Statistical Optimization of Bacterial Cellulose Production and Its Application for Bacteriophage Immobilization
Abstract
1. Introduction
2. Results
2.1. Carbon Source Selection
2.2. Optimization of BC Production
2.3. BC as a Bacteriophage Carrier
2.4. BC Characterization
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Carbon Source Selection
4.2.2. Optimization of BC Production
4.2.3. BC Disks Preparation
4.2.4. BC as a Bacteriophage Carrier
4.2.5. BC Characterization
4.2.6. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BC | Bacterial cellulose |
Phages | Bacteriophages |
CS1 | Staphylococcus aureus phage vB_SauS_CS1 |
References
- Manoukian, O.S.; Sardashti, N.; Stedman, T.; Gailiunas, K.; Ojha, A.; Penalosa, A.; Mancuso, C.; Hobert, M.; Kumbar, S.G. Biomaterials for Tissue Engineering and Regenerative Medicine. In Encyclopedia of Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 462–482. [Google Scholar]
- Rahman, S.S.A.; Vaishnavi, T.; Vidyasri, G.S.; Sathya, K.; Priyanka, P.; Venkatachalam, P.; Karuppiah, S. Production of Bacterial Cellulose Using Gluconacetobacter Kombuchae Immobilized on Luffa Aegyptiaca Support. Sci. Rep. 2021, 11, 2912. [Google Scholar] [CrossRef]
- Choi, S.M.; Rao, K.M.; Zo, S.M.; Shin, E.J.; Han, S.S. Bacterial Cellulose and Its Applications. Polymers 2022, 14, 1080. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Kari, Z.A.; Noor, N.H.M.; Ray, R.R. Bacterial Cellulose: Production, Characterization and Application as Antimicrobial Agent. Int. J. Mol. Sci. 2021, 22, 12984. [Google Scholar] [CrossRef] [PubMed]
- Aziz, W.S.W.A.; Adnan, A. Employed Bacterial Species and Bacterial Cellulose (BC) Applications: The State of Play. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2022, 17, 155–167. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Deng, Y.; Wei, Q. Research Progress of the Biosynthetic Strains and Pathways of Bacterial Cellulose. J. Ind. Microbiol. Biotechnol. 2022, 49, kuab071. [Google Scholar] [CrossRef]
- Jasme, N.; Elangovan, J.; Mohd Yahya, A.R.; Md Noh, N.A.; Bustami, Y. First Report of Biocellulose Production by an Indigenous Yeast, Pichia Kudriavzevii USM-YBP2. Green Process. Synth. 2022, 11, 458–477. [Google Scholar] [CrossRef]
- Fernandes, I.d.A.A.; Pedro, A.C.; Ribeiro, V.R.; Bortolini, D.G.; Ozaki, M.S.C.; Maciel, G.M.; Haminiuk, C.W.I. Bacterial Cellulose: From Production Optimization to New Applications. Int. J. Biol. Macromol. 2020, 164, 2598–2611. [Google Scholar] [CrossRef]
- El-Gendi, H.; Taha, T.H.; Ray, J.B.; Saleh, A.K. Recent Advances in Bacterial Cellulose: A Low-Cost Effective Production Media, Optimization Strategies and Applications. Cellulose 2022, 29, 7495–7533. [Google Scholar] [CrossRef]
- Krystynowicz, A.; Czaja, W.; Wiktorowska-Jezierska, A.; Gonçalves-Miśkiewicz, M.; Turkiewicz, M.; Bielecki, S. Factors Affecting the Yield and Properties of Bacterial Cellulose. J. Ind. Microbiol. Biotechnol. 2002, 29, 189–195. [Google Scholar] [CrossRef]
- Aditya, T.; Allain, J.P.; Jaramillo, C.; Restrepo, A.M. Surface Modification of Bacterial Cellulose for Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 610. [Google Scholar] [CrossRef]
- Li, W.; Huang, X.; Liu, H.; Lian, H.; Xu, B.; Zhang, W.; Sun, X.; Wang, W.; Jia, S.; Zhong, C. Improvement in Bacterial Cellulose Production by Co-Culturing Bacillus Cereus and Komagataeibacter Xylinus. Carbohydr. Polym. 2023, 313, 120892. [Google Scholar] [CrossRef]
- Yilmaz, M.; Goksungur, Y. Optimization of Bacterial Cellulose Production from Waste Figs by Komagataeibacter Xylinus. Fermentation 2024, 10, 466. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Barud, H.; Farinas, C.S.; Vasconcellos, V.M.; Claro, A.M. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Front. Sustain. Food Syst. 2019, 3, 7. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Z.; Shen, R.; Chen, S.; Yang, X. Bacterial Cellulose in Food Industry: Current Research and Future Prospects. Int. J. Biol. Macromol. 2020, 158, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Dugan, J.M.; Gough, J.E.; Eichhorn, S.J. Bacterial Cellulose Scaffolds and Cellulose Nanowhiskers for Tissue Engineering. Nanomedicine 2013, 8, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Wu, H.; Xiao, D.; Lan, S.; Dong, A. Recent Advances in Bacterial Cellulose-Based Antibacterial Composites for Infected Wound Therapy. Carbohydr. Polym. 2023, 316, 121082. [Google Scholar] [CrossRef]
- Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. [Google Scholar] [CrossRef]
- Jayani, T.; Sanjeev, B.; Marimuthu, S.; Uthandi, S. Bacterial Cellulose Nano Fiber (BCNF) as Carrier Support for the Immobilization of Probiotic, Lactobacillus Acidophilus 016. Carbohydr. Polym. 2020, 250, 116965. [Google Scholar] [CrossRef]
- Wei, B.; Yang, G.; Hong, F. Preparation and Evaluation of a Kind of Bacterial Cellulose Dry Films with Antibacterial Properties. Carbohydr. Polym. 2011, 84, 533–538. [Google Scholar] [CrossRef]
- Gouvêa, D.M.; Mendonça, R.C.S.; Soto, M.L.; Cruz, R.S. Acetate Cellulose Film with Bacteriophages for Potential Antimicrobial Use in Food Packaging. LWT 2015, 63, 85–91. [Google Scholar] [CrossRef]
- Kasman, L.M.; Porter, L.D. Bacteriophages. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 280–283. [Google Scholar] [CrossRef]
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage Therapy: An Alternative to Antibiotics in the Age of Multi-Drug Resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162. [Google Scholar] [CrossRef]
- Choińska-Pulit, A.; Mituła, P.; Śliwka, P.; Łaba, W.; Skaradzińska, A. Bacteriophage Encapsulation: Trends and Potential Applications. Trends Food Sci. Technol. 2015, 45, 212–221. [Google Scholar] [CrossRef]
- Loh, B.; Gondil, V.S.; Manohar, P.; Mehmood Khan, F.; Yang, H.; Leptihn, S.; Singh, V. Encapsulation and Delivery of Therapeutic Phages. Appl. Environ. Microbiol. 2021, 87, e01979-20. [Google Scholar] [CrossRef] [PubMed]
- Sidarenka, A.; Kraskouski, A.; Savich, V.; Akhmedov, O.; Nikalaichuk, V.; Herasimovich, A.; Hileuskaya, K.; Kulikouskaya, V. Design of Sponge-like Chitosan Wound Dressing with Immobilized Bacteriophages for Promoting Healing of Bacterially Infected Wounds. J. Polym. Environ. 2024, 32, 3893–3909. [Google Scholar] [CrossRef]
- Żaczek, M.; Górski, A.; Weber-Dąbrowska, B.; Letkiewicz, S.; Fortuna, W.; Rogóż, P.; Pasternak, E.; Międzybrodzki, R. A Thorough Synthesis of Phage Therapy Unit Activity in Poland—Its History, Milestones and International Recognition. Viruses 2022, 14, 1170. [Google Scholar] [CrossRef]
- Oliveira, R.L.; Vieira, J.G.; Barud, H.S.; Assunção, R.M.N.; Filho, G.R.; Ribeiro, S.J.L.; Messadeqq, Y. Synthesis and Characterization of Methylcellulose Produced from Bacterial Cellulose under Heterogeneous Condition. J. Braz. Chem. Soc. 2015, 26, 1861–1870. [Google Scholar] [CrossRef]
- Fuller, M.E.; Andaya, C.; McClay, K. Evaluation of ATR-FTIR for Analysis of Bacterial Cellulose Impurities. J. Microbiol. Methods 2018, 144, 145–151. [Google Scholar] [CrossRef]
- Gorgieva, S.; Trček, J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. Nanomaterials 2019, 9, 1352. [Google Scholar] [CrossRef]
- Knerr, T.; Lerche, H.; Pischetsrieder, M.; Severin, T. Formation of a novel colored product during the Maillard reaction of D-glucose. J. Agric. Food Chem. 2001, 49, 1966–1970. [Google Scholar] [CrossRef]
- van Zyl, E.; Kennedy, M.A.; Nason, W.; Fenlon, S.J.; Young, E.M.; Smith, L.J.; Bhatia, S.R.; Coburn, J.M. Structural properties of optically clear bacterial cellulose produced by Komagataeibacter hansenii. Biomater. Adv. 2023, 148, 213345. [Google Scholar] [CrossRef]
- Wang, S.S.; Han, Y.H.; Chen, J.L.; Zhang, D.C.; Shi, X.X.; Ye, Y.X.; Chen, D.L.; Li, M. Insights into Bacterial Cellulose Biosynthesis from Different Carbon Sources and the Associated Biochemical Transformation Pathways in Komagataeibacter sp. W1. Polymers 2018, 10, 963. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Vadanan, S.V.; Lim, S. Rational Design of a Scalable Bioprocess Platform for Bacterial Cellulose Production. Carbohydr. Polym. 2019, 207, 684–693. [Google Scholar] [CrossRef]
- Khiabani, A.; Sarabi-Jamab, M.; Shakeri, M.; Pahlevanlo, A.; Emadzadeh, B. Bacterial Cellulose Biosynthesis: Optimization Strategy Using Iranian Nabat Industry Waste. Heliyon 2024, 10, e35986. [Google Scholar] [CrossRef]
- Bae, S.; Shoda, M. Statistical Optimization of Culture Conditions for Bacterial Cellulose Production Using Box-Behnken Design. Biotechnol. Bioeng. 2005, 90, 20–28. [Google Scholar] [CrossRef]
- Mikkelsen, D.; Flanagan, B.M.; Dykes, G.A.; Gidley, M.J. Influence of Different Carbon Sources on Bacterial Cellulose Production by Gluconacetobacter xylinus Strain ATCC 53524. J. Appl. Microbiol. 2009, 107, 576–583. [Google Scholar] [CrossRef]
- Tabaii, M.J.; Emtiazi, G. Comparison of Bacterial Cellulose Production among Different Strains and Fermented Media. Orig. Artic. Appl. Food Biotechnol. 2016, 3, 35–41. [Google Scholar]
- Chen, J.; Hong, F.; Zheng, H.; Zheng, L.; Du, B. Using Static Culture Method to Increase the Production of Acetobacter Xylinum Bacterial Cellulose. J. Nat. Fibers 2024, 21, 2288286. [Google Scholar] [CrossRef]
- Adamopoulou, V.; Bekatorou, A.; Brinias, V.; Michalopoulou, P.; Dimopoulos, C.; Zafeiropoulos, J.; Petsi, T.; Koutinas, A.A. Optimization of Bacterial Cellulose Production by Komagataeibacter Sucrofermentans in Synthetic Media and Agrifood Side Streams Supplemented with Organic Acids and Vitamins. Bioresour. Technol. 2024, 398, 130511. [Google Scholar] [CrossRef]
- Amason, A.C.; Meduri, A.; Rao, S.; Leonick, N.; Subramaniam, B.; Samuel, J.; Gross, R.A. Bacterial Cellulose Cultivations Containing Gelatin Form Tunable, Highly Ordered, Laminae Structures with Fourfold Enhanced Productivity. ACS Omega 2022, 7, 47709–47719. [Google Scholar] [CrossRef]
- Żywicka, A.; Junka, A.F.; Szymczyk, P.; Chodaczek, G.; Grzesiak, J.; Sedghizadeh, P.P.; Fijałkowski, K. Bacterial Cellulose Yield Increased over 500% by Supplementation of Medium with Vegetable Oil. Carbohydr. Polym. 2018, 199, 294–303. [Google Scholar] [CrossRef]
- Drozd, R.; Rakoczy, R.; Wasak, A.; Junka, A.; Fijałkowski, K. The Application of Magnetically Modified Bacterial Cellulose for Immobilization of Laccase. Int. J. Biol. Macromol. 2018, 108, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Roque-Borda, C.A.; Carnero Canales, C.S.; Primo, L.M.D.G.; Colturato, V.M.M.; Polinário, G.; Di Filippo, L.D.; Duarte, J.L.; Chorilli, M.; da Silva Barud, H.; Pavan, F.R. Cellulose from Bacteria as a Delivery System for Improved Treatment of Infectious Diseases: A Review of Updates and Prospects. Int. J. Biol. Macromol. 2024, 277, 133831. [Google Scholar] [CrossRef]
- Vonasek, E.; Lu, P.; Hsieh, Y.L.; Nitin, N. Bacteriophages Immobilized on Electrospun Cellulose Microfibers by Non-Specific Adsorption, Protein–Ligand Binding, and Electrostatic Interactions. Cellulose 2017, 24, 4581–4589. [Google Scholar] [CrossRef]
- Hussain, W.; Wang, H.; Yang, X.; Ullah, M.W.; Hussain, J.; Ullah, N.; Ul-Islam, M.; Awad, M.F.; Wang, S. Ultrasensitive electrochemical detection of Salmonella typhimurium in food matrices using surface-modified bacterial cellulose with immobilized phage particles. Int. J. Mol. Sci. 2023, 14, 500. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U.; Ullah, M.W.; Yang, Q.; Aziz, A.; Xu, J.; Zhou, L.; Wang, S. High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosens. Bioelectron. 2020, 157, 112163. [Google Scholar] [CrossRef]
- Anany, H.; Chen, W.; Pelton, R.; Griffiths, M.W. Biocontrol of Listeria Monocytogenes and Escherichia Coli O157:H7 in Meat by Using Phages Immobilized on Modified Cellulose Membranes. Appl. Environ. Microbiol. 2011, 77, 6379–6387. [Google Scholar] [CrossRef]
- Li, Z.; Tolba, M.; Griffiths, M.; van de Ven, T.G.M. Effect of Unassembled Phage Protein Complexes on the Attachment to Cellulose of Genetically Modified Bacteriophages Containing Cellulose Binding Modules. Colloids Surf. B Biointerfaces 2010, 76, 529–534. [Google Scholar] [CrossRef]
- Tolba, M.; Minikh, O.; Brovko, L.Y.; Evoy, S.; Griffiths, M.W. Oriented Immobilization of Bacteriophages for Biosensor Applications. Appl. Environ. Microbiol. 2010, 76, 528–535. [Google Scholar] [CrossRef]
- Horue, M.; Silva, J.M.; Berti, I.R.; Brandão, L.R.; Barud, H.d.S.; Castro, G.R. Bacterial Cellulose-Based Materials as Dressings for Wound Healing. Pharmaceutics 2023, 15, 424. [Google Scholar] [CrossRef]
- Islam, M.U.; Ullah, M.W.; Khan, S.; Shah, N.; Park, J.K. Strategies for Cost-Effective and Enhanced Production of Bacterial Cellulose. Int. J. Biol. Macromol. 2017, 102, 1166–1173. [Google Scholar] [CrossRef]
- Rouhi, M.; Khanchezar, S.; Babaeipour, V. Economical Optimization of Industrial Medium Culture for Bacterial Cellulose Production. Appl. Biochem. Biotechnol. 2023, 195, 2863–2881. [Google Scholar] [CrossRef] [PubMed]
- Skaradzińska, A.; Ochocka, M.; Śliwka, P.; Kuźmińska-Bajor, M.; Skaradziński, G.; Friese, A.; Roschanski, N.; Murugaiyan, J.; Roesler, U. Bacteriophage Amplification—A Comparison of Selected Methods. J. Virol. Methods 2020, 282, 113856. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.H. Growth Cycle of Bacteriophages. In Bacteriophages; Interscience Publishers: New York, NY, USA, 1959; pp. 123–145. [Google Scholar]
Variable | Coefficient | Standard Error | t-Value | p-Value |
---|---|---|---|---|
Intercept | 30.7508 | 1.6164 | 19.0237 | 0.0000 |
X1 | 26.8775 | 3.9595 | 6.7882 | 0.0003 |
X2 | 11.4806 | 2.6189 | 4.3837 | 0.0032 |
X3 | 8.3725 | 3.9595 | 2.1146 | 0.0723 |
X1X1 | 14.6106 | 2.6189 | 5.5788 | 0.0008 |
X2X2 | 12.9550 | 3.9595 | 3.2719 | 0.0136 |
X3X3 | 17.4731 | 2.6189 | 6.6718 | 0.0003 |
X1X2 | 19.1850 | 5.5995 | 3.4262 | 0.0110 |
X1X3 | 6.8000 | 5.5995 | 1.2144 | 0.2634 |
X2X3 | −2.3800 | 5.5995 | −0.4250 | 0.6836 |
Regression Model Component | SS | df | MS | F-Ratio | p-Value | |
---|---|---|---|---|---|---|
X1: fructose [g/L] L + Q | 2047.34 | 2 | 1023.67 | 32.65 | 0.0003 | |
X2: temperature [°C] L + Q | 1116.06 | 2 | 558.03 | 17.80 | 0.0018 | |
X3: cultivation time [day] L + Q | 1731.37 | 2 | 865.68 | 27.61 | 0.0005 | |
interactions | X1 × X2 | 368.06 | 1 | 368.06 | 11.74 | 0.0110 |
X1 × X3 | 46.24 | 1 | 46.24 | 1.47 | 0.2640 | |
X2 × X3 | 5.66 | 1 | 5.66 | 0.18 | 0.6836 | |
Lack of fit | 83.04 | 3 | 27.68 | 0.88 | 0.4948 | |
Residual error | 219.48 | 7 | 31.36 | |||
Total SS | 6763.78 | 19 |
Bacteriophage | CS1 | T4 |
---|---|---|
Tested dilution (PFU/mL) | Disk diameter (mm) | |
Control | 16.67 ± 0.52 a | 16.44 ± 0.50 a |
105 | 19.01 ± 0.76 b | 18.67 ± 0.43 b |
106 | 19.63 ± 1.04 c | 19.59 ± 1.02 c |
107 | 20.12 ± 0.58 d | 19.57 ± 0.85 c |
Unit | −1 | 0 | +1 | |
---|---|---|---|---|
X1: fructose | g/L | 50 | 150 | 250 |
X2: temperature | °C | 21 | 26 | 31 |
X3: cultivation time | day | 6 | 11 | 16 |
Independent Variable | Cellulose g/L | ||||
---|---|---|---|---|---|
Run | X1 | X2 | X3 | Actual Response | Predicted Response |
1 | 0 | 1 | −1 | 26.09 | 26.61 |
2 | 0 | −1 | −1 | 11.36 | 15.86 |
3 | −1 | 0 | −1 | 16.46 | 14.32 |
4 | 1 | 0 | −1 | 37.28 | 34.40 |
5 | −1 | −1 | 0 | 28.03 | 25.67 |
6 | 1 | −1 | 0 | 34.98 | 33.36 |
7 | −1 | 1 | 0 | 13.24 | 14.86 |
8 | 1 | 1 | 0 | 58.56 | 60.92 |
9 | −1 | 0 | 1 | 17.60 | 20.48 |
10 | 1 | 0 | 1 | 52.02 | 54.16 |
11 | 0 | −1 | 1 | 31.71 | 31.19 |
12 | 0 | 1 | 1 | 41.68 | 37.18 |
13 | 0 | 0 | 0 | 60.30 | 59.79 |
14 | 0 | 0 | 0 | 53.33 | 59.79 |
15 | 0 | 0 | 0 | 58.13 | 59.79 |
16 | 0 | 0 | 0 | 53.15 | 59.79 |
17 | 0 | 0 | 0 | 55.70 | 59.79 |
18 | 0 | 0 | 0 | 65.08 | 59.79 |
19 | 0 | 0 | 0 | 66.63 | 59.79 |
20 | 0 | 0 | 0 | 66.05 | 59.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skaradziński, G.; Janek, T.; Śliwka, P.; Skaradzińska, A.; Łaba, W. Statistical Optimization of Bacterial Cellulose Production and Its Application for Bacteriophage Immobilization. Int. J. Mol. Sci. 2025, 26, 6059. https://doi.org/10.3390/ijms26136059
Skaradziński G, Janek T, Śliwka P, Skaradzińska A, Łaba W. Statistical Optimization of Bacterial Cellulose Production and Its Application for Bacteriophage Immobilization. International Journal of Molecular Sciences. 2025; 26(13):6059. https://doi.org/10.3390/ijms26136059
Chicago/Turabian StyleSkaradziński, Grzegorz, Tomasz Janek, Paulina Śliwka, Aneta Skaradzińska, and Wojciech Łaba. 2025. "Statistical Optimization of Bacterial Cellulose Production and Its Application for Bacteriophage Immobilization" International Journal of Molecular Sciences 26, no. 13: 6059. https://doi.org/10.3390/ijms26136059
APA StyleSkaradziński, G., Janek, T., Śliwka, P., Skaradzińska, A., & Łaba, W. (2025). Statistical Optimization of Bacterial Cellulose Production and Its Application for Bacteriophage Immobilization. International Journal of Molecular Sciences, 26(13), 6059. https://doi.org/10.3390/ijms26136059