Special Issue “The 25th Anniversary of NO”
- Cardiovascular system: vasodilation, blood pressure regulation, and anti-atherosclerotic activity.
- Nervous system: neurotransmission, neurovascular coupling, and synaptic plasticity.
- Immune system: antimicrobial and anti-tumour functions via macrophage activation.
- Coagulation system: inhibition of platelet aggregation and thrombus formation.
- Respiratory system: regulation of bronchial tone and gas exchange.
- Reproductive system: smooth muscle relaxation and erectile function.
- Renal system: regulation of glomerular filtration and renal blood flow.
- Gastrointestinal system: control of motility and sphincter relaxation.
- Mitochondrial function: modulation of oxidative phosphorylation and cellular respiration.
- Hypoxia and ischemia response: adaptation to oxygen deprivation at systemic and cellular levels.
- Inhaled NO is employed in persistent pulmonary hypertension of the newborn, cardiac surgery and transplantation, acute respiratory distress syndrome, severe hypoxemia, and sickle cell disease. Administered as a gas, NO exerts vasodilatory effects within the pulmonary circulation without inducing systemic hypotension, making its use valuable in critical care and pulmonary medicine.
- The infusion of L-arginine, the substrate of NOS, increases overall NO bioavailability with benefits in pulmonary hypertension, peripheral artery disease, ischemic heart disease, hypercoagulopathies, erectile dysfunction, and inflammatory states, also providing metabolic and renal support by improving glucose metabolism in insulin-resistant states and insulin sensitivity.
- NO donors (i.e., nitroglycerin, S-nitrosothiols, NONOates, sodium nitroprusside, furoxans), compounds that release NO in the circulation, are used for their vasodilatory, anti-aggregatory, and cytoprotective properties in angina pectoris, heart failure, peripheral vascular disease, and erectile dysfunction.
- Phosphodiesterase (PDE) inhibitors block the degradation of the cyclic nucleotides cAMP and cGMP, increasing NO-driven downstream effects like vasodilation, cardiac stimulation, bronchodilation, and anti-inflammatory responses. Up to eleven PDE inhibitor classes are known, localized in various body districts as the cardiovascular, pulmonary, erectile, autoimmune and inflammatory systems.
- Guanylate cyclase stimulators and agonists stimulate guanylate cyclase enzymes, increasing intracellular cGMP bypassing or enhancing the NO pathway, with benefits in conditions where endogenous NO production is impaired, such as pulmonary hypertension (Riociguat), heart failure (Vericiguat), and gastrointestinal disorders (Linaclotide).
Author Contributions
Funding
Conflicts of Interest
Abbreviations
cAMP | Cyclic adenosine monophosphate |
cGMP | Cyclic guanosine monophosphate |
COX-2 | Inducible cyclooxygenase |
EDRF | Endothelium-derived relaxing factor |
HBOCs | Haemoglobin-based oxygen carriers |
nNO | Nasal NO |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
NOS2 | Inducible NOS |
NOS3 | Endothelial NOS |
PCD | Primary ciliary dyskinesia |
PDE | Phosphodiesterase |
References
- Poderoso, J.J.; Helfenberger, K.; Poderoso, C. The effect of nitric oxide on mitochondrial respiration. Nitric Oxide 2019, 88, 61–72. [Google Scholar] [CrossRef] [PubMed]
- West, J.B. Joseph Priestley, oxygen, and the enlightenment. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 306, L111–L119. [Google Scholar] [CrossRef] [PubMed]
- Verde, C.; Giordano, D.; Bruno, S. NO and Heme Proteins: Cross-Talk between Heme and Cysteine Residues. Antioxidants 2023, 12, 321. [Google Scholar] [CrossRef] [PubMed]
- Freeman, B. Free radical chemistry of nitric oxide. Look. Dark Side Chest 1994, 105, 79S–84S. [Google Scholar] [CrossRef]
- Weinberger, B.; Laskin, D.L.; Heck, D.E.; Laskin, J.D. The toxicology of inhaled nitric oxide. Toxicol. Sci. An. Off. J. Soc. Toxicol. 2001, 59, 5–16. [Google Scholar] [CrossRef]
- Moncada, S.; Palmer, R.M.; Higgs, E.A. The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension 1988, 12, 365–372. [Google Scholar] [CrossRef]
- Fleming, I.; Busse, R. NO: The primary EDRF. J. Mol. Cell Cardiol. 1999, 31, 5–14. [Google Scholar] [CrossRef]
- Bredt, D.S.; Hwang, P.M.; Snyder, S.H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 1990, 347, 768–770. [Google Scholar] [CrossRef]
- Stuehr, D.J.; Gross, S.S.; Sakuma, I.; Levi, R.; Nathan, C.F. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J. Exp. Med. 1989, 169, 1011–1020. [Google Scholar] [CrossRef]
- Lamas, S.; Marsden, P.A.; Li, G.K.; Tempst, P.; Michel, T. Endothelial nitric oxide synthase: Molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc. Natl. Acad. Sci. USA 1992, 89, 6348–6352. [Google Scholar] [CrossRef]
- Mancardi, D.; Ottolenghi, S.; Attanasio, U.; Tocchetti, C.G.; Paroni, R.; Pagliaro, P.; Samaja, M. Janus, or the Inevitable Battle Between Too Much and Too Little Oxygen. Antioxid. Redox Signal 2022, 37, 972–989. [Google Scholar] [CrossRef]
- Culotta, E.; Koshland, D.E., Jr. NO news is good news. Science 1992, 258, 1862–1865. [Google Scholar] [CrossRef]
- Clementi, E. The contribution of Salvador Moncada to our understanding of the biology of nitric oxide. IUBMB Life 2003, 55, 563–565. [Google Scholar] [CrossRef]
- Motterlini, R.; Foresti, R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am. J. Physiol. Cell Physiol. 2017, 312, C302–C313. [Google Scholar] [CrossRef]
- Wang, R. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J. 2002, 16, 1792–1798. [Google Scholar] [CrossRef]
- Ito, Y.; Nagoya, H.; Yamazato, M.; Asano, Y.; Sawada, M.; Shimazu, T.; Hirayama, M.; Yamamoto, T.; Araki, N. The Effect of Aging on Nitric Oxide Production during Cerebral Ischemia and Reperfusion in Wistar Rats and Spontaneous Hypertensive Rats: An In Vivo Microdialysis Study. Int. J. Mol. Sci. 2023, 24, 12749. [Google Scholar] [CrossRef]
- Poeggeler, B.; Singh, S.K.; Sambamurti, K.; Pappolla, M.A. Nitric Oxide as a Determinant of Human Longevity and Health Span. Int. J. Mol. Sci. 2023, 24, 14533. [Google Scholar] [CrossRef]
- Samaja, M.; Malavalli, A.; Vandegriff, K.D. How Nitric Oxide Hindered the Search for Hemoglobin-Based Oxygen Carriers as Human Blood Substitutes. Int. J. Mol. Sci. 2023, 24, 14902. [Google Scholar] [CrossRef]
- Paterno, S.; Pisani, L.; Zanconato, S.; Ferraro, V.A.; Carraro, S. Role of Nasal Nitric Oxide in Primary Ciliary Dyskinesia and Other Respiratory Conditions in Children. Int. J. Mol. Sci. 2023, 24, 16159. [Google Scholar] [CrossRef]
- Coutinho, L.L.; Femino, E.L.; Gonzalez, A.L.; Moffat, R.L.; Heinz, W.F.; Cheng, R.Y.S.; Lockett, S.J.; Rangel, M.C.; Ridnour, L.A.; Wink, D.A. NOS2 and COX-2 Co-Expression Promotes Cancer Progression: A Potential Target for Developing Agents to Prevent or Treat Highly Aggressive Breast Cancer. Int. J. Mol. Sci. 2024, 25, 6103. [Google Scholar] [CrossRef]
- Scarpellino, G.; Brunetti, V.; Berra-Romani, R.; De Sarro, G.; Guerra, G.; Soda, T.; Moccia, F. The Unexpected Role of the Endothelial Nitric Oxide Synthase at the Neurovascular Unit: Beyond the Regulation of Cerebral Blood Flow. Int. J. Mol. Sci. 2024, 25, 9071. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancardi, D.; Samaja, M. Special Issue “The 25th Anniversary of NO”. Int. J. Mol. Sci. 2025, 26, 6058. https://doi.org/10.3390/ijms26136058
Mancardi D, Samaja M. Special Issue “The 25th Anniversary of NO”. International Journal of Molecular Sciences. 2025; 26(13):6058. https://doi.org/10.3390/ijms26136058
Chicago/Turabian StyleMancardi, Daniele, and Michele Samaja. 2025. "Special Issue “The 25th Anniversary of NO”" International Journal of Molecular Sciences 26, no. 13: 6058. https://doi.org/10.3390/ijms26136058
APA StyleMancardi, D., & Samaja, M. (2025). Special Issue “The 25th Anniversary of NO”. International Journal of Molecular Sciences, 26(13), 6058. https://doi.org/10.3390/ijms26136058