Associations Between Gut Microbiota Composition and Impulse Control Disorders in Parkinson’s Disease
Abstract
1. Introduction
2. Results
2.1. Demography
2.2. Diversity Analysis in Impulsive and Non-Impulsive PD Patients
2.3. Differential Abundance and Network Analysis
2.4. Functional Pathway Analysis
3. Discussion
4. Materials and Methods
4.1. Participant Recruitment and Data Collection
- Excluded 41 participants with <5000 sequencing reads
- Excluded 4 PD patients with missing clinical data
- Excluded 131 healthy controls (not included in final analysis)
- Excluded 9 PD patients with missing impulse behavior data
- Final analysis included 191 PD patients
4.2. Analysis of 16S rRNA Sequence Data
4.3. Statistical Analysis
4.4. Functional Enrichment Analysis of Predicted Metagenomes
4.5. Data Availability and Ethical Statement
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Abyu, G.Y.; Ahmed, M.B.; Aichour, A.N.; Aichour, I. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16, 877–897. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhuo, L.-b.; He, Y.; Fu, Y.; Shen, L.; Xu, F.; Gou, W.; Miao, Z.; Shuai, M.; Liang, Y. The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nat. Commun. 2022, 13, 3002. [Google Scholar] [CrossRef] [PubMed]
- Molde, H.; Moussavi, Y.; Kopperud, S.T.; Erga, A.H.; Hansen, A.L.; Pallesen, S. Impulse-control disorders in Parkinson’s disease: A meta-analysis and review of case–control studies. Front. Neurol. 2018, 9, 330. [Google Scholar] [CrossRef]
- Corvol, J.-C.; Artaud, F.; Cormier-Dequaire, F.; Rascol, O.; Durif, F.; Derkinderen, P.; Marques, A.-R.; Bourdain, F.; Brandel, J.-P.; Pico, F. Longitudinal analysis of impulse control disorders in Parkinson disease. Neurology 2018, 91, e189–e201. [Google Scholar] [CrossRef]
- Weintraub, D.; David, A.S.; Evans, A.H.; Grant, J.E.; Stacy, M. Clinical spectrum of impulse control disorders in Parkinson’s disease. Mov. Disord. 2015, 30, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Erga, A.H. Impulse Control Disorders in Parkinson’s Disease. Ph.D. Thesis, University of Stavanger, Stavanger, Norway, 2019. [Google Scholar]
- Weintraub, D. Dopamine and impulse control disorders in Parkinson’s disease. Ann. Neurol. 2008, 64, S93–S100. [Google Scholar] [CrossRef]
- Kraemmer, J.; Smith, K.; Weintraub, D.; Guillemot, V.; Nalls, M.A.; Cormier-Dequaire, F.; Moszer, I.; Brice, A.; Singleton, A.B.; Corvol, J.-C. Clinical-genetic model predicts incident impulse control disorders in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1106–1111. [Google Scholar] [CrossRef]
- Fang, X.; Liu, S.; Muhammad, B.; Zheng, M.; Ge, X.; Xu, Y.; Kan, S.; Zhang, Y.; Yu, Y.; Zheng, K. Gut microbiota dysbiosis contributes to α-synuclein-related pathology associated with C/EBPβ/AEP signaling activation in a mouse model of Parkinson’s disease. Neural Regen. Res. 2024, 19, 2081–2088. [Google Scholar] [CrossRef]
- Huang, B.; Chau, S.W.; Liu, Y.; Chan, J.W.; Wang, J.; Ma, S.L.; Zhang, J.; Chan, P.K.; Yeoh, Y.K.; Chen, Z. Gut microbiome dysbiosis across early Parkinson’s disease, REM sleep behavior disorder and their first-degree relatives. Nat. Commun. 2023, 14, 2501. [Google Scholar] [CrossRef]
- Kleine Bardenhorst, S.; Cereda, E.; Severgnini, M.; Barichella, M.; Pezzoli, G.; Keshavarzian, A.; Desideri, A.; Pietrucci, D.; Aho, V.T.; Scheperjans, F. Gut microbiota dysbiosis in Parkinson disease: A systematic review and pooled analysis. Eur. J. Neurol. 2023, 30, 3581–3594. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, D.; Ali Shah, S.Z.; Wu, W.; Lai, M.; Zhang, X.; Li, J.; Guan, Z.; Zhao, H.; Li, W. The role of the gut microbiota in the pathogenesis of Parkinson’s disease. Front. Neurol. 2019, 10, 1155. [Google Scholar] [CrossRef] [PubMed]
- Mhanna, A.; Martini, N.; Hmaydoosh, G.; Hamwi, G.; Jarjanazi, M.; Zaifah, G.; Kazzazo, R.; Mohamad, A.H.; Alshehabi, Z. The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine 2024, 103, e37114. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Du, L.; Kim, J.; Chen, B.; Zhu, Y.; Zhang, Y.; Yao, S.; He, H.; Zheng, X.; Huang, Z. MLCK-mediated intestinal permeability promotes immune activation and visceral hypersensitivity in PI-IBS mice. Neurogastroenterol. Motil. 2018, 30, e13348. [Google Scholar] [CrossRef] [PubMed]
- Ma, T. Roles of eukaryotic elongation factor 2 kinase (eEF2K) in neuronal plasticity, cognition, and Alzheimer disease. J. Neurochem. 2023, 166, 47–57. [Google Scholar] [CrossRef]
- Org, E.; Mehrabian, M.; Parks, B.W.; Shipkova, P.; Liu, X.; Drake, T.A.; Lusis, A.J. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 2016, 7, 313–322. [Google Scholar] [CrossRef]
- Langmajerová, M.; Ježková, J.; Kreisinger, J.; Semerád, J.; Titov, I.; Procházková, P.; Cajthaml, T.; Jiřička, V.; Vevera, J.; Roubalová, R. Gut Microbiome in Impulsively Violent Female Convicts. Neuropsychobiology 2025, 84, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rios-Covian, D.; González, S.; Nogacka, A.M.; Arboleya, S.; Salazar, N.; Gueimonde, M.; de los Reyes-Gavilán, C.G. An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Front. Microbiol. 2020, 11, 973. [Google Scholar] [CrossRef]
- Li, Z.; Liang, H.; Hu, Y.; Lu, L.; Zheng, C.; Fan, Y.; Wu, B.; Zou, T.; Luo, X.; Zhang, X. Gut bacterial profiles in Parkinson’s disease: A systematic review. CNS Neurosci. Ther. 2023, 29, 140–157. [Google Scholar] [CrossRef]
- Klaering, K.; Hanske, L.; Bui, N.; Charrier, C.; Blaut, M.; Haller, D.; Plugge, C.M.; Clavel, T. Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine. Int. J. Syst. Evol. Microbiol. 2013, 63, 4606–4612. [Google Scholar] [CrossRef]
- Desrochers, S.S.; Spring, M.G.; Nautiyal, K.M. A role for serotonin in modulating opposing drive and brake circuits of impulsivity. Front. Behav. Neurosci. 2022, 16, 791749. [Google Scholar] [CrossRef]
- Solinas, M.; Ferre, S.; You, Z.-B.; Karcz-Kubicha, M.; Popoli, P.; Goldberg, S.R. Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J. Neurosci. 2002, 22, 6321–6324. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.; Wang, G.; Logan, J.; Alexoff, D.; Fowler, J.; Thanos, P.; Wong, C.; Casado, V.; Ferre, S.; Tomasi, D. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl. Psychiatry 2015, 5, e549. [Google Scholar] [CrossRef]
- Li, Y.; Hao, Y.; Fan, F.; Zhang, B. The role of microbiome in insomnia, circadian disturbance and depression. Front. Psychiatry 2018, 9, 669. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, B.; Guo, J. Parkinson’s disease and gut microbiota: From clinical to mechanistic and therapeutic studies. Transl. Neurodegener. 2023, 12, 59. [Google Scholar] [CrossRef]
- Konstanti, P.; Gómez-Martínez, C.; Muralidharan, J.; Vioque, J.; Corella, D.; Fitó, M.; Vidal, J.; Tinahones, F.J.; Torres-Collado, L.; Coltell, O.; et al. Faecal microbiota composition and impulsivity in a cohort of older adults with metabolic syndrome. Sci. Rep. 2024, 14, 28075. [Google Scholar] [CrossRef]
- Langmajerová, M.; Roubalová, R.; Šebela, A.; Vevera, J. The effect of microbiome composition on impulsive and violent behavior: A systematic review. Behav. Brain Res. 2023, 440, 114266. [Google Scholar] [CrossRef]
- Hill-Burns, E.M.; Debelius, J.W.; Morton, J.T.; Wissemann, W.T.; Lewis, M.R.; Wallen, Z.D.; Peddada, S.D.; Factor, S.A.; Molho, E.; Zabetian, C.P. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord. 2017, 32, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Hamza, T.H.; Zabetian, C.P.; Tenesa, A.; Laederach, A.; Montimurro, J.; Yearout, D.; Kay, D.M.; Doheny, K.F.; Paschall, J.; Pugh, E. Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 2010, 42, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.; Patel, S.; Ives, N.; Rick, C.; Woolley, R.; Wheatley, K.; Walker, M.; Zhu, S.; Kandiyali, R.; Yao, G. UK Parkinson’s disease society Brain Bank diagnostic criteria. In Clinical Effectiveness and Cost-Effectiveness of Physiotherapy and Occupational Therapy Versus no Therapy in Mild to Moderate Parkinson’s Disease: A Large Pragmatic Randomised Controlled Trial (PD REHAB); Health Technology Assessment, No. 20.63; NIHR Journals Library: Southampton, UK, 2016. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rosenzweig, M.L. Species Diversity in Space and Time; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Lance, G.N.; Williams, W.T. Mixed-Data Classificatory Programs I—Agglomerative Systems. Aust. Comput. J. 1967, 1, 15–20. [Google Scholar]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef]
Impulse (n = 14) | w/o Impulse (n = 177) | p-Value | |
---|---|---|---|
Gender | 0.089 | ||
Female | 8 (57.1%) | 55 (31.1%) | |
Male | 6 (42.9%) | 122 (68.9%) | |
Age | 0.932 | ||
≤65 | 6 (42.9%) | 67 (37.9%) | |
>65 | 8 (57.1%) | 110 (62.1%) | |
Antibiotics | 0.603 | ||
No | 14 (100.0%) | 165 (93.2%) | |
Yes | 0 (0.0%) | 9 (5.1%) | |
Missing | 0 (0.0%) | 3 (1.7%) | |
Probiotics | 0.111 | ||
No | 8 (57.1%) | 129 (72.9%) | |
Yes | 6 (42.9%) | 36 (20.3%) | |
Missing | 0 (0.0%) | 12 (6.8%) | |
Eat fruits or vegetable daily | 0.772 | ||
No | 4 (28.6%) | 37 (20.9%) | |
Yes | 10 (71.4%) | 139 (78.5%) | |
Missing | 0 (0.0%) | 1 (0.6%) | |
Eat grains daily | 0.501 | ||
No | 6 (42.9%) | 51 (28.8%) | |
Yes | 8 (57.1%) | 123 (69.5%) | |
Missing | 0 (0.0%) | 3 (1.7%) | |
Eat meats daily | 0.922 | ||
No | 6 (42.9%) | 76 (42.9%) | |
Yes | 8 (57.1%) | 99 (55.9%) | |
Missing | 0 (0.0%) | 2 (1.1%) | |
Eat nuts daily | 0.119 | ||
No | 14 (100.0%) | 135 (76.3%) | |
Yes | 0 (0.0%) | 41 (23.2%) | |
Missing | 0 (0.0%) | 1 (0.6%) | |
Eat yogurt daily | 0.685 | ||
No | 12 (85.7%) | 162 (91.5%) | |
Yes | 2 (14.3%) | 14 (7.9%) | |
Missing | 0 (0.0%) | 1 (0.6%) | |
Dopamine agonist | 0.171 | ||
No | 10 (71.4%) | 86 (48.6%) | |
Yes | 4 (28.6%) | 91 (51.4%) | |
Carbidopa levodopa | 0.665 | ||
No | 1 (7.1%%) | 27 (15.3%) | |
Yes | 13 (92.9%) | 150 (84.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-H.; Lin, R.-J.; Chu, C.-L.; Chen, Y.-L.; Fu, S.-C. Associations Between Gut Microbiota Composition and Impulse Control Disorders in Parkinson’s Disease. Int. J. Mol. Sci. 2025, 26, 6146. https://doi.org/10.3390/ijms26136146
Lin S-H, Lin R-J, Chu C-L, Chen Y-L, Fu S-C. Associations Between Gut Microbiota Composition and Impulse Control Disorders in Parkinson’s Disease. International Journal of Molecular Sciences. 2025; 26(13):6146. https://doi.org/10.3390/ijms26136146
Chicago/Turabian StyleLin, Sheng-Hsuan, Ru-Jen Lin, Chia-Ling Chu, Yan-Lin Chen, and Shih-Chen Fu. 2025. "Associations Between Gut Microbiota Composition and Impulse Control Disorders in Parkinson’s Disease" International Journal of Molecular Sciences 26, no. 13: 6146. https://doi.org/10.3390/ijms26136146
APA StyleLin, S.-H., Lin, R.-J., Chu, C.-L., Chen, Y.-L., & Fu, S.-C. (2025). Associations Between Gut Microbiota Composition and Impulse Control Disorders in Parkinson’s Disease. International Journal of Molecular Sciences, 26(13), 6146. https://doi.org/10.3390/ijms26136146