Sex Differences in Hypertension Risk: Insights from Placental Genomics and Pregnancy-Driven Vascular Programming
Abstract
1. Introduction
2. Biology of Sex Differences in Hypertension
2.1. Role of Sex Chromosomes
2.2. Role of Sex Hormones
2.3. Role of Placental Biology
3. Role of Pregnancy
3.1. Pregnancy as a Physiological Stress Test
3.2. Placentation and Maternal Cardiovascular Health
3.3. Fetal Sex and Sex-Specific Placental Signals
Aspect | Male Placenta | Female Placenta | Implication for Maternal Health |
---|---|---|---|
Inflammatory gene expression [52] | Elevated (e.g., IL-6, TNF-α) | Lower | Higher systemic inflammation in mother |
OS markers [53] | Increased | Lower, more regulated | Endothelial dysfunction risk |
Angiogenic balance [54] | More prone to sFlt-1 overexpression | More stable PGF expression | Greater anti-angiogenic signaling with male fetuses |
Mitochondrial function [55] | Less efficient, higher ROS | More efficient, adaptable | Energy stress and vascular damage in mother |
microRNA profiles [56] | miR-210, miR-155 elevated | Distinct adaptive signatures | Sex-specific epigenetic regulation of maternal endothelium |
3.4. Genetic and Epigenetic Mechanisms Revealed by Pregnancy
Gene/Locus | Function | Associated with | Implication |
---|---|---|---|
SH2B3 [64] | Immune and vascular regulation | PE, HTN | Shared inflammatory and hypertensive pathways |
FTO [64] | Metabolic and vascular signaling | Obesity, HDP, HTN | Metabolic–vascular interface |
eNOS (NOS3) [65] | NO production, vasodilation | HDP, endothelial dysfunction | Impaired vascular tone and endothelial function |
MTHFR [66] | Methylation, homocysteine metabolism | PE, HTN | Endothelial stress, oxidative damage |
Hypertension PRS [67] | Cumulative genetic burden | HDP, later-life HTN | Predictive of postpartum risk |
4. Implications for Precision Medicine
4.1. Sex-Based Screening and Risk Stratification
4.2. Personalized Prevention Strategies
4.3. Sex-Informed Therapeutic Management
4.4. Toward Integrative Models and Longitudinal Care
5. Future Directions
5.1. Need for Sex-Stratified and Longitudinal Studies
5.2. Enhancing Polygenic Risk Scoring with Sex and Pregnancy Context
5.3. Opportunities for Translational and Clinical Innovation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Connelly, P.J.; Currie, G.; Delles, C. Sex Differences in the Prevalence, Outcomes and Management of Hypertension. Curr. Hypertens. Rep. 2022, 24, 185–192. [Google Scholar] [CrossRef]
- Wenger, N.K.; Arnold, A.; Bairey Merz, C.N.; Cooper-DeHoff, R.M.; Ferdinand, K.C.; Fleg, J.L.; Gulati, M.; Isiadinso, I.; Itchhaporia, D.; Light-McGroary, K.; et al. Hypertension Across a Woman’s Life Cycle. J. Am. Coll. Cardiol. 2018, 71, 1797–1813. [Google Scholar] [CrossRef]
- Conlon, F.L.; Arnold, A.P. Sex chromosome mechanisms in cardiac development and disease. Nat. Cardiovasc. Res. 2023, 2, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Kornacki, J.; Olejniczak, O.; Sibiak, R.; Gutaj, P.; Wender-Ozegowska, E. Pathophysiology of Pre-Eclampsia-Two Theories of the Development of the Disease. Int. J. Mol. Sci. 2023, 25, 307. [Google Scholar] [CrossRef]
- Yang, Q.; Han, K.; Wang, J.; Zou, Y. Literature Overview of Association Between Preeclampsia and Cardiovascular Risk. Anatol. J. Cardiol. 2023, 27, 179–184. [Google Scholar] [CrossRef]
- Zouganeli, I.; Moustakli, E.; Potiris, A.; Christodoulaki, C.; Arkoulis, I.; Kathopoulis, N.; Theofanakis, C.; Domali, E.; Panagopoulos, P.; Drakakis, P.; et al. Genetic Variations in Vascular Endothelial Growth Factor and Their Impact on Preeclampsia: Insights into Risk, Severity, and Pregnancy Outcomes. Curr. Issues Mol. Biol. 2025, 47, 199. [Google Scholar] [CrossRef]
- Williams, D. Pregnancy: A stress test for life. Curr. Opin. Obstet. Gynecol. 2003, 15, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Mallick, R.; Navya Sree, B.; Duttaroy, A.K. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024, 16, 1860. [Google Scholar] [CrossRef]
- Gerede, A.; Stavros, S.; Danavasi, M.; Potiris, A.; Moustakli, E.; Machairiotis, N.; Zikopoulos, A.; Nikolettos, K.; Drakakis, P.; Nikolettos, N.; et al. MicroRNAs in Preeclampsia: Bridging Diagnosis and Treatment. J. Clin. Med. 2025, 14, 2003. [Google Scholar] [CrossRef]
- Ilekis, J.V.; Tsilou, E.; Fisher, S.; Abrahams, V.M.; Soares, M.J.; Cross, J.C.; Zamudio, S.; Illsley, N.P.; Myatt, L.; Colvis, C.; et al. Placental origins of adverse pregnancy outcomes: Potential molecular targets: An Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am. J. Obstet. Gynecol. 2016, 215, S1–S46. [Google Scholar] [CrossRef] [PubMed]
- Candia, A.A.; Lean, S.C.; Zhang, C.X.W.; McKeating, D.R.; Cochrane, A.; Gulacsi, E.; Herrera, E.A.; Krause, B.J.; Sferruzzi-Perri, A.N. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants 2024, 13, 411. [Google Scholar] [CrossRef]
- Potiris, A.; Fotiou, A.; Drakaki, E.; Potetsianaki, A.; Zikopoulos, A.; Moustakli, E.; Karampitsakos, T.; Topis, S.; Machairoudias, P.; Ouzouni, S.; et al. Bridging the Gap between Galectin-3 Expression and Hypertensive Pregnancy Disorders: A Narrative Review. J. Clin. Med. 2024, 13, 4636. [Google Scholar] [CrossRef] [PubMed]
- Rezaianzadeh, A.; Johari, M.G.; Baeradeh, N.; Seif, M.; Hosseini, S.V. Sex differences in hypertension incidence and risk factors: A population-based cohort study in Southern Iran. BMC Public Health 2024, 24, 3575. [Google Scholar] [CrossRef] [PubMed]
- Reue, K.; Wiese, C.B. Illuminating the Mechanisms Underlying Sex Differences in Cardiovascular Disease. Circ. Res. 2022, 130, 1747–1762. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, C.H.; Li, W.; Li, T.; Luo, W.; Huang, S.; Wu, P.S.; Cai, S.X.; Li, X. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-kappaB pathway. Am. J. Respir. Cell Mol. Biol. 2014, 50, 723–736. [Google Scholar] [CrossRef]
- Khan, S.I.; Andrews, K.L.; Jennings, G.L.; Sampson, A.K.; Chin-Dusting, J.P.F. Y Chromosome, Hypertension and Cardiovascular Disease: Is Inflammation the Answer? Int. J. Mol. Sci. 2019, 20, 2892. [Google Scholar] [CrossRef]
- Wiese, C.B.; Avetisyan, R.; Reue, K. The impact of chromosomal sex on cardiometabolic health and disease. Trends Endocrinol. Metab. 2023, 34, 652–665. [Google Scholar] [CrossRef]
- Ma, H.Y.; Chen, S.; Du, Y. Estrogen and estrogen receptors in kidney diseases. Ren. Fail. 2021, 43, 619–642. [Google Scholar] [CrossRef]
- Chambliss, K.L.; Shaul, P.W. Estrogen modulation of endothelial nitric oxide synthase. Endocr. Rev. 2002, 23, 665–686. [Google Scholar] [CrossRef]
- Chen, Z.; Yuhanna, I.S.; Galcheva-Gargova, Z.; Karas, R.H.; Mendelsohn, M.E.; Shaul, P.W. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J. Clin. Investig. 1999, 103, 401–406. [Google Scholar] [CrossRef]
- Gangitano, E.; Scannapieco, F.; Lubrano, C.; Gnessi, L. Metabolic Syndrome, Hepatic Steatosis and Testosterone: A Matter of Sex. Livers 2024, 4, 534–549. [Google Scholar] [CrossRef]
- Iorga, A.; Cunningham, C.M.; Moazeni, S.; Ruffenach, G.; Umar, S.; Eghbali, M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol. Sex Differ. 2017, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Parry, L.J.; Vodstrcil, L.A. Relaxin physiology in the female reproductive tract during pregnancy. Adv. Exp. Med. Biol. 2007, 612, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, T.L.; Willson, B.E.; Wang, E.T.; Taylor, K.D.; Novoa, A.; Swarna, A.; Ortiz, J.C.; Zeno, G.J.; Jefferies, C.A.; Lawrenson, K.; et al. Sexually dimorphic DNA methylation and gene expression patterns in human first trimester placenta. Biol. Sex Differ. 2024, 15, 63. [Google Scholar] [CrossRef]
- Yu, P.; Chen, Y.; Ge, C.; Wang, H. Sexual dimorphism in placental development and its contribution to health and diseases. Crit. Rev. Toxicol. 2021, 51, 555–570. [Google Scholar] [CrossRef]
- Bronson, S.L.; Bale, T.L. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology 2014, 155, 2635–2646. [Google Scholar] [CrossRef]
- Ortega, M.A.; Fraile-Martinez, O.; Garcia-Montero, C.; Saez, M.A.; Alvarez-Mon, M.A.; Torres-Carranza, D.; Alvarez-Mon, M.; Bujan, J.; Garcia-Honduvilla, N.; Bravo, C.; et al. The Pivotal Role of the Placenta in Normal and Pathological Pregnancies: A Focus on Preeclampsia, Fetal Growth Restriction, and Maternal Chronic Venous Disease. Cells 2022, 11, 568. [Google Scholar] [CrossRef]
- Bernad, B.C.; Tomescu, M.C.; Velimirovici, D.E.; Andor, M.; Lungeanu, D.; Enatescu, V.; Bucur, A.I.; Lascu, A.; Rata, A.L.; Bernad, E.S.; et al. Impact of Stress and Anxiety on Cardiovascular Health in Pregnancy: A Scoping Review. J. Clin. Med. 2025, 14, 909. [Google Scholar] [CrossRef]
- Radparvar, A.A.; Vani, K.; Fiori, K.; Gupta, S.; Chavez, P.; Fisher, M.; Sharma, G.; Wolfe, D.; Bortnick, A.E. Hypertensive Disorders of Pregnancy: Innovative Management Strategies. JACC Adv. 2024, 3, 100864. [Google Scholar] [CrossRef]
- Zhang, S.; Regnault, T.R.; Barker, P.L.; Botting, K.J.; McMillen, I.C.; McMillan, C.M.; Roberts, C.T.; Morrison, J.L. Placental adaptations in growth restriction. Nutrients 2015, 7, 360–389. [Google Scholar] [CrossRef]
- Del Gobbo, G.F.; Konwar, C.; Robinson, W.P. The significance of the placental genome and methylome in fetal and maternal health. Hum. Genet. 2020, 139, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Jozwik, M.; Lipka, A. Recent progress in human placental transcriptomics. Dev. Period. Med. 2019, 23, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Battarbee, A.N.; Mele, L.; Landon, M.B.; Varner, M.W.; Casey, B.M.; Reddy, U.M.; Wapner, R.J.; Rouse, D.J.; Thorp, J.M.; Chien, E.K.; et al. Hypertensive Disorders of Pregnancy and Long-Term Maternal Cardiovascular and Metabolic Biomarkers. Am. J. Perinatol. 2024, 41, e1976–e1981. [Google Scholar] [CrossRef] [PubMed]
- Garovic, V.D.; Dechend, R.; Easterling, T.; Karumanchi, S.A.; McMurtry Baird, S.; Magee, L.A.; Rana, S.; Vermunt, J.V.; August, P.; American Heart Association Council on Hypertension; et al. Hypertension in Pregnancy: Diagnosis, Blood Pressure Goals, and Pharmacotherapy: A Scientific Statement From the American Heart Association. Hypertension 2022, 79, e21–e41. [Google Scholar] [CrossRef]
- Garovic, V.D.; White, W.M.; Vaughan, L.; Saiki, M.; Parashuram, S.; Garcia-Valencia, O.; Weissgerber, T.L.; Milic, N.; Weaver, A.; Mielke, M.M. Incidence and Long-Term Outcomes of Hypertensive Disorders of Pregnancy. J. Am. Coll. Cardiol. 2020, 75, 2323–2334. [Google Scholar] [CrossRef]
- Maffei, S.; Guiducci, L.; Cugusi, L.; Cadeddu, C.; Deidda, M.; Gallina, S.; Sciomer, S.; Gastaldelli, A.; Kaski, J.C.; Working Group on “Gender difference in cardiovascular disease” of the Italian Society of Cardiology. Women-specific predictors of cardiovascular disease risk—New paradigms. Int. J. Cardiol. 2019, 286, 190–197. [Google Scholar] [CrossRef]
- Svigkou, A.; Katsi, V.; Kordalis, V.G.; Tsioufis, K. The Molecular Basis of the Augmented Cardiovascular Risk in Offspring of Mothers with Hypertensive Disorders of Pregnancy. Int. J. Mol. Sci. 2024, 25, 5455. [Google Scholar] [CrossRef]
- Frazier, S.; McBride, M.W.; Mulvana, H.; Graham, D. From animal models to patients: The role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin. Sci. 2020, 134, 1001–1025. [Google Scholar] [CrossRef]
- Jena, M.K.; Sharma, N.R.; Petitt, M.; Maulik, D.; Nayak, N.R. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules 2020, 10, 953. [Google Scholar] [CrossRef]
- Sallais, J.; Park, C.; Alahari, S.; Porter, T.; Liu, R.; Kurt, M.; Farrell, A.; Post, M.; Caniggia, I. HIF1 inhibitor acriflavine rescues early-onset preeclampsia phenotype in mice lacking placental prolyl hydroxylase domain protein 2. JCI Insight 2022, 7, e158908. [Google Scholar] [CrossRef] [PubMed]
- Colson, A.; Depoix, C.L.; Baldin, P.; Hubinont, C.; Sonveaux, P.; Debiève, F. Hypoxia-inducible factor 2 alpha impairs human cytotrophoblast syncytialization: New insights into placental dysfunction and fetal growth restriction. FASEB J. 2020, 34, 15222–15235. [Google Scholar] [CrossRef]
- Banushi, B.; Collova, J.; Milroy, H. Epigenetic Echoes: Bridging Nature, Nurture, and Healing Across Generations. Int. J. Mol. Sci. 2025, 26, 3075. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Khanam, R.; Vinayachandran, V.; Baqui, A.H.; London, S.J.; Biswal, S. Epigenetic biomarkers and preterm birth. Environ. Epigenet 2020, 6, dvaa005. [Google Scholar] [CrossRef]
- Paquette, A.; Ahuna, K.; Hwang, Y.M.; Pearl, J.; Liao, H.; Shannon, P.; Kadam, L.; Lapehn, S.; Bucher, M.; Roper, R.; et al. A genome scale transcriptional regulatory model of the human placenta. Sci. Adv. 2024, 10, eadf3411. [Google Scholar] [CrossRef] [PubMed]
- Bhagirath, A.Y.; Medapati, M.R.; de Jesus, V.C.; Yadav, S.; Hinton, M.; Dakshinamurti, S.; Atukorallaya, D. Role of Maternal Infections and Inflammatory Responses on Craniofacial Development. Front. Oral Health 2021, 2, 735634. [Google Scholar] [CrossRef]
- Ahrens, S.; Singer, D. Placental Adaptation to Hypoxia: The Case of High-Altitude Pregnancies. Int. J. Environ. Res. Public Health 2025, 22, 214. [Google Scholar] [CrossRef]
- Kannampuzha, S.; Ravichandran, M.; Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; Iyer, M.; Dey, A.; George, A.; Gopalakrishnan, A.V. The mechanism of action of non-coding RNAs in placental disorders. Biomed. Pharmacother. 2022, 156, 113964. [Google Scholar] [CrossRef]
- Lopes, A.C.S.; Macedo, A.A.D.; Mendes, F.S.; Costa, I.M.; Dusse, L.M.S.; Alpoim, P.N. Changes in microRNA expression associated with preeclampsia: A systematic review. Braz J. Med. Biol. Res. 2025, 58, e13988. [Google Scholar] [CrossRef]
- Bakrania, B.A.; Spradley, F.T.; Drummond, H.A.; LaMarca, B.; Ryan, M.J.; Granger, J.P. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr. Physiol. 2020, 11, 1315–1349. [Google Scholar] [CrossRef]
- Hemberger, M.; Dean, W. The placenta: Epigenetic insights into trophoblast developmental models of a generation-bridging organ with long-lasting impact on lifelong health. Physiol. Rev. 2023, 103, 2523–2560. [Google Scholar] [CrossRef]
- Osman, H.C.; Moreno, R.; Rose, D.; Rowland, M.E.; Ciernia, A.V.; Ashwood, P. Impact of maternal immune activation and sex on placental and fetal brain cytokine and gene expression profiles in a preclinical model of neurodevelopmental disorders. J. Neuroinflammation 2024, 21, 118. [Google Scholar] [CrossRef] [PubMed]
- Banu, S.K.; Stanley, J.A.; Taylor, R.J.; Sivakumar, K.K.; Arosh, J.A.; Zeng, L.; Pennathur, S.; Padmanabhan, V. Sexually Dimorphic Impact of Chromium Accumulation on Human Placental Oxidative Stress and Apoptosis. Toxicol. Sci. 2018, 161, 375–387. [Google Scholar] [CrossRef]
- Enninga, E.A.L.; Nevala, W.K.; Creedon, D.J.; Markovic, S.N.; Holtan, S.G. Fetal Sex-Based Differences in Maternal Hormones, Angiogenic Factors, and Immune Mediators During Pregnancy and the Postpartum Period. Am. J. Reprod Immunol. 2015, 73, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Muralimanoharan, S.; Maloyan, A.; Mele, J.; Guo, C.; Myatt, L.G.; Myatt, L. MIR-210 modulates mitochondrial respiration in placenta with preeclampsia. Placenta 2012, 33, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Tsamou, M.; Vrijens, K.; Wang, C.; Winckelmans, E.; Neven, K.Y.; Madhloum, N.; de Kok, T.M.; Nawrot, T.S. Genome-wide microRNA expression analysis in human placenta reveals sex-specific patterns: An ENVIR ON AGE birth cohort study. Epigenetics 2021, 16, 373–388. [Google Scholar] [CrossRef]
- Barbitoff, Y.A.; Tsarev, A.A.; Vashukova, E.S.; Maksiutenko, E.M.; Kovalenko, L.V.; Belotserkovtseva, L.D.; Glotov, A.S. A Data-Driven Review of the Genetic Factors of Pregnancy Complications. Int. J. Mol. Sci. 2020, 21, 3384. [Google Scholar] [CrossRef]
- Zhuo, J.L. SH2B3 (LNK) as a novel link of immune signaling, inflammation, and hypertension in Dahl salt-sensitive hypertensive rats. Hypertension 2015, 65, 989–990. [Google Scholar] [CrossRef]
- Padmanabhan, S.; Caulfield, M.; Dominiczak, A.F. Genetic and molecular aspects of hypertension. Circ. Res. 2015, 116, 937–959. [Google Scholar] [CrossRef]
- Kivioja, A.; Toivonen, E.; Tyrmi, J.; Ruotsalainen, S.; Ripatti, S.; Huhtala, H.; Jaaskelainen, T.; Heinonen, S.; Kajantie, E.; Kere, J.; et al. Increased Risk of Preeclampsia in Women With a Genetic Predisposition to Elevated Blood Pressure. Hypertension 2022, 79, 2008–2015. [Google Scholar] [CrossRef]
- Jacobsen, D.P.; Fjeldstad, H.E.; Olsen, M.B.; Sugulle, M.; Staff, A.C. Microchimerism and pregnancy complications with placental dysfunction. Semin. Immunopathol. 2025, 47, 21. [Google Scholar] [CrossRef]
- Parchem, J.G.; Kanasaki, K.; Kanasaki, M.; Sugimoto, H.; Xie, L.; Hamano, Y.; Lee, S.B.; Gattone, V.H.; Parry, S.; Strauss, J.F.; et al. Loss of placental growth factor ameliorates maternal hypertension and preeclampsia in mice. J. Clin. Investig. 2018, 128, 5008–5017. [Google Scholar] [CrossRef]
- Takase, K.; Yamamoto, Y.; Yagami, T. Maternal deprivation in the middle of a stress hyporesponsive period decreases hippocampal calcineurin expression and causes abnormal social and cognitive behaviours in adult male Wistar rats: Relevance to negative symptoms of schizophrenia. Behav. Brain Res. 2012, 232, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Honigberg, M.C.; Truong, B.; Khan, R.R.; Xiao, B.; Bhatta, L.; Vy, H.M.T.; Guerrero, R.F.; Schuermans, A.; Selvaraj, M.S.; Patel, A.P.; et al. Polygenic prediction of preeclampsia and gestational hypertension. Nat. Med. 2023, 29, 1540–1549. [Google Scholar] [CrossRef] [PubMed]
- McElwain, C.J.; Tuboly, E.; McCarthy, F.P.; McCarthy, C.M. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front. Endocrinol. 2020, 11, 655. [Google Scholar] [CrossRef]
- Meng, H.; Huang, S.; Yang, Y.; He, X.; Fei, L.; Xing, Y. Association Between MTHFR Polymorphisms and the Risk of Essential Hypertension: An Updated Meta-analysis. Front. Genet. 2021, 12, 698590. [Google Scholar] [CrossRef] [PubMed]
- Nurkkala, J.; Kauko, A.; Laivuori, H.; Saarela, T.; Tyrmi, J.S.; Vaura, F.; Cheng, S.; Bello, N.A.; Aittokallio, J.; Niiranen, T. Associations of polygenic risk scores for preeclampsia and blood pressure with hypertensive disorders of pregnancy. J. Hypertens. 2023, 41, 380–387. [Google Scholar] [CrossRef]
- Aldisi, R.S.; Alsamman, A.M.; Krawitz, P.; Maj, C.; Zayed, H. Identification of novel proteomic biomarkers for hypertension: A targeted approach for precision medicine. Clin. Proteom. 2025, 22, 7. [Google Scholar] [CrossRef]
- Xue, B.; Johnson, A.K.; Bassuk, A.G. Sex differences in the sensitization of prenatally programmed hypertension. Front. Physiol. 2025, 16, 1589615. [Google Scholar] [CrossRef]
- Galea, L.A.M.; Qiu, W.; Duarte-Guterman, P. Beyond sex differences: Short and long-term implications of motherhood on women’s health. Curr. Opin. Physiol. 2018, 6, 82–88. [Google Scholar] [CrossRef]
- Maynard, S.E.; Venkatesha, S.; Thadhani, R.; Karumanchi, S.A. Soluble Fms-like tyrosine kinase 1 and endothelial dysfunction in the pathogenesis of preeclampsia. Pediatr. Res. 2005, 57, 1R–7R. [Google Scholar] [CrossRef] [PubMed]
- Bayefsky, M.J.; Berkman, B.E. Implementing Expanded Prenatal Genetic Testing: Should Parents Have Access to Any and All Fetal Genetic Information? Am. J. Bioeth. 2022, 22, 4–22. [Google Scholar] [CrossRef]
- Nurkkala, J.; Vaura, F.; Toivonen, J.; Niiranen, T. Genetics of hypertension-related sex differences and hypertensive disorders of pregnancy. Blood Press. 2024, 33, 2408574. [Google Scholar] [CrossRef]
- Miller, V.M.; Harman, S.M. An update on hormone therapy in postmenopausal women: Mini-review for the basic scientist. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H1013–H1021. [Google Scholar] [CrossRef] [PubMed]
- Romanescu, M.; Buda, V.; Lombrea, A.; Andor, M.; Ledeti, I.; Suciu, M.; Danciu, C.; Dehelean, C.A.; Dehelean, L. Sex-Related Differences in Pharmacological Response to CNS Drugs: A Narrative Review. J. Pers. Med. 2022, 12, 907. [Google Scholar] [CrossRef] [PubMed]
- Nwia, S.M.; Leite, A.P.O.; Li, X.C.; Zhuo, J.L. Sex differences in the renin-angiotensin-aldosterone system and its roles in hypertension, cardiovascular, and kidney diseases. Front. Cardiovasc. Med. 2023, 10, 1198090. [Google Scholar] [CrossRef]
- Zuccarello, D.; Sorrentino, U.; Brasson, V.; Marin, L.; Piccolo, C.; Capalbo, A.; Andrisani, A.; Cassina, M. Epigenetics of pregnancy: Looking beyond the DNA code. J. Assist. Reprod. Genet. 2022, 39, 801–816. [Google Scholar] [CrossRef]
- O’Kelly, A.C.; Michos, E.D.; Shufelt, C.L.; Vermunt, J.V.; Minissian, M.B.; Quesada, O.; Smith, G.N.; Rich-Edwards, J.W.; Garovic, V.D.; El Khoudary, S.R.; et al. Pregnancy and Reproductive Risk Factors for Cardiovascular Disease in Women. Circ. Res. 2022, 130, 652–672. [Google Scholar] [CrossRef]
- Dickerson, A.G.; Joseph, C.A.; Kashfi, K. Current Approaches and Innovations in Managing Preeclampsia: Highlighting Maternal Health Disparities. J. Clin. Med. 2025, 14, 1190. [Google Scholar] [CrossRef]
- Garcia, M.; Mulvagh, S.L.; Merz, C.N.; Buring, J.E.; Manson, J.E. Cardiovascular Disease in Women: Clinical Perspectives. Circ. Res. 2016, 118, 1273–1293. [Google Scholar] [CrossRef]
- Sigmund, C.D.; Carey, R.M.; Appel, L.J.; Arnett, D.K.; Bosworth, H.B.; Cushman, W.C.; Galis, Z.S.; Green Parker, M.; Hall, J.E.; Harrison, D.G.; et al. Report of the National Heart, Lung, and Blood Institute Working Group on Hypertension: Barriers to Translation. Hypertension 2020, 75, 902–917. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Guo, J.; Gu, Z.; Tang, W.; Tao, H.; You, S.; Jia, D.; Sun, Y.; Jia, P. Machine learning and multi-omics integration: Advancing cardiovascular translational research and clinical practice. J. Transl. Med. 2025, 23, 388. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z. Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis. Prog. Mol. Biol. Transl. Sci. 2022, 190, 101–125. [Google Scholar] [CrossRef]
- Wray, N.R.; Lin, T.; Austin, J.; McGrath, J.J.; Hickie, I.B.; Murray, G.K.; Visscher, P.M. From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer. JAMA Psychiatry 2021, 78, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Tekola-Ayele, F.; Biedrzycki, R.J.; Habtewold, T.D.; Wijesiriwardhana, P.; Burt, A.; Marsit, C.J.; Ouidir, M.; Wapner, R. Sex-differentiated placental methylation and gene expression regulation has implications for neonatal traits and adult diseases. Nat. Commun. 2025, 16, 4004. [Google Scholar] [CrossRef]
- Scarpa, F.; Casu, M. Genomics and Bioinformatics in One Health: Transdisciplinary Approaches for Health Promotion and Disease Prevention. Int. J. Environ. Res. Public Health 2024, 21, 1337. [Google Scholar] [CrossRef]
Study/Cohort | Population Size | Key Finding | Relative Risk of Hypertension |
---|---|---|---|
Nurses’ Health Study | >600,000 | PE linked to later HTN and CHD | ~3.0 |
HUNT Study (Norway) | ~15,000 | Gestational HTN associated with future HTN | ~2.4 |
UK Biobank | >100,000 | HDP predictive of stroke, MI, HTN | 2–4× increase |
CHAMPS Study (Canada) | ~20,000 | Risk persists up to 20 years postpartum | Sustained elevation |
Gene/Pathway | Function | Alteration in Hypertensive Pregnancy | Impact on Maternal Vasculature |
---|---|---|---|
FLT1 (sFlt-1) | Anti-angiogenic factor, VEGF inhibitor | Elevated | Endothelial dysfunction, hypertension |
ENG (sEng) | TGF-β antagonist, modulates vascular integrity | Elevated | Vascular stiffness, inflammation |
VEGFA, PGF | Pro-angiogenic factors | Downregulated | Impaired vascular remodeling |
HIF1A, HIF2A | Hypoxia response regulators | Upregulated in placental hypoxia | Poor trophoblast invasion, systemic vasoconstriction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moustakli, E.; Potiris, A.; Zikopoulos, A.; Mavrogianni, D.; Kathopoulis, N.; Drakaki, E.; Anagnostaki, I.; Tsakiridis, I.; Dagklis, T.; Skentou, C.; et al. Sex Differences in Hypertension Risk: Insights from Placental Genomics and Pregnancy-Driven Vascular Programming. Int. J. Mol. Sci. 2025, 26, 6034. https://doi.org/10.3390/ijms26136034
Moustakli E, Potiris A, Zikopoulos A, Mavrogianni D, Kathopoulis N, Drakaki E, Anagnostaki I, Tsakiridis I, Dagklis T, Skentou C, et al. Sex Differences in Hypertension Risk: Insights from Placental Genomics and Pregnancy-Driven Vascular Programming. International Journal of Molecular Sciences. 2025; 26(13):6034. https://doi.org/10.3390/ijms26136034
Chicago/Turabian StyleMoustakli, Efthalia, Anastasios Potiris, Athanasios Zikopoulos, Despoina Mavrogianni, Nikolaos Kathopoulis, Eirini Drakaki, Ismini Anagnostaki, Ioannis Tsakiridis, Themistoklis Dagklis, Charikleia Skentou, and et al. 2025. "Sex Differences in Hypertension Risk: Insights from Placental Genomics and Pregnancy-Driven Vascular Programming" International Journal of Molecular Sciences 26, no. 13: 6034. https://doi.org/10.3390/ijms26136034
APA StyleMoustakli, E., Potiris, A., Zikopoulos, A., Mavrogianni, D., Kathopoulis, N., Drakaki, E., Anagnostaki, I., Tsakiridis, I., Dagklis, T., Skentou, C., Drakakis, P., Christopoulos, P., & Stavros, S. (2025). Sex Differences in Hypertension Risk: Insights from Placental Genomics and Pregnancy-Driven Vascular Programming. International Journal of Molecular Sciences, 26(13), 6034. https://doi.org/10.3390/ijms26136034