepanov, A.I.; Skryabin, K.G. Functional organization of the riboflavin biosynthesis operon from Bacillus subtilis SHgw. Mol. Gen. Genet. 1994, 242, 201–208. [Google Scholar] [CrossRef]
- Weng, M.; Nagy, P.L.; Zalkin, H. Identification of the Bacillus subtilis pur operon repressor. Proc. Natl. Acad. Sci. USA 1995, 92, 7455–7459. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Zaluzec, E.J.; Wery, J.-P.; Niu, L.; Switzer, R.L.; Zalkin, H.; Satow, Y. Structure of the Allosteric Regulatory Enzyme of Purine Biosynthesis. Science 1994, 264, 1427–1433. [Google Scholar] [CrossRef]
- Asahara, T.; Mori, Y.; Zakataeva, N.P.; Livshits, V.A.; Yoshida, K.; Matsuno, K. Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production. Appl. Microbiol. Biotechnol. 2010, 87, 2195–2207. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, C.; Tang, W.; Zhang, D. Manipulation of Purine Metabolic Networks for Riboflavin Production in Bacillus subtilis. ACS Omega 2020, 5, 29140–29146. [Google Scholar] [CrossRef] [PubMed]
- Ledesma-Amaro, R.; Serrano-Amatriain, C.; Jiménez, A.; Revuelta, J.L. Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization. Microb. Cell Factories 2015, 14, 163. [Google Scholar] [CrossRef]
- Jime, A.; Santos, M.A.; Pompejus, M.; Revuelta, J.L. Metabolic Engineering of the Purine Pathway for Riboflavin Production in Ashbya gossypii. Appl. Environ. Microbiol. 2005, 71, 5743–5751. [Google Scholar] [CrossRef]
- Pedrolli, D.B.; Kühm, C.; Sévin, D.C.; Vockenhuber, M.P.; Sauer, U.; Suess, B.; Mack, M. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 2015, 112, 14054–14059. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Pellaux, R.; Potot, S.; Becker, K.; Hohmann, H.-P.; Panke, S.; Held, M. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. Nat. Chem. 2015, 7, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Vitreschak, A.G. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 2002, 30, 3141–3151. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, H.-P.; Hümbelin, M.; Loon, A.V.; Schurter, W. Improved Riboflavin Production. Patent EP0821063A2, 28 January 1998. [Google Scholar]
- Liu, D.; Huang, C.; Guo, J.; Zhang, P.; Chen, T.; Wang, Z.; Zhao, X. Development and characterization of a CRISPR/Cas9n-based multiplex genome editing system for Bacillus subtilis. Biotechnol. Biofuels 2019, 12, 197. [Google Scholar] [CrossRef]
- Lu, Z.; Yang, S.; Yuan, X.; Shi, Y.; Ouyang, L.; Jiang, S.; Yi, L.; Zhang, G. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. Nucleic Acids Res. 2019, 47, e40. [Google Scholar] [CrossRef]
- Yakimov, A.P.; Seregina, T.A.; Kholodnyak, A.A.; Kreneva, R.A.; Mironov, A.S.; Perumov, D.A.; Timkovskii, A.L. Possible Function of the ribT Gene of Bacillus subtilis: Theoretical Prediction, Cloning, and Expression. Acta Naturae 2014, 6, 106–109. [Google Scholar] [CrossRef]
- Srivastava, R.; Kaur, A.; Sharma, C.; Karthikeyan, S. Structural characterization of ribT from Bacillus subtilis reveals it as a GCN5-related N-acetyltransferase. J. Struct. Biol. 2018, 202, 70–81. [Google Scholar] [CrossRef]
- Solovieva, I.M.; Kreneva, R.A.; Leak, D.J.; Perumov, D.A. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. Microbiology 1999, 145, 67–73. [Google Scholar] [CrossRef]
- Karelov, D.V.; Kreneva, R.A.; Lopes, L.E.; Perumov, D.A.; Mironov, A.S. Mutational analysis of the ribC gene of Bacillus subtilis. Russ. J. Genet. 2011, 47, 757–761. [Google Scholar] [CrossRef]
- Higashitsuji, Y.; Angerer, A.; Berghaus, S.; Hobl, B.; Mack, M. RibR, a possible regulator of the Bacillus subtilis riboflavin biosynthetic operon, in vivo interacts with the 5â€2-untranslated leader of rib mRNA. FEMS Microbiol. Lett. 2007, 274, 48–54. [Google Scholar] [CrossRef]
- Hemberger, S.; Pedrolli, D.B.; Stolz, J.; Vogl, C.; Lehmann, M.; Mack, M. RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains. BMC Biotechnol. 2011, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Cisternas, I.S.; Salazar, J.C.; García-Angulo, V.A. Overview on the Bacterial Iron-Riboflavin Metabolic Axis. Front. Microbiol. 2018, 9, 1478. [Google Scholar] [CrossRef]
- Han, L.; Cui, W.; Suo, F.; Miao, S.; Hao, W.; Chen, Q.; Guo, J.; Liu, Z.; Zhou, L.; Zhou, Z. Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in Bacillus subtilis. Microb. Cell Factories 2019, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Rocha, C.G.; Gronenberg, L.S.; Mack, M.; Commichau, F.M.; Genee, H.J. Microbial cell factories for the sustainable manufacturing of B vitamins. Curr. Opin. Biotechnol. 2019, 56, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-L.; Chen, T.; Gan, Y.; Chen, X.; Zhao, X.-M. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Appl. Microbiol. Biotechnol. 2007, 76, 783–794. [Google Scholar] [CrossRef]
- Yan, G.; Du, G.; Li, Y.; Chen, J.; Zhong, J. Enhancement of microbial transglutaminase production by Streptoverticillium mobaraense: Application of a two-stage agitation speed control strategy. Process Biochem. 2005, 40, 963–968. [Google Scholar] [CrossRef]
- Rao, D.V.K.; Ramu, C.T.; Rao, J.V.; Narasu, M.L.; Rao, A.K.S.B. Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation. J. Ind. Microbiol. Biotechnol. 2008, 35, 991–1000. [Google Scholar] [CrossRef]
- Zafar, M.; Kumar, S.; Kumar, S.; Dhiman, A.K. Modeling and optimization of poly(3hydroxybutyrate-co-3hydroxyvalerate) production from cane molasses by Azohydromonas lata MTCC 2311 in a stirred-tank reactor: Effect of agitation and aeration regimes. J. Ind. Microbiol. Biotechnol. 2012, 39, 987–1001. [Google Scholar] [CrossRef]
- Man, Z.; Rao, Z.; Cheng, y.; Yang, T.; Zhang, X.; Xu, M.; Xu, Z. Enhanced riboflavin production by recombinant Bacillus subtilis RF1 through the optimization of agitation speed. World J. Microbiol. Biotechnol. 2014, 30, 661–667. [Google Scholar] [CrossRef]
- Oraei, M.; Razavi, S.H.; Khodaiyan, F. Optimization of Effective Minerals on Riboflavin Production by Bacillus subtilis subsp. subtilis ATCC 6051 Using Statistical Designs. Avicenna J. Med. Biotechnol. 2018, 10, 49–55. [Google Scholar]
- Nudler, E. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 2004, 29, 11–17. [Google Scholar] [CrossRef]
- Cochrane, J.C.; Strobel, S.A. Riboswitch effectors as protein enzyme cofactors. RNA 2008, 14, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.; Breaker, R.R. The Structural and Functional Diversity of Metabolite-Binding Riboswitches. Annu. Rev. Biochem. 2009, 78, 305–334. [Google Scholar] [CrossRef]
- Barrick, J.E.; Breaker, R.R. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol. 2007, 8, R239. [Google Scholar] [CrossRef] [PubMed]
- Simadri, D.; Sampath, K.; Vinod, U.; Prasanth, K.; Rajagopal, K.; Vijayalakshmi, S. Development and Characterization of Expression Vectors for the Riboflavin Overproducing Fungus Eremothecium ashbyii using Ashbya gossypii Genes. Asian J. Mycol. 2023, 6, 271–289. [Google Scholar] [CrossRef]
- Kurtzman, C.; Robnett, C. Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res. 2003, 3, 417–432. [Google Scholar] [CrossRef]
- Fedorovych, D.V.; Dmytruk, K.V.; Sibirny, A.A. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata. In Flavins and Flavoproteins; Springer: Berlin/Heidelberg, Germany, 2021; pp. 15–30. [Google Scholar] [CrossRef]
- Nordström, K. The Spores of Eremothecium ashbyii. J. Gen. Microbiol. 1969, 55, 1–7. [Google Scholar] [CrossRef]
- Aguiar, T.Q.; Silva, R.; Domingues, L. Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications. Biotechnol. Adv. 2015, 33, 1774–1786. [Google Scholar] [CrossRef]
- Schwechheimer, S.K.; Becker, J.; Peyriga, L.; Portais, J.-C.; Wittmann, C. Metabolic flux analysis in Ashbya gossypii using 13C-labeled yeast extract: Industrial riboflavin production under complex nutrient conditions. Microb. Cell Factories 2018, 17, 162. [Google Scholar] [CrossRef]
- Kato, T.; Azegami, J.; Kano, M.; El Enshasy, H.A.; Park, E.Y. Induction of Oxidative Stress in Sirtuin Gene-Disrupted Ashbya gossypii Mutants Overproducing Riboflavin. Mol. Biotechnol. 2024, 66, 1144–1153. [Google Scholar] [CrossRef]
- Mehta, S.U.; Mattoo, A.K.; Modi, V.V. Ribitol and flavinogenesis in Eremothecium ashbyii. Biochem. J. 1972, 130, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Koltun, L.V.; Shavlovskiĭ, G.M.; Kashchenko, V.E.; Trach, V.M. Changes in the enzyme activity of flavinogenesis in the process of culturing the fungus Eremothecium ashbyii. Mikrobiologiia 1984, 53, 43–47. [Google Scholar]
- Özbas, T.; Kutsal, T. Comparative study of riboflavin production from two microorganisms: Eremothecium ashbyii and Ashbya gossypii. Enzym. Microb. Technol. 1986, 8, 593–596. [Google Scholar] [CrossRef]
- Kutsal, T.; Özbas, M.T.; Vitamins, B.O. Pigments and Growth Factors; Springer: Dordrecht, The Netherlands, 1989. [Google Scholar] [CrossRef]
- Dietrich, F.S.; Voegeli, S.; Brachat, S.; Lerch, A.; Gates, K.; Steiner, S.; Mohr, C.; Pöhlmann, R.; Luedi, P.; Choi, S.; et al. The Ashbya gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome. Science 2004, 304, 304–307. [Google Scholar] [CrossRef]
- Aguiar, T.Q.; Silva, R.; Domingues, L. New biotechnological applications for Ashbya gossypii: Challenges and perspectives. Bioengineered 2017, 8, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.; Santos, M.A.; Revuelta, J.L. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii. BMC Biotechnol. 2008, 8, 67. [Google Scholar] [CrossRef]
- Monschau, N.; Sahm, H.; Stahmann, K.-P. Threonine Aldolase Overexpression plus Threonine Supplementation Enhanced Riboflavin Production in Ashbya gossypii. Appl. Environ. Microbiol. 1998, 64, 4283–4290. [Google Scholar] [CrossRef]
- Schlupen, C.; Santos, M.A.; Weber, U.; de Graaf, A.; Revuelta, J.L.; Stahmann, K.-P. Disruption of the SHM2 gene, encoding one of two serine hydroxymethyltransferase isoenzymes, reduces the flux from glycine to serine in Ashbya gossypii. Biochem. J. 2003, 369, 263–273. [Google Scholar] [CrossRef]
- Förster, C.; Santos, M.A.; Ruffert, S.; Krämer, R.; Revuelta, J.L. Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J. Biol. Chem. 1999, 274, 9442–9448. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Carneiro-Freire, N.; Seco-Filgueira, M.; Fernández-Fernández, C.; Mouriño-Bayolo, D. Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion 2019, 46, 73–90. [Google Scholar] [CrossRef]
- Hirst, J. Mitochondrial Complex I. Annu. Rev. Biochem. 2013, 82, 551–575. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.M.; Lemire, B.D. Covalent Attachment of FAD to the Yeast Succinate Dehydrogenase Flavoprotein Requires Import into Mitochondria, Presequence Removal, and Folding. J. Biol. Chem. 1996, 271, 4055–4060. [Google Scholar] [CrossRef]
- Rutter, J.; Winge, D.R.; Schiffman, J.D. Succinate dehydrogenase—Assembly, regulation and role in human disease. Mitochondrion 2010, 10, 393–401. [Google Scholar] [CrossRef]
- Muñoz-Fernández, G.; Montero-Bullón, J.-F.; Revuelta, J.L.; Jiménez, A. New Promoters for Metabolic Engineering of Ashbya gossypii. J. Fungi 2021, 7, 906. [Google Scholar] [CrossRef]
- Muñoz-Fernández, G.; Jiménez, A.; Revuelta, J.L. Genomic Edition of Ashbya gossypii Using One-vector CRISPR/Cas9. Bio-Protocol 2020, 10, e3660. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Fernández, D.; Muñoz-Fernández, G.; Martín, V.I.; Revuelta, J.L.; Jiménez, A. Sugar transport for enhanced xylose utilization in Ashbya gossypii. J. Ind. Microbiol. Biotechnol. 2020, 47, 1173–1179. [Google Scholar] [CrossRef]
- Furusawa, M.; Doi, H. Asymmetrical DNA replication promotes evolution: Disparity theory of evolution. Genetica 1998, 102–103, 333–347. [Google Scholar] [CrossRef]
- Kato, T.; Azegami, J.; Yokomori, A.; Dohra, H.; El Enshasy, H.A.; Park, E.Y. Genomic analysis of a riboflavin-overproducing Ashbya gossypii mutant isolated by disparity mutagenesis. BMC Genom. 2020, 21, 319. [Google Scholar] [CrossRef]
- Castellani, A. Observations on the Fungi found in tropical bronchomycosis. Lancet 1912, 179, 13–15. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Suzuki, M. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 2010, 51, 2–14. [Google Scholar] [CrossRef]
- Sibirny, A.A.; Boretsky, Y.R. Pichia guilliermondii. In Yeast Biotechnology: Diversity and Applications; Springer: Dordrecht, The Netherlands, 2009; pp. 113–134. [Google Scholar] [CrossRef]
- Sibirny, A.A.; Shavlovsky, G.M. Identification of regulatory genes of riboflavin permease and α-glucosidase in the yeast Pichia guilliermondii. Curr. Genet. 1984, 8, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Gao, H.; Qian, X.; Jiang, Y.; Zhou, J.; Dong, W.; Xin, F.; Zhang, W.; Jiang, M. Biotechnological applications of the non-conventional yeast Meyerozyma guilliermondii. Biotechnol. Adv. 2021, 46, 107674. [Google Scholar] [CrossRef]
- Rodrigues, R.C.L.B.; Sene, L.; Matos, G.S.; Roberto, I.C.; Pessoa, A.; Felipe, M.G.A. Enhanced Xylitol Production by Precultivation of Candida guilliermondii Cells in Sugarcane Bagasse Hemicellulosic Hydrolysate. Curr. Microbiol. 2006, 53, 53–59. [Google Scholar] [CrossRef]
- Shavlovskiĭ, G.M.; Kashchenko, V.E.; Koltun, L.V.; Logvinenko, E.M.; Zakal’skiĭ, A.E. Regulation of synthesis of GTP-cyclohydrolase participating in yeast falvinogenesis by iron. Mikrobiologiia 1977, 46, 578–580. [Google Scholar] [PubMed]
- Boretsky, Y.R.; Kapustyak, K.Y.; Fayura, L.R.; Stasyk, O.V.; Stenchuk, M.M.; Bobak, Y.P.; Drobot, L.B.; Sibirny, A.A. Positive selection of mutants defective in transcriptional repression of riboflavin synthesis by iron in the flavinogenic yeast. FEMS Yeast Res. 2005, 5, 829–837. [Google Scholar] [CrossRef]
- Prokopiv, T.M.; Fedorovych, D.V.; Boretsky, Y.R.; Sibirny, A.A. Oversynthesis of riboflavin in the yeast Pichia guilliermondii is accompanied by reduced catalase and superoxide dismutases activities. Curr Microbiol. 2013, 66, 79–87. [Google Scholar] [CrossRef]
- Boretsky, Y.R.; Protchenko, O.V.; Prokopiv, T.M.; Mukalov, I.O.; Fedorovych, D.V.; Sibirny, A.A. Mutations and environmental factors affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast Pichia guilliermondii. J. Basic Microbiol. 2007, 47, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Fedorovich, D.; Protchenko, O.; Lesuisse, E. Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes. BioMetals 1999, 12, 295–300. [Google Scholar] [CrossRef]
- Protchenko, O.V.; YuR, B.; Romanyuk, T.M.; Fedorovych, D.V. Oversynthesis of riboflavin by yeast Pichia guilliermondii in response to oxidative stress. Ukr. Biokhim. Zh. 2000, 72, 19–23. [Google Scholar]
- Pynyaha, Y.V.; Boretsky, Y.R.; Fedorovych, D.V.; Fayura, L.R.; Levkiv, A.I.; Ubiyvovk, V.M.; Protchenko, O.V.; Philpott, C.C.; Sibirny, A.A. Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation. BioMetals 2009, 22, 1051–1061. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, N.; Zhu, Y.; Yu, S.; Liu, Q.; Shi, X.; Xu, J.; Xu, G.; Zhang, X.; Shi, J.; et al. Improving glutathione production by engineered Pichia pastoris: Strain construction and optimal precursor feeding. Appl. Microbiol. Biotechnol. 2022, 106, 1905–1917. [Google Scholar] [CrossRef]
- Blazhenko, O.V. Glutathione Deficiency Leads to Riboflavin Oversynthesis in the Yeast Pichia guilliermondii. Curr. Microbiol. 2014, 69, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Fedorovych, D.; Boretsky, V.; Pynyaha, Y.; Bohovych, I.; Boretsky, Y.; Sibirny, A. Cloning of Genes Sef1 and Tup1 Encoding Transcriptional Activator and Global Repressor in the Flavinogenic Yeast Meyerozyma (Candida, Pichia) guilliermondii. Cytol. Genet. 2020, 54, 413–419. [Google Scholar] [CrossRef]
- Sibirnyĭ, A.A.; Zharova, V.P.; Kshanovskaia, B.V.; Shavlovskiĭ, G.M. Selection of a genetic strain of Pichia guilliermondii yeasts capable of forming a significant quantity of spores. Tsitol Genet. 1977, 11, 330–333. [Google Scholar]
- Sibirnyĭ, A.A.; Shavlovskiĭ, G.M.; Ksheminskaia, G.P.; Orlovskaia, A.G. Effect of glucose and its derivatives on systems of riboflavin uptake and excretion in the yeast Pichia guilliermondii. Biokhimiia 1978, 43, 1414–1422. [Google Scholar] [PubMed]
- Groenewald, M.; Daniel, H.-M.; Robert, V.; Poot, G.A.; Smith, M.T. Polyphasic re-examination of Debaryomyces hansenii strains and reinstatement of D. hansenii, D. fabryi and D. subglobosus. Persoonia 2008, 21, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Dmytruk, K.V.; Sibirny, A.A. Candida famata (Candida flareri). Yeast 2012, 29, 453–458. [Google Scholar] [CrossRef]
- Nguyen, H.-V.; Gaillardin, C.; NeuvÃ, C. Differentiation of Debaryomyces hansenii and Candida famata by rRNA gene intergenic spacer fingerprinting and reassessment of phylogenetic relationships among D. hansenii, C. famata, D. fabryi, C. flareri (=D. subglobosus) and D. prosopidis: Description of D. vietnamensis sp. nov. closely related to D. nepalensis. FEMS Yeast Res. 2009, 9, 641–662. [Google Scholar] [CrossRef]
- Genome Assembly ASM370896v2 GCA_003708965.2 Debaryomyces subglobosus. Available online: https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_003708965.2/ (accessed on 26 March 2025).
- Heefner, D.L.; Weaver, C.A.; Yarus, M.J.; Burdzinski, L.A.; Gyure, D.C.; Foster, E.W. Riboflavin Producing Strains of Microorganisms, Method for Selecting, and Method for Fermentation. Patent CA1316857C, 5 May 1988. [Google Scholar]
- Dmytruk, K.V.; Voronovsky, A.Y.; Sibirny, A.A. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr. Genet. 2006, 50, 183–191. [Google Scholar] [CrossRef]
- Dmytruk, K.V.; Yatsyshyn, V.Y.; Sybirna, N.O.; Fedorovych, D.V.; Sibirny, A.A. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metab. Eng. 2011, 13, 82–88. [Google Scholar] [CrossRef]
- Bertels, L.-K.; Murillo, L.F.; Heinisch, J.J. The Pentose Phosphate Pathway in Yeasts–More Than a Poor Cousin of Glycolysis. Biomolecules 2021, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Ruchala, J.; Andreieva, Y.A.; Tsyrulnyk, A.O.; Sobchuk, S.M.; Najdecka, A.; Wen, L.; Kang, Y.; Dmytruk, O.V.; Dmytruk, K.V.; Fedorovych, D.V.; et al. Cheese whey supports high riboflavin synthesis by the engineered strains of the flavinogenic yeast Candida famata. Microb. Cell Factories 2022, 21, 161. [Google Scholar] [CrossRef]
- Ishchuk, O.P.; Dmytruk, K.V.; Rohulya, O.V.; Voronovsky, A.Y.; Abbas, C.A.; Sibirny, A.A. Development of a promoter assay system for the flavinogenic yeast Candida famata based on the Kluyveromyces lactis β-galactosidase LAC4 reporter gene. Enzym. Microb. Technol. 2008, 42, 208–215. [Google Scholar] [CrossRef]
- Tsyrulnyk, A.O.; Fedorovych, D.V.; Sobchuk, S.M.; Dmytruk, K.V.; Sibirny, A.A. Lactose Inducible Expression of Transcription Factor Gene SEF1 Increases Riboflavin Production in the Yeast Candida famata. Mikrobiol. Zh. 2021, 83, 3–10. [Google Scholar] [CrossRef]
- Tsyrulnyk, A.O.; Andreieva, Y.A.; Ruchala, J.; Fayura, L.R.; Dmytruk, K.V.; Fedorovych, D.V.; Sibirny, A.A. Expression of yeast homolog of the mammal BCRP gene coding for riboflavin efflux protein activates vitamin B2 production in the flavinogenic yeast Candida famata. Yeast 2020, 37, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Huerta, C.; Borek, D.; Machius, M.; Grishin, N.V.; Zhang, H. Structure and mechanism of a eukaryotic FMN adenylyltransferase. J. Mol. Biol. 2009, 389, 388–400. [Google Scholar] [CrossRef]
- Dmytruk, K.V.; Ruchala, J.; Fayura, L.R.; Chrzanowski, G.; Dmytruk, O.V.; Tsyrulnyk, A.O.; Andreieva, Y.A.; Fedorovych, D.V.; Motyka, O.I.; Mattanovich, D.; et al. Efficient production of bacterial antibiotics aminoriboflavin and roseoflavin in eukaryotic microorganisms, yeasts. Microb. Cell Factories 2023, 22, 132. [Google Scholar] [CrossRef]
- Marx, H.; Mattanovich, D.; Sauer, M. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microb. Cell Factories 2008, 7, 23. [Google Scholar] [CrossRef]
- Leipeng, Z.; Bochao, L.; Lang, F.; Xiangguo, Z.; Xiangyang, R.; Tongzhang, S. A Kind of Fermentation Medium and Its Fermentation Process of Riboflavin. Patent CN109609580A, 26 December 2018. [Google Scholar]
- Dzanaeva, L.S.; Wojdyła, D.; Fedorovych, D.V.; Ruchala, J.; Dmytruk, K.V.; Sibirny, A.A. Riboflavin overproduction on lignocellulose hydrolysate by the engineered yeast Candida famata. FEMS Yeast Res. 2024, 24, foae020. [Google Scholar] [CrossRef]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Factories 2020, 19, 173. [Google Scholar] [CrossRef]
- Ochoa-Gutiérrez, D.; Reyes-Torres, A.M.; de la Fuente-Colmenares, I.; Escobar-Sánchez, V.; González, J.; Ortiz-Hernández, R.; Torres-Ramírez, N.; Segal-Kischinevzky, C. Alternative CUG Codon Usage in the Halotolerant Yeast Debaryomyces hansenii: Gene Expression Profiles Provide New Insights into Ambiguous Translation. J. Fungi 2022, 8, 970. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.-Q.; Fang, Z.-P.; Ye, Q.; Ruan, Z.-R.; Zhou, X.-L.; Wang, E.-D. C-terminal Domain of Leucyl-tRNA Synthetase from Pathogenic Candida albicans Recognizes both tRNASer and tRNALeu. J. Biol. Chem. 2016, 291, 3613–3625. [Google Scholar] [CrossRef] [PubMed]
- Cutfield, J.F.; Sullivan, P.A.; Cutfield, S.M. Minor structural consequences of alternative CUG codon usage (Ser for Leu) in Candida albicans exoglucanase. Protein Eng. Des. Sel. 2000, 13, 735–738. [Google Scholar] [CrossRef]
- Ling, J.; Daoud, R.; Lajoie, M.J.; Church, G.M.; Söll, D.; Lang, B.F. Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria. Nucleic Acids Res. 2014, 42, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Tokuyasu, K.; Yamada, E. Fine Structure of Bacillus subtilis. J. Cell Biol. 1959, 5, 123–128. [Google Scholar] [CrossRef]
- Nihorimbere, V.; Fickers, P.; Thonart, P.; Ongena, M. Ecological fitness of Bacillus subtilis BGS3 regarding production of the surfactin lipopeptide in the rhizosphere. Environ. Microbiol. Rep. 2009, 1, 124–130. [Google Scholar] [CrossRef]
- Jones, D.; Hagen, F.; Donaldson, C.; Rudman, J.; Canedo, J.; Johnston, S. Investigating a novel commensal strain of Candida famata within Daniorerio. Access Microbiol. 2019, 1, 44. [Google Scholar] [CrossRef]
- Wendland, J. Sporulation in Ashbya gossypii. J. Fungi 2020, 6, 157. [Google Scholar] [CrossRef]
- Dujon, B.; Sherman, D.; Fischer, G.; Durrens, P.; Casaregola, S.; Lafontaine, I.; de Montigny, J.; Marck, C.; Neuvéglise, C.; Talla, E.; et al. Genome evolution in yeasts. Nature 2004, 430, 35–44. [Google Scholar] [CrossRef]
- Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A.M.; Alloni, G.; Azevedo, V.; Bertero, M.G.; Bessières, P.; Bolotin, A.; Borchert, S.; et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 1997, 390, 249–256. [Google Scholar] [CrossRef]
- Lee, K.H.; Park, Y.H.; Han, J.K.; Park, J.H.; Lee, K.H.; Choi, H. Microorganism for Producing Riboflavin and Method for Producing Riboflavin Using the Same. Patent US7166456B2, 23 January 2007. [Google Scholar]
- Boch, J.; Kempf, B.; Schmid, R.; Bremer, E. Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: Characterization of the gbsAB genes. J. Bacteriol. 1996, 178, 5121–5129. [Google Scholar] [CrossRef] [PubMed]
- Palladino, F.; Marcelino, P.R.F.; Schlogl, A.E.; José, Á.H.M.; Rodrigues, R.d.C.L.B.; Fabrino, D.L.; Santos, I.J.B.; Rosa, C.A. Bioreactors: Applications and Innovations for a Sustainable and Healthy Future—A Critical Review. Appl. Sci. 2024, 14, 9346. [Google Scholar] [CrossRef]
- Duraisam, R.; Salelgn, K.; Berekete, A.K. Production of Beet Sugar and Bio-ethanol from Sugar beet and it Bagasse: A Review. Int. J. Eng. Trends Technol. 2017, 43, 222–233. [Google Scholar] [CrossRef]
- Bergmann, J.C.; Trichez, D.; Junior, W.G.d.M.; Ramos, T.G.S.; Pacheco, T.F.; Carneiro, C.V.G.C.; Honorato, V.M.; Serra, L.A.; Almeida, J.R.M. Biotechnological Application of Non-conventional Yeasts for Xylose Valorization. In Non-Conventional Yeasts: From Basic Research to Application; Springer International Publishing: Cham, Switzerland, 2019; pp. 23–74. [Google Scholar] [CrossRef]
- Liu, Z.L. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl. Microbiol. Biotechnol. 2011, 90, 809–825. [Google Scholar] [CrossRef] [PubMed]
- Ming, H.; Pizarro, A.V.L.; Park, E.Y. Application of Waste Activated Bleaching Earth Containing Rapeseed Oil on Riboflavin Production in the Culture of Ashbya gossypii. Biotechnol. Prog. 2003, 19, 410–417. [Google Scholar] [CrossRef]
- Park, E.Y.; Zhang, J.H.; Tajima, S.; Dwiarti, L. Isolation of Ashbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology. J. Appl. Microbiol. 2007, 103, 468–476. [Google Scholar] [CrossRef]
- Park, E.Y.; Kato, A.; Ming, H. Utilization of waste activated bleaching earth containing palm oil in riboflavin production by Ashbya gossypii. J. Am. Oil Chem. Soc. 2004, 81, 57–62. [Google Scholar] [CrossRef]
- McDonough, F.E.; Hargrove, R.E.; Mattingly, W.A.; Posati, L.P.; Alford, J.A. Composition and Properties of Whey Protein Concentrates from Ultrafiltration. J. Dairy Sci. 1974, 57, 1438–1443. [Google Scholar] [CrossRef]
- Ertürk, E.; Erkmen, O.; Oner, M.D. ‘Effects of Various Supplements on Riboflavin Production by Ashbya gossypii in Whey. Turkish J. Eng. Environ. Sci. 1998, 22, 371–376. [Google Scholar]
- Lizama, G.; Moguel-Salazar, F.; Peraza-Luna, F.; Ortiz-Vázquez, E. Riboflavin production from mutants of Ashbya gossypii utilising orange rind as a substrate. Ann. Microbiol. 2007, 57, 157–161. [Google Scholar] [CrossRef]
- Gaden, E.L.; Pelciavas, D.N.; Winoker, J. Citrus Waste Utilization, Microbiological Production of Riboflavin and Citric Acid from Citrus Molasses. J. Agric. Food Chem. 1954, 2, 632–638. [Google Scholar] [CrossRef]
- Kalingan, A.E.; Liao, C.-M. Influence of type and concentration of flavinogenic factors on production of riboflavin by Eremothecium ashbyii NRRL 1363. Bioresour. Technol. 2002, 82, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Chetrariu, A.; Dabija, A. Brewer’s Spent Grains: Possibilities of Valorization, a Review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Contasti, V.; Bahar, S. Riboflavin production by Candida guillermondii from liquid brewery waste. Acta Cient. Venez. 1988, 39, 69–74. [Google Scholar] [PubMed]
- Silva, R.; Aguiar, T.Q.; Domingues, L. Orotic acid production from crude glycerol by engineered Ashbya gossypii. Bioresour. Technol. Rep. 2022, 17, 100992. [Google Scholar] [CrossRef]
Aspect | Chemical Synthesis | Fermentation | Reference(s) |
---|---|---|---|
Process Overview | Uses multiple chemical reactions to produce riboflavin from simpler chemical precursors. | Employs microorganisms (e.g., A. gossypii or B. subtilis) to biologically produce riboflavin in single-step fermentation. | [5,7] |
Raw Materials | Requires D-ribose or D-glucose. | Requires substrates such as glucose or waste by-products e.g., corn steep liquor or vegetable oils. | [5,7] |
Energy Requirements | The process is highly energy-intensive because of multiple reaction steps, high temperatures, and high pressures. | Relatively low energy requirements; operates under milder conditions (normal pressure, mild temperature). | [3,9] |
Environmental Impact | Generates chemical waste and potentially harmful by-products. | Environmentally friendly; low waste generation and biodegradable by-products. | [6,7] |
Yield and Efficiency | Moderate yield; dependent on reaction optimization and catalyst efficiency. | High yield; microorganisms can be genetically modified to increase efficiency. | [10,11] |
Cost | High cost as a result of energy consumption and raw materials. | Lower long-term cost, particularly with optimized fermentation processes. | [10,11] |
Quality Control | Consistent product quality due to controlled chemical reactions. | Product quality can vary depending on the microorganism used and fermentation conditions. | [9,10] |
Time Frame | Typically shorter time frame as reactions occur quickly. | Longer process, as it depends on microbial growth and metabolism. | [7] |
Sustainability | Less sustainable as a result of reliance on fossil-derived inputs and high energy use. | Sustainable, especially when using renewable feedstocks. | [7,9] |
Applications | Used when rapid production is needed or for industrial processes that can accommodate high costs. | Preferred for large-scale production, especially in the food, feed, and pharmaceutical industries. | [3,6] |
Feature | Candida famata | Ashbya gossypii | Bacillus subtilis | Reference(s) |
---|---|---|---|---|
Morphology | Yeast-like; unicellular | Filamentous fungus; forms mycelium | Gram-positive bacterium; rod-shaped | [102,174,195] |
Habitat | Found in all types of cheese, in dairies, and in brine | Found in plants like cotton | Found in soil (especially near plant roots—rhizosphere) | [133,174,196] |
Ecological Role | Environmental and commensal yeast | Plant pathogen | Decomposer, plant-growth promoter, and biocontrol agent | [196,197,198] |
Genome size | D. hansenii 12.2 Mb D. subglobosus 11.5 Mb | 9.2 Mb | ~4.2 Mbp | [140,176,199,200] |
Riboflavin yield | Over 20 g/L | Over 20 g/L | Over 34 g/L | [5,177,188] |
Substrate versatility | Wide range of substrates | Prefers inexpensive, plant-based oils | Utilizes a variety of carbohydrates, like glucose and sucrose | [133,174,200] |
Genetic engineering | Effective but less developed tools, alternative CUG coding | Advanced tools for metabolic engineering, e.g., CRISPR/Cas9 | Overexpression of the rib operon; disruption of feedback inhibition of FMN riboswitch | [11,133,151,174,200] |
Industrial use | Industrial use was terminated due to genetic instability | Primary organism for riboflavin production | Widely used in industrial-scale production of riboflavin | [3,133,201] |
Osmotic and saline tolerance | Osmotolerant and halotolerant | Grows best under moderate osmotic and salt conditions | Moderate tolerance to osmotic and saline stress | [133,174,202] |
Riboflavin synthesis phase | Production starts in growth phase | Production starts in stationary phase | Production starts in the late exponential to early stationary phase of growth | [6,133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruchala, J.; Najdecka, A.; Wojdyla, D.; Liu, W.; Sibirny, A. Regulation of Riboflavin Biosynthesis in Microorganisms and Construction of the Advanced Overproducers of This Vitamin. Int. J. Mol. Sci. 2025, 26, 6243. https://doi.org/10.3390/ijms26136243
Ruchala J, Najdecka A, Wojdyla D, Liu W, Sibirny A. Regulation of Riboflavin Biosynthesis in Microorganisms and Construction of the Advanced Overproducers of This Vitamin. International Journal of Molecular Sciences. 2025; 26(13):6243. https://doi.org/10.3390/ijms26136243
Chicago/Turabian StyleRuchala, Justyna, Alicja Najdecka, Dominik Wojdyla, Wen Liu, and Andriy Sibirny. 2025. "Regulation of Riboflavin Biosynthesis in Microorganisms and Construction of the Advanced Overproducers of This Vitamin" International Journal of Molecular Sciences 26, no. 13: 6243. https://doi.org/10.3390/ijms26136243
APA StyleRuchala, J., Najdecka, A., Wojdyla, D., Liu, W., & Sibirny, A. (2025). Regulation of Riboflavin Biosynthesis in Microorganisms and Construction of the Advanced Overproducers of This Vitamin. International Journal of Molecular Sciences, 26(13), 6243. https://doi.org/10.3390/ijms26136243