Combined First-Trimester PAPP-A and Free β-hCG Levels for the Early Diagnosis of Placenta Accreta Spectrum and Placenta Previa: A Case-Control Study
Abstract
1. Introduction
2. Results
2.1. Baseline Characteristics and Clinical History of the Three Groups
2.2. Pregnancy Outcomes
2.3. Diagnostic Methods for PAS
2.4. Biomarkers
2.5. Combined Marker Analysis
3. Discussion
4. Materials and Methods
4.1. Study Design and Population
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PAS | Placenta accreta spectrum |
PP | Placenta previa |
MRI | Magnetic resonance imaging |
PAPP-A | Pregnancy-associated plasma protein A |
β-hCG | Beta subunit of human chorionic gonadotropin |
BMI | Body mass index |
IUO | Intrauterine operations |
CS | Cesarean section |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
References
- Morlando, M.; Collins, S. Placenta Accreta Spectrum Disorders: Challenges, Risks, and Management Strategies. Int. J. Women’s Health 2020, 12, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Su, H.W.; Yi, Y.C.; Tseng, J.J.; Chen, W.C.; Chen, Y.F.; Kung, H.F.; Chou, M.M. Maternal Outcome after Conservative Management of Abnormally Invasive Placenta. Taiwan J. Obstet. Gynecol. 2017, 56, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Chantraine, F.; Braun, T.; Gonser, M.; Henrich, W.; Tutschek, B. Prenatal Diagnosis of Abnormally Invasive Placenta Reduces Maternal Peripartum Hemorrhage and Morbidity. Acta Obstet. Gynecol. Scand. 2013, 92, 439–444. [Google Scholar] [CrossRef]
- Ignatko, I.V.; Bogomazova, I.M.; Timokhina, E.V.; Belousova, V.S.; Fedyunina, I.A.; Kardanova, M.A.; Samara, A.B.; Gutsu, V. Placenta Accreta: A Modern View on Etiopathogenesis and Obstetric Tactics. Akusherstvo I Ginekol. Obstet. Gynecol. 2024, 1, 5–11. (In Russian) [Google Scholar] [CrossRef]
- Jauniaux, E.; Bhide, A.; Silver, R.M.; Langhoff-Roos, J. FIGO Placenta Accreta Diagnosis and Management Expert Consensus Panel. FIGO Classification for the Clinical Diagnosis of Placenta Accreta Spectrum Disorders. Int. J. Gynaecol. Obstet. 2019, 146, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Jauniaux, E.; Chantraine, F.; Silver, R.M.; Langhoff-Roos, J. FIGO Consensus Guidelines on Placenta Accreta Spectrum Disorders: Epidemiology. Int. J. Gynaecol. Obstet. 2018, 140, 265–273. [Google Scholar] [CrossRef]
- Cali, G.; Forlani, F.; Foti, F.; Minneci, G.; Manzoli, L.; Flacco, M.E.; Buca, D.; Liberati, M.; Scambia, G.; D’Antonio, F. Diagnostic Accuracy of First-Trimester Ultrasound in Detecting Abnormally Invasive Placenta in High-Risk Women with Placenta Previa. Ultrasound Obstet. Gynecol. 2018, 52, 258–264. [Google Scholar]
- Panaiotova, J.; Tokunaka, M.; Krajewska, K.; Zosmer, N.; Nicolaides, K.H. Screening for Morbidly Adherent Placenta in Early Pregnancy. Ultrasound Obstet. Gynecol. 2019, 53, 101–106. [Google Scholar] [CrossRef]
- Familiari, A.; Liberati, M.; Lim, P.; Pagani, G.; Cali, G.; Buca, D.; Manzoli, L.; Flacco, M.E.; Scambia, G.; D’ANtonio, F. Diagnostic Accuracy of Magnetic Resonance Imaging in Detecting the Severity of Abnormal Invasive Placenta: A Systematic Review and Meta-Analysis. Acta Obstet. Gynecol. Scand. 2018, 97, 507–520. [Google Scholar] [CrossRef]
- Brown, B.P.; Meyers, M.L. Placental Magnetic Resonance Imaging Part II: Placenta Accreta Spectrum. Pediatr. Radiol. 2020, 50, 275–284. [Google Scholar] [CrossRef]
- Lee, C.L.; Chiu, P.C.; Hautala, L.; Salo, T.; Yeung, W.S.; Stenman, U.H.; Koistinen, H. Human Chorionic Gonadotropin and Its Free β-Subunit Stimulate Trophoblast Invasion Independent of LH/hCG Receptor. Mol. Cell Endocrinol. 2013, 375, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Thompson, O.; Otigbah, C.; Nnochiri, A.; Sumithran, E.; Spencer, K. First Trimester Maternal Serum Biochemical Markers of Aneuploidy in Pregnancies with Abnormally Invasive Placentation. BJOG 2015, 122, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Bartels, H.C.; Postle, J.D.; Downey, P.; Brennan, D.J. Placenta Accreta Spectrum: A Review of Pathology, Molecular Biology, and Biomarkers. Dis. Markers 2018, 2018, 1507674. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, S. Potential Serum Biomarkers in Prenatal Diagnosis of Placenta Accreta Spectrum. Front. Med. 2022, 9, 860186. [Google Scholar] [CrossRef]
- Swiercz, G.; Zmelonek-Znamirowska, A.; Szwabowicz, K.; Armanska, J.; Detka, K.; Mlodawska, M.; Mlodawski, J. Evaluating the Predictive Efficacy of First Trimester Biochemical Markers (PAPP-A, fβ-hCG) in Forecasting Preterm Delivery Incidences. Sci. Rep. 2024, 14, 16206. [Google Scholar] [CrossRef]
- Swiercz, G.; Zmelonek-Znamirowska, A.; Szwabowicz, K.; Armanska, J.; Detka, K.; Mlodawska, M.; Mlodawski, J. Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications. J. Clin. Med. 2024, 13, 1982. [Google Scholar] [CrossRef]
- Kirkegaard, I.; Uldbjerg, N.; Henriksen, T.B. PAPP-A and Free β-hCG in Relation to Admission to Neonatal Intensive Care Unit and Neonatal Disease. Prenat. Diagn. 2011, 31, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Lucidi, A.; Jauniaux, E.; Hussein, A.M.; Coutinho, C.M.; Tinari, S.; Khalil, A.; Shamshirsaz, A.; Palacios-Jaraquemada, J.M.; D’Antonio, F. Urological Complications in Women Undergoing Cesarean Section for Placenta Accreta Spectrum Disorders: Systematic Review and Meta-Analysis. Ultrasound Obstet. Gynecol. 2023, 62, 633–643. [Google Scholar] [CrossRef]
- Marcellin, L.; Delorme, P.; Bonnet, M.P.; Grange, G.; Kayem, G.; Tsatsaris, V.; Goffinet, F. Placenta Percreta Is Associated with More Frequent Severe Maternal Morbidity Than Placenta Accreta. Am. J. Obstet. Gynecol. 2018, 219, 193.e1–193.e9. [Google Scholar] [CrossRef]
- D’Antonio, F.; Iacovella, C.; Bhide, A. Prenatal Identification of Invasive Placentation Using Ultrasound: Systematic Review and Meta-Analysis. Ultrasound Obstet. Gynecol. 2013, 42, 509–517. [Google Scholar] [CrossRef]
- Pilalis, A.; Souka, A.P.; Antsaklis, P.; Daskalakis, G.; Papantoniou, N.; Mesogitis, S.; Antsaklis, A. Screening for Pre-Eclampsia and Fetal Growth Restriction by Uterine Artery Doppler and PAPP-A at 11–14 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2007, 29, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Penzhoyan, G.A.; Makukhina, T.B. Significance of the Routine First-Trimester Antenatal Screening Program for Aneuploidy in the Assessment of the Risk of Placenta Accreta Spectrum Disorders. J. Perinat. Med. 2019, 48, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Büke, B.; Akkaya, H.; Demir, S.; Sağol, S.; Şimşek, D.; Başol, G.; Barutçuoğlu, B. Relationship between First Trimester Aneuploidy Screening Test Serum Analytes and Placenta Accreta. J. Matern. Fetal Neonatal Med. 2018, 31, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Meng, Y.; Chi, Y.; Li, P.; He, J. Meta-Analysis for the Relationship between Circulating Pregnancy-Associated Plasma Protein A and Placenta Accreta Spectrum. Medicine 2023, 102, e34473. [Google Scholar] [CrossRef]
Control (n = 32) | PP (n = 32) | PAS (n = 36) | Pairwise Comparisons (p-Values) | Overall p-Value | |
---|---|---|---|---|---|
Age (years) 1 | 36.43 ± 4.89 | 35.38 ± 4.96 | 35.8 ± 4.3 | C vs. PP: p = 0.72 C vs. PAS: p = 0.88 PP vs. PAS: p = 0.92 | p = 0.62 |
BMI (kg/m2) 1 | 27.38 ± 4.59 | 28.01 ± 5.72 | 28.2 ± 4.2 | C vs. PP: p = 0.88 C vs. PAS: p = 0.88 PP vs. PAS: p = 1.00 | p = 0.89 |
Previous IUO 2 | 15 (46.88%) | 19 (59.38%) | 21 (58.33%) | C vs. PP: p = 1.000 C vs. PAS: p = 1.000 PP vs. PAS: p = 1.000 | p = 0.520 |
Previous CS 2 | 9 (28.13%) | 9 (28.13%) | 33 (91.67%) | C vs. PP: p = 1.000 C vs. PAS: p < 0.0001 PP vs. PAS: p < 0.0001 | p < 0.0001 |
1 previous CS 2 | 4 (12.50%) | 4 (12.50%) | 15 (41.67%) | C vs. PP: p = 1.000 C vs. PAS: p = 0.015 PP vs. PAS: p = 0.015 | p = 0.009 |
2 previous CS 2 | 2 (6.25%) | 2 (6.25%) | 12 (33.33%) | C vs. PP: p = 1.000 C vs. PAS: p = 0.009 PP vs. PAS: p = 0.009 | p = 0.0012 |
3 previous CS 2 | 1 (3.13%) | 3 (9.38%) | 6 (16.67%) | C vs. PP: p = 1.000 C vs. PAS: p = 0.321 PP vs. PAS: p =1.000 | p = 0.127 |
Previous IUO + previous CS 2 | 4 (12.50%) | 5 (15.63%) | 19 (52.78%) | C vs. PP: p = 1.000 C vs. PAS: p < 0.0001 PP vs. PAS: p = 0.002 | p < 0.0001 |
Parity 3 | 1 [0–4] | 2 [0–7] | 3 [1–9] | C vs. PP: p = 0.174 C vs. PAS: p < 0.0001 PP vs. PAS: p = 0.057 | p < 0.0001 |
Control (n = 32) | PP (n = 32) | PAS (n = 36) | Pairwise Comparisons (p-Values) | Overall p-Value | |
---|---|---|---|---|---|
Term of delivery 3 | 39.43 [37.2–41.3] | 38 [25–41.3] | 35.08 [24–40] | C vs. PP: p = 0.174 C vs. PAS: p < 0.0001 PP vs. PAS: p = 0.057 | p < 0.0001 |
Preterm birth 2 | 0 | 11 (34.38%) | 28 (77.78%) | C vs. PP: p = 0.0018 C vs. PAS: p < 0.0001 PP vs. PAS: p = 0.0003 | p < 0.0001 |
Intraoperative blood loss (mL) 3 | 550 [487–844] | 750 [600–1250] | 2500 [870–5120] | C vs. PP: p < 0.0001 C vs. PAS: p < 0.0001 PP vs. PAS: p = 0.027 | p < 0.0001 |
Hysterectomy 2 | 0 | 0 | 1 (2.78%) | C vs. PP: p = 1.000 C vs. PAS: p = 1.000 PP vs. PAS: p = 1.000 | p = 0.492 |
Bladder injury 2 | 0 | 0 | 10 (27.78%) | C vs. PP: p = 1.00 C vs. PAS: p < 0.0001 PP vs. PAS: p < 0.0001 | p < 0.0001 |
Uterine artery ligation 2 | 0 | 6 (18.75%) | 19 (52.78%) | C vs. PP: p = 0.0375 C vs. PAS: p < 0.0001 PP vs. PAS: p = 0.0036 | p < 0.0001 |
Endovascular uterine artery embolization 2 | 0 | 0 | 17 (47.22%) | C vs. PP: p = 1.000 C vs. PAS: <0.0001 PP vs. PAS: <0.0001 | p < 0.0001 |
Neonatal weight (g) 3 | 3490 [1900–4240] | 2900 [690–3950] | 2600 [580–3630] | C vs. PP: p= 0.011 C vs. PAS: p < 0.0001 PP vs. PAS: p = 0.046 | p < 0.0001 |
No neonatal hypoxia 2 | 30 (93.75%) | 19 (59.38%) | 9 (25%) | C vs. PP: p = 0.003 C vs. PAS: p < 0.0001 PP vs. PAS: p = 0.012 | p < 0.0001 |
Mild neonatal hypoxia 2 | 2 (6.25%) | 10 (31.25%) | 21 (58.33%) | C vs. PP: p = 0.063 C vs. PAS: p < 0.0001 PP vs. PAS: p = 0.069 | p < 0.0001 |
Moderate neonatal hypoxia 2 | 0 | 1 (3.13%) | 5 (13.89%) | C vs. PP: p = 1.000 C vs. PAS: p = 0.147 PP vs. PAS: p = 0.594 | p = 0.028 |
Severe neonatal hypoxia 2 | 0 | 2 (6.25%) | 1 (2.78%) | C vs. PP: p = 1.000 C vs. PAS: p = 1.000 PP vs. PAS: p = 1.000 | p = 0.593 |
Diagnostic Methods | Cases (n) | % of Ultrasound Group (n = 26) | % of Total Cases (n = 36) | 95% CI (Total) 1 |
---|---|---|---|---|
Ultrasound detection (typical signs) | 26 | 100% | 72.2% | (55.9–84.2%) |
(1) With MRI confirmation | 8 | 30.8% | 22.2% | (11.8–38.1%) |
(2) Without MRI | 18 | 69.2% | 50.0% | (34.6–65.4%) |
Intraoperative-only diagnosis | 10 | - 2 | 27.8% | (15.7–44.1%) |
Biomarkers | Control (n = 32) | PP (n = 22) | PAS (n = 27) | p Value 1 |
---|---|---|---|---|
PAPP-A (IU/L) | 5.34 [3.72–8.41] | 3.04 [1.42–4.52] | 3.63 [2.51–5.39] | C vs. PP: p < 0.001 C vs. PAS: p < 0.001 PP vs. PAS: p = 0.891 |
free β-hCG (IU/L) | 33.5 [22.7–54.1] | 45.4 [40.1–54.9] | 51.4 [32.3–74.8] | C vs. PP: p = 0.044 C vs. PAS: p < 0.001 PP vs. PAS: p = 0.318 |
Biomarkers | Groups | AUC (95% CI) | Optimal Cutoff | Sensitivity | Specificity |
---|---|---|---|---|---|
PAPP-A (IU/L) | Control vs. PAS | 0.75 (0.62–0.86) | 5.59 IU/L | 92.6% | 53.1% |
Control vs. PP | 0.82 (0.68–0.92) | 3.25 IU/L | 63.6% | 90.6% | |
free β-hCG (IU/L) | Control vs. PAS | 0.71 (0.58–0.83) | 37.6 IU/L | 74% | 59% |
Control vs. PP | 0.75 (0.61–0.87) | 40.1 IU/L | 86% | 66% | |
PAPP-A + free β-hCG | Control vs. PAS | 0.85 (0.75–0.93) | 0.48 1 | 85.2% | 72% |
Control vs. PP | 0.88 (0.78–0.96) | 0.55 1 | 100% | 72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belousova, V.; Ignatko, I.; Bogomazova, I.; Zarova, E.; Pesegova, S.; Samusevich, A.; Kardanova, M.; Skorobogatova, O.; Kuzmina, T.; Kireeva, N.; et al. Combined First-Trimester PAPP-A and Free β-hCG Levels for the Early Diagnosis of Placenta Accreta Spectrum and Placenta Previa: A Case-Control Study. Int. J. Mol. Sci. 2025, 26, 6187. https://doi.org/10.3390/ijms26136187
Belousova V, Ignatko I, Bogomazova I, Zarova E, Pesegova S, Samusevich A, Kardanova M, Skorobogatova O, Kuzmina T, Kireeva N, et al. Combined First-Trimester PAPP-A and Free β-hCG Levels for the Early Diagnosis of Placenta Accreta Spectrum and Placenta Previa: A Case-Control Study. International Journal of Molecular Sciences. 2025; 26(13):6187. https://doi.org/10.3390/ijms26136187
Chicago/Turabian StyleBelousova, Vera, Irina Ignatko, Irina Bogomazova, Evdokiya Zarova, Svetlana Pesegova, Anastasia Samusevich, Madina Kardanova, Oxana Skorobogatova, Tatiana Kuzmina, Natalia Kireeva, and et al. 2025. "Combined First-Trimester PAPP-A and Free β-hCG Levels for the Early Diagnosis of Placenta Accreta Spectrum and Placenta Previa: A Case-Control Study" International Journal of Molecular Sciences 26, no. 13: 6187. https://doi.org/10.3390/ijms26136187
APA StyleBelousova, V., Ignatko, I., Bogomazova, I., Zarova, E., Pesegova, S., Samusevich, A., Kardanova, M., Skorobogatova, O., Kuzmina, T., Kireeva, N., & Maltseva, A. (2025). Combined First-Trimester PAPP-A and Free β-hCG Levels for the Early Diagnosis of Placenta Accreta Spectrum and Placenta Previa: A Case-Control Study. International Journal of Molecular Sciences, 26(13), 6187. https://doi.org/10.3390/ijms26136187