Unraveling the Complex Cellular Repair Mechanisms Following Myocardial Infarction
Abstract
1. Introduction
2. Myocardial Infarction Pathology and Repair Mechanisms Across Different Ages
2.1. Neonatal Myocardial Infarction
2.2. Elderly Myocardial Infarction
2.3. Adult Myocardial Infarction
3. Various Cells in the Heart Participate in the Process of Post-Infarction Injury Repair
3.1. Non-Resident Cardiac Stem Cells
3.1.1. Mesenchymal Stem Cells
3.1.2. Bone Marrow Mononuclear Cells
3.1.3. Adipose-Derived Stem Cells
3.1.4. Exogenous Cardiac Stem Cells
3.2. Explant-Derived Cardiac Cells
3.2.1. Fibroblasts
3.2.2. Cardiomyocytes
3.2.3. Epicardial Cells
3.2.4. Immune Cells
3.2.5. Endothelial Cells
3.2.6. Smooth Muscle Cells
4. Addressing Immunological and Safety Challenges in Cell Therapy for Myocardial Infarction
5. Challenges and Prospects of Research on Cell Therapy Mechanisms
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADSCs | Adipose-derived stem cells |
BADSCs | Brown adipose tissue stem cells |
bFGF | Basic fibroblast growth factor |
ECs | Endothelial cells |
EDCs | Explant-derived cardiac cells |
EMT | Epithelial–mesenchymal transition |
EPCs | Endothelial progenitor cells |
Fbs | Fibroblasts |
FGF | Fibroblast growth factor |
hAESCs | Human amniotic epithelial stem cells |
HGF | Hepatocyte growth factor |
HSCs | Hematopoietic stem cells |
IGF-1 | Insulin-like growth factor-1 |
iPS-CMs | Induced pluripotent stem cells-derived cardiomyocytes |
IPSCs | Induced pluripotent stem cells |
KLF4 | Krüpple-like factor 4 |
LepR+ | Leptin receptor+ |
LPAR4 | Lysophosphatidic acid receptor 4 |
LVEF | Left ventricular ejection fraction |
LVFS | Left ventricular fractional shortening |
MI | Myocardial infarction |
MIF | Macrophage migration inhibitory factor |
miR-10α | MicroRNA-10α |
MMP-9 | Matrix metalloproteinase-9 |
MMPs | Matrix metalloproteinases |
MSCs | Mesenchymal stem cells |
MYOCD | Myocardin |
NADH | Nicotinamide adenine dinucleotide hydrate |
OSM | Oncostatin M |
p16INK4a | Cyclin-dependent kinase inhibitor 2A |
PCD | Programmed cell death |
PSCs | Pluripotent stem cells |
ROS | Reactive oxygen species |
SA-β-gal | Senescence-associated β-galactosidase |
SCF | Stem cell factor |
SDF-1 | Stromal cell-derived factor 1 |
SMCs | Smooth muscle cells |
SOX17 | SRY-box transcription factor 17 |
STEMI | ST-segment elevation myocardial infarction |
TIMPs | Tissue-inhibitory factors |
VEGF | Vascular endothelial growth factor |
ΔΨm | Mitochondrial membrane potential |
References
- Global Cardiovascular Risk Consortium. Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality. N. Engl. J. Med. 2023, 389, 1273–1285. [Google Scholar] [CrossRef]
- Kayikcioglu, M.; Ozkan, H.S.; Yagmur, B. Premature Myocardial Infarction: A Rising Threat. Balk. Med. J. 2022, 39, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Kunadian, V.; Mossop, H.; Shields, C.; Bardgett, M.; Watts, P.; Teare, M.D.; Pritchard, J.; Adams-Hall, J.; Runnett, C.; Ripley, D.P.; et al. Invasive Treatment Strategy for Older Patients with Myocardial Infarction. N. Engl. J. Med. 2024, 391, 1673–1684. [Google Scholar] [CrossRef]
- Lee, M.S.; Makkar, R.R. Stem-Cell Transplantation in Myocardial Infarction: A Status Report. Ann. Intern. Med. 2004, 140, 729–737. [Google Scholar] [CrossRef]
- Lee, H.; Cho, H.-J.; Han, Y.; Lee, S.H. Mid- to long-term efficacy and safety of stem cell therapy for acute myocardial infarction: A systematic review and meta-analysis. Stem Cell Res. Ther. 2024, 15, 290. [Google Scholar] [CrossRef] [PubMed]
- Simões, F.C.; Riley, P.R. Immune cells in cardiac repair and regeneration. Development 2022, 149, dev199906. [Google Scholar] [CrossRef] [PubMed]
- Rafatian, G.; Kamkar, M.; Parent, S.; Michie, C.; Risha, Y.; Molgat, A.S.D.; Seymour, R.; Suuronen, E.J.; Davis, D.R. Mybl2 rejuvenates heart explant-derived cells from aged donors after myocardial infarction. Aging Cell 2020, 19, e13174. [Google Scholar] [CrossRef]
- Tang, Q.-Z.; Ma, Z.-G.; Teng, T.; Zhang, X.; Hu, C. Cellular Senescence in Cardiovascular Diseases: A Systematic Review. Aging Dis. 2022, 13, 103–128. [Google Scholar] [CrossRef]
- Bochaton, T.; Leboube, S.; Paccalet, A.; Crola Da Silva, C.; Buisson, M.; Mewton, N.; Amaz, C.; Varillon, Y.; Bonnefoy-Cudraz, E.; Rioufol, G.; et al. Impact of Age on Systemic Inflammatory Profile of Patients With ST-Segment–Elevation Myocardial Infarction and Acute Ischemic Stroke. Stroke 2022, 53, 2249–2259. [Google Scholar] [CrossRef]
- Broughton, K.M.; Wang, B.J.; Firouzi, F.; Khalafalla, F.; Dimmeler, S.; Fernandez-Aviles, F.; Sussman, M.A. Mechanisms of Cardiac Repair and Regeneration. Circ. Res. 2018, 122, 1151–1163. [Google Scholar] [CrossRef]
- Cahill, T.J.; Choudhury, R.P.; Riley, P.R. Heart regeneration and repair after myocardial infarction: Translational opportunities for novel therapeutics. Nat. Rev. Drug Discov. 2017, 16, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Papneja, K.; Chan, A.K.; Mondal, T.K.; Paes, B. Myocardial Infarction in Neonates: A Review of an Entity with Significant Morbidity and Mortality. Pediatr. Cardiol. 2017, 38, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Tobin, S.W.; Alibhai, F.J.; Weisel, R.D.; Li, R.-K. Considering Cause and Effect of Immune Cell Aging on Cardiac Repair after Myocardial Infarction. Cells 2020, 9, 1894. [Google Scholar] [CrossRef]
- Yang, J.-X.; Pan, Y.-Y.; Wang, X.-X.; Qiu, Y.-G.; Mao, W. Endothelial progenitor cells in age-related vascular remodeling. Cell Transplant. 2018, 27, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Cushman, S.; Haubner, B.J.; Derda, A.A.; Thum, T.; Bär, C. Neonatal injury models: Integral tools to decipher the molecular basis of cardiac regeneration. Basic Res. Cardiol. 2022, 117, 26. [Google Scholar] [CrossRef]
- Wang, H.; Hironaka, C.E.; Mullis, D.M.; Lucian, H.J.; Shin, H.S.; Tran, N.A.; Thakore, A.D.; Anilkumar, S.; Wu, M.A.; Paulsen, M.J.; et al. A neonatal leporine model of age-dependent natural heart regeneration after myocardial infarction. J. Thorac. Cardiovasc. Surg. 2022, 164, e389–e405. [Google Scholar] [CrossRef]
- Wang, H.; Paulsen, M.J.; Hironaka, C.E.; Shin, H.S.; Farry, J.M.; Thakore, A.D.; Jung, J.; Lucian, H.J.; Eskandari, A.; Anilkumar, S.; et al. Natural Heart Regeneration in a Neonatal Rat Myocardial Infarction Model. Cells 2020, 9, 229. [Google Scholar] [CrossRef]
- Yan, F.; Liu, X.; Ding, H.; Zhang, W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022, 124, 151833. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Z.; Huang, H.; Mo, P.; Cheng, C.; Liu, J.; Huang, W.; Tian, C.; Zhang, C.; Li, J. miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4. Stem Cell Res. Ther. 2018, 9, 151. [Google Scholar] [CrossRef]
- Knight-Schrijver, V.R.; Davaapil, H.; Bayraktar, S.; Ross, A.D.B.; Kanemaru, K.; Cranley, J.; Dabrowska, M.; Patel, M.; Polanski, K.; He, X.; et al. A single-cell comparison of adult and fetal human epicardium defines the age-associated changes in epicardial activity. Nat. Cardiovasc. Res. 2022, 1, 1215–1229. [Google Scholar] [CrossRef] [PubMed]
- Dolejsi, T.; Delgobo, M.; Schuetz, T.; Tortola, L.; Heinze, K.G.; Hofmann, U.; Frantz, S.; Bauer, A.; Ruschitzka, F.; Penninger, J.M.; et al. Adult T-cells impair neonatal cardiac regeneration. Eur. Heart J. 2022, 43, 2698–2709. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Duan, X.; Wang, B.; Liu, X.; Zhan, Z. Murine neonatal cardiac B cells promote cardiomyocyte proliferation and heart regeneration. NPJ Regen. Med. 2023, 8, 7. [Google Scholar] [CrossRef]
- Fonseca, F.A.; Izar, M.C. Role of Inflammation in Cardiac Remodeling After Acute Myocardial Infarction. Front. Physiol. 2022, 13, 927163. [Google Scholar] [CrossRef] [PubMed]
- Shih, H.; Lee, B.; Lee, R.J.; Boyle, A.J. The Aging Heart and Post-Infarction Left Ventricular Remodeling. J. Am. Coll. Cardiol. 2011, 57, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, Q.; Zhou, Y.; Xu, C.; Xiang, J.; Fang, H.; Yang, Z.; Dong, M. Aging Attenuates Cardiac Contractility and Affects Therapeutic Consequences for Myocardial Infarction. Aging Dis. 2020, 11, 365–376. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, W.; He, H.; Fan, B.; Deng, R.; Hong, Y.; Liang, X.; Zhao, H.; Li, X.; Zhang, F. Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging 2019, 11, 12641–12660. [Google Scholar] [CrossRef]
- Kaiser, J. Suspect science leads to pause in stem cell trial. Science 2018, 362, 513. [Google Scholar] [CrossRef]
- Franco, D.; Moreno, N.; Ruiz-Lozano, P. Non-resident stem cell populations in regenerative cardiac medicine. Cell Mol. Life Sci. 2007, 64, 683–691. [Google Scholar] [CrossRef]
- Yin, X.; Lin, L.; Fang, F.; Zhang, B.; Shen, C.; Arnhold, S. Mechanisms and Optimization Strategies of Paracrine Exosomes from Mesenchymal Stem Cells in Ischemic Heart Disease. Stem Cells Int. 2023, 2023, 6500831. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, W.; Jiang, X.; Liu, Y. Mesenchymal stem cell-derived exosomes in cardiovascular and cerebrovascular diseases: From mechanisms to therapy. Biomed. Pharmacother. 2023, 163, 114817. [Google Scholar] [CrossRef]
- Hosseinpour, A.; Kheshti, F.; Kazemi, A.; Attar, A. Comparing the effect of bone marrow mono-nuclear cells with mesenchymal stem cells after acute myocardial infarction on improvement of left ventricular function: A meta-analysis of clinical trials. Stem Cell Res. Ther. 2022, 13, 203. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, L.-C.; Lin, Y.-N.; Shyu, W.-C.; Ho, M.; Lu, C.-R.; Chang, S.-S.; Wang, Y.-C.; Chen, J.-Y.; Lu, S.-Y.; Wu, M.-Y.; et al. First-in-human pilot trial of combined intracoronary and intravenous mesenchymal stem cell therapy in acute myocardial infarction. Front. Cardiovasc. Med. 2022, 9, 961920. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, Y.; Sun, H.; Yang, L. Mechanism of mesenchymal stem cells and exosomes in the treatment of age-related diseases. Front. Immunol. 2023, 14, 1181308. [Google Scholar] [CrossRef]
- Clavellina, D.; Balkan, W.; Hare, J.M. Stem cell therapy for acute myocardial infarction: Mesenchymal Stem Cells and induced Pluripotent Stem Cells. Expert Opin. Biol. Ther. 2023, 23, 951–967. [Google Scholar] [CrossRef] [PubMed]
- Barilani, M.; Lovejoy, C.; Piras, R.; Abramov, A.Y.; Lazzari, L.; Angelova, P.R. Age-related changes in the energy of human mesenchymal stem cells. J. Cell Physiol. 2022, 237, 1753–1767. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Yuan, W.; Moshaverinia, A.; Yu, B. Rejuvenation of Mesenchymal Stem Cells to Ameliorate Skeletal Aging. Cells 2023, 12, 998. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, Q.; Zhang, J.; Sun, L.; Hong, X.; Du, W.; Duan, R.; Jiang, J.; Ji, Y.; Wang, H.; et al. Exosomes derived from mir-214-3p overexpressing mesenchymal stem cells promote myocardial repair. Biomater. Res. 2023, 27, 77. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, L.; Tang, Q.; Yi, J.; Yu, X.; Cao, Y.; Jiang, L.; Liu, J. Myocardial infarction in rats was alleviated by MSCs derived from the maternal segment of the human umbilical cord. Front. Cell Dev. Biol. 2024, 12, 1469541. [Google Scholar] [CrossRef]
- Hong, Y.; He, H.; Jiang, G.; Zhang, H.; Tao, W.; Ding, Y.; Yuan, D.; Liu, J.; Fan, H.; Lin, F.; et al. miR-155-5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell 2020, 19, e13128. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liang, X.; Liu, B.; Hong, Y.; He, H.; Shen, Y.; Chen, J.; Huang, X.; Hu, B.; Li, W.; et al. Downregulation of ALKBH5 rejuvenates aged human mesenchymal stem cells and enhances their therapeutic efficacy in myocardial infarction. FASEB J. 2023, 37, e23294. [Google Scholar] [CrossRef]
- Thavapalachandran, S.; Le, T.Y.L.; Romanazzo, S.; Rashid, F.N.; Ogawa, M.; Kilian, K.A.; Brown, P.; Pouliopoulos, J.; Barry, A.M.; Fahmy, P.; et al. Pluripotent stem cell-derived mesenchymal stromal cells improve cardiac function and vascularity after myocardial infarction. Cytotherapy 2021, 23, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Attar, A.; Hosseinpour, A.; Hosseinpour, H.; Kazemi, A. Major cardiovascular events after bone marrow mononuclear cell transplantation following acute myocardial infarction: An updated post-BAMI meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 2022, 22, 259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yu, J.; Zhang, N.; Li, W.; Wang, J.; Cai, G.; Chen, Y.; Yang, Y.; Liu, Z. Bone marrow mesenchymal stem cells transfer in patients with ST-segment elevation myocardial infarction: Single-blind, multicenter, randomized controlled trial. Stem Cell Res. Ther. 2021, 12, 33. [Google Scholar] [CrossRef]
- Comazzetto, S.; Shen, B.; Morrison, S.J. Niches that regulate stem cells and hematopoiesis in adult bone marrow. Dev. Cell 2021, 56, 1848–1860. [Google Scholar] [CrossRef]
- Marinković, G.; Koenis, D.S.; de Camp, L.; Jablonowski, R.; Graber, N.; de Waard, V.; de Vries, C.J.; Goncalves, I.; Nilsson, J.; Jovinge, S.; et al. S100A9 Links Inflammation and Repair in Myocardial Infarction. Circ. Res. 2020, 127, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Sano, S.; Sano, T.; Ishigami, S.; Ito, T. Cardiac stem cell therapy: Does a newborn infant’s heart have infinite potential for stem cell therapy? J. Thorac. Cardiovasc. Surg. 2022, 163, 242–247. [Google Scholar] [CrossRef]
- Mitroulis, I.; Hajishengallis, G.; Chavakis, T. Bone marrow inflammatory memory in cardiometabolic disease and inflammatory comorbidities. Cardiovasc. Res. 2023, 119, 2801–2812. [Google Scholar] [CrossRef]
- Bonora, B.M.; Palano, M.T.; Testa, G.; Fadini, G.P.; Sangalli, E.; Madotto, F.; Persico, G.; Casciaro, F.; Vono, R.; Colpani, O.; et al. Hematopoietic progenitor cell liabilities and alarmins S100A8/A9-related inflammaging associate with frailty and predict poor cardiovascular outcomes in older adults. Aging Cell 2022, 21, e13545. [Google Scholar] [CrossRef] [PubMed]
- Heinisch, P.P.; Bello, C.; Emmert, M.Y.; Carrel, T.; Dreßen, M.; Hörer, J.; Winkler, B.; Luedi, M.M. Endothelial Progenitor Cells as Biomarkers of Cardiovascular Pathologies: A Narrative Review. Cells 2022, 11, 1678. [Google Scholar] [CrossRef]
- Li, J.-H.; Li, Y.; Huang, D.; Yao, M. Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair and Regeneration. Tissue Eng. Regener. Med. 2021, 18, 747–758. [Google Scholar] [CrossRef]
- Dight, J.; Zhao, J.; Styke, C.; Khosrotehrani, K.; Patel, J. Resident vascular endothelial progenitor definition and function: The age of reckoning. Angiogenesis 2021, 25, 15–33. [Google Scholar] [CrossRef]
- Weiss, E.; Leopold-Posch, B.; Schrüfer, A.; Cvitic, S.; Hiden, U. Fetal sex and maternal fasting glucose affect neonatal cord blood-derived endothelial progenitor cells. Pediatr. Res. 2022, 92, 1590–1597. [Google Scholar] [CrossRef]
- Kashiyama, N.; Kormos, R.L.; Matsumura, Y.; D’Amore, A.; Miyagawa, S.; Sawa, Y.; Wagner, W.R. Adipose-derived stem cell sheet under an elastic patch improves cardiac function in rats after myocardial infarction. J. Thorac. Cardiovasc. Surg. 2022, 163, e261–e272. [Google Scholar] [CrossRef]
- Ma, T.; Sun, J.; Zhao, Z.; Lei, W.; Chen, Y.; Wang, X.; Yang, J.; Shen, Z. A brief review: Adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res. Ther. 2017, 8, 124. [Google Scholar] [CrossRef]
- Xu, Z.; Li, H.; Cao, G.; Li, P.; Zhou, H.; Sun, Y. The protective role of brown adipose tissue in cardiac cell damage after myocardial infarction and heart failure. Lipids Health Dis. 2024, 23, 338. [Google Scholar] [CrossRef]
- Damianos, A.; Xu, K.; Kalin, G.T.; Kalinichenko, V.V. Placental tissue stem cells and their role in neonatal diseases. Semin. Fetal Neonatal Med. 2022, 27, 101322. [Google Scholar] [CrossRef]
- Li, H.; Gu, J.; Sun, X.; Zuo, Q.; Li, B.; Gu, X. Isolation of Swine Bone Marrow Lin-/CD45-/CD133 + Cells and Cardio-protective Effects of its Exosomes. Stem Cell Rev. Rep. 2023, 19, 213–229. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Mei, T.; Cao, H.; Hu, Y.; Jia, W.; Wang, J.; Zhang, Z.; Wang, Z.; Le, W.; et al. hESCs-Derived Early Vascular Cell Spheroids for Cardiac Tissue Vascular Engineering and Myocardial Infarction Treatment. Adv. Sci. 2022, 9, e2104299. [Google Scholar] [CrossRef]
- Lee, J.-W.; Lee, C.-S.; Son, H.; Lee, J.; Kang, M.; Chai, J.; Cho, H.-J.; Kim, H.-S. SOX17-mediated LPAR4 expression plays a pivotal role in cardiac development and regeneration after myocardial infarction. Exp. Mol. Med. 2023, 55, 1424–1436. [Google Scholar] [CrossRef]
- Karbassi, E.; Yoo, D.; Martinson, A.M.; Yang, X.; Reinecke, H.; Regnier, M.; Murry, C.E. Noncontractile Stem Cell-Cardiomyocytes Preserve Post-Infarction Heart Function. Circ. Res. 2024, 135, 967–969. [Google Scholar] [CrossRef]
- Sano, T.; Ito, T.; Ishigami, S.; Bandaru, S.; Sano, S. Intrinsic activation of cardiosphere-derived cells enhances myocardial repair. J. Thorac. Cardiovasc. Surg. 2022, 163, 1479–1490.e5. [Google Scholar] [CrossRef]
- Jiang, L.; Liang, J.; Huang, W.; Ma, J.; Park, K.H.; Wu, Z.; Chen, P.; Zhu, H.; Ma, J.-J.; Cai, W.; et al. CRISPR activation of endogenous genes reprograms fibroblasts into cardiovascular progenitor cells for myocardial infarction therapy. Mol. Ther. 2022, 30, 54–74. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Yan, B.; Witman, N.; Gong, Y.; Yang, L.; Tan, Y.; Chen, Y.; Liu, M.; Lu, T.; Luo, R.; et al. Transient secretion of VEGF protein from transplanted hiPSC-CMs enhances engraftment and improves rat heart function post MI. Mol. Ther. 2023, 31, 211–229. [Google Scholar] [CrossRef]
- Pacinella, G.; Ciaccio, A.M.; Tuttolomondo, A. Endothelial Dysfunction and Chronic Inflammation: The Cornerstones of Vascular Alterations in Age-Related Diseases. Int. J. Mol. Sci. 2022, 23, 15722. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, H.; Hanna, A.; Humeres, C.; Frangogiannis, N.G. Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022, 11, 1386. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Shen, Y.; Ren, C.; Kobayashi, S.; Asahara, T.; Yang, J. Inflammation in myocardial infarction: Roles of mesenchymal stem cells and their secretome. Cell Death Discov. 2022, 8, 452. [Google Scholar] [CrossRef]
- Miao, C.; Lei, M.; Hu, W.; Han, S.; Wang, Q. A brief review: The therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res. Ther. 2017, 8, 242. [Google Scholar] [CrossRef]
- Yamada, Y.; Minatoguchi, S.; Kanamori, H.; Mikami, A.; Okura, H.; Dezawa, M.; Minatoguchi, S. Stem cell therapy for acute myocardial infarction—Focusing on the comparison between Muse cells and mesenchymal stem cells. J. Cardiol. 2022, 80, 80–87. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Qu, X.; Liu, Y.; Harada, A.; Hua, Y.; Yoshida, N.; Ishida, M.; Tabata, A.; Sun, L.; et al. Development of a thick and functional human adipose-derived stem cell tissue sheet for myocardial infarction repair in rat hearts. Stem Cell Res. Ther. 2023, 14, 380. [Google Scholar] [CrossRef]
- Yang, S.; Sun, Y.; Yan, C. Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J. Nanobiotechnol. 2024, 22, 316. [Google Scholar] [CrossRef]
- Yuka, S.A.; Aslan, A. Current Approaches in Cardiac Repair: Somatic and Stem Cell Exosomes. Curr. Treat. Options Cardiovasc. Med. 2023, 25, 689–714. [Google Scholar] [CrossRef]
- Yanagawa, B.; Rao, V.; Yau, T.M.; Cusimano, R.J. Potential myocardial regeneration with CorMatrix ECM: A case report. J. Thorac. Cardiovasc. Surg. 2014, 147, e41–e43. [Google Scholar] [CrossRef]
- Vasquez, C.; Mohandas, P.; Louie, K.L.; Benamer, N.; Bapat, A.C.; Morley, G.E. Enhanced Fibroblast–Myocyte Interactions in Response to Cardiac Injury. Circ. Res. 2010, 107, 1011–1020. [Google Scholar] [CrossRef]
- Talman, V.; Ruskoaho, H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 2016, 365, 563–581. [Google Scholar] [CrossRef] [PubMed]
- van den Borne, S.W.M.; Diez, J.; Blankesteijn, W.M.; Verjans, J.; Hofstra, L.; Narula, J. Myocardial remodeling after infarction: The role of myofibroblasts. Nat. Rev. Cardiol. 2010, 7, 30–37. [Google Scholar] [CrossRef]
- Wang, Q.; Spurlock, B.; Liu, J.; Qian, L. Fibroblast Reprogramming in Cardiac Repair. JACC Basic Transl. Sci. 2023, 9, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Karhu, S.T.; Ruskoaho, H.; Talman, V. Distinct Regulation of Cardiac Fibroblast Proliferation and Transdifferentiation by Classical and Novel Protein Kinase C Isoforms: Possible Implications for New Antifibrotic Therapies. Mol. Pharmacol. 2021, 99, 104–113. [Google Scholar] [CrossRef]
- Duan, J.; Gherghe, C.; Liu, D.; Hamlett, E.; Srikantha, L.; Rodgers, L.; Regan, J.N.; Rojas, M.; Willis, M.; Leask, A.; et al. Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J. 2012, 31, 429–442. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, J.; Bishop, S.P.; Sadek, H.; Zhang, J. Turning back the clock: A concise viewpoint of cardiomyocyte cell cycle activation for myocardial regeneration and repair. J. Mol. Cell. Cardiol. 2022, 170, 15–21. [Google Scholar] [CrossRef]
- Luo, Z.-r.; Meng, W.-t.; Li, H.; Wang, Y.; Wang, Y.-c.; Zhao, Y.; Lu, P.-p.; Yuan, Y.; Huang, W.; Guo, H.-d. Transplantation of induced pluripotent stem cells-derived cardiomyocytes combined with modified Taohong Siwu decoction improved heart repair after myocardial infarction. Heliyon 2024, 10, e26700. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, Z.; Dong, M. Cardiac repair in a murine model of myocardial infarction with human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res. Ther. 2020, 11, 297. [Google Scholar] [CrossRef]
- Lodrini, A.M.; Goumans, M.-J. Cardiomyocytes Cellular Phenotypes After Myocardial Infarction. Front. Cardiovasc. Med. 2021, 8, 750510. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.; Chen, C.; Qu, S.; Cao, N.; Luo, H.; Yu, C.; Wang, N.; Xue, Y.; Xia, X.; Fan, C.; et al. Inhibition of DYRK1A, via histone modification, promotes cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction. EBioMedicine 2022, 82, 104139. [Google Scholar] [CrossRef]
- Ye, G.; Wen, Z.; Wen, F.; Song, X.; Wang, L.; Li, C.; He, Y.; Prakash, S.; Qiu, X. Mussel-inspired conductive Ti2C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction. Theranostics 2020, 10, 2047–2066. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Xiao, M.; Xu, Y.; Wu, Y.; Yang, J.; Wang, Y.; Hu, Y.; Jiang, Z.; Li, X.; Shen, Z.; et al. Injectable MXene conductive hydrogel improves myocardial infarction through scavenging ROS and repairing myocardium electrical integrity. Chem. Eng. J. 2024, 481, 148791. [Google Scholar] [CrossRef]
- Ghosh, M.; Khanam, R.; Sengupta, A.; Chakraborty, S. Oxidative-stress induced Bmp2-Smad1/5/8 signaling dependent differentiation of early cardiomyocytes from embryonic and adult epicardial cells. Differentiation 2024, 136, 100756. [Google Scholar] [CrossRef]
- Wang, R.; Lu, D.; Song, R.; Du, L.; Yang, X.; Wu, S.-t.; Wang, X.; Wong, J.; Xu, Z.; Zhao, Q.; et al. Epicardial CCM2 Promotes Cardiac Development and Repair Via its Regulation on Cytoskeletal Reorganization. JACC Basic Transl. Sci. 2023, 9, 203–219. [Google Scholar] [CrossRef]
- Li, J.; Yao, Y.; Zhou, J.; Yang, Z.; Qiu, C.; Lu, Y.; Xie, J.; Liu, J.; Jiang, T.; Kou, Y.; et al. Epicardial transplantation of antioxidant polyurethane scaffold based human amniotic epithelial stem cell patch for myocardial infarction treatment. Nat. Commun. 2024, 15, 9105. [Google Scholar] [CrossRef]
- You, Y.; Kobayashi, K.; Colak, B.; Luo, P.; Cozens, E.; Fields, L.; Suzuki, K.; Gautrot, J. Engineered cell-degradable poly(2-alkyl-2-oxazoline) hydrogel for epicardial placement of mesenchymal stem cells for myocardial repair. Biomaterials 2021, 269, 120356. [Google Scholar] [CrossRef]
- Aurora, A.B.; Porrello, E.R.; Tan, W.; Mahmoud, A.I.; Hill, J.A.; Bassel-Duby, R.; Sadek, H.A.; Olson, E.N. Macrophages are required for neonatal heart regeneration. J. Clin. Investig. 2014, 124, 1382–1392. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, S.; Liu, F.; Xia, L.; Wang, C.; Sandoghchian Shotorbani, S.; Xu, H.; Chakrabarti, S.; Peng, T.; Su, Z. Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1-Notch1. Acta Pharm. Sin. B 2023, 13, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, J.; Song, S.; Li, H.; Yang, H.; Zhou, B.; Li, Y.; Yue, Z.; Lian, H.; Liu, L.; et al. gp130 Controls Cardiomyocyte Proliferation and Heart Regeneration. Circulation 2020, 142, 967–982. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, H.; Pei, J.; Hu, S.; Nie, Y. Transplantation of murine neonatal cardiac macrophage improves adult cardiac repair. Cell. Mol. Immunol. 2021, 18, 492–494. [Google Scholar] [CrossRef]
- Méndez-Barbero, N.; Gutiérrez-Muñoz, C.; Blanco-Colio, L.M. Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int. J. Mol. Sci. 2021, 22, 7284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, L.; Wang, S.; Cheng, H.; Xu, L.; Pei, G.; Wang, Y.; Fu, C.; Jiang, Y.; He, C.; et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct. Target. Ther. 2022, 7, 78. [Google Scholar] [CrossRef]
- Singhal, A.K.; Symons, J.D.; Boudina, S.; Jaishy, B.; Shiu, Y.T. Role of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury. Vasc. Dis. Prev. 2010, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Baccouche, B.M.; Elde, S.; Wang, H.; Woo, Y.J. Structural, angiogenic, and immune responses influencing myocardial regeneration: A glimpse into the crucible. Npj Regener. Med. 2024, 9, 18. [Google Scholar] [CrossRef]
- Long, H.; Steimle, J.D.; Grisanti Canozo, F.J.; Kim, J.H.; Li, X.; Morikawa, Y.; Park, M.; Turaga, D.; Adachi, I.; Wythe, J.D.; et al. Endothelial cells adopt a pro-reparative immune responsive signature during cardiac injury. Life Sci. Alliance 2023, 7, e202201870. [Google Scholar] [CrossRef]
- Basu, C.; Cannon, P.L.; Awgulewitsch, C.P.; Galindo, C.L.; Gamazon, E.R.; Hatzopoulos, A.K. Transcriptome analysis of cardiac endothelial cells after myocardial infarction reveals temporal changes and long-term deficits. Sci. Rep. 2024, 14, 9991. [Google Scholar] [CrossRef]
- Wu, M.; Huang, Z.; Zeng, L.; Wang, C.; Wang, D. Programmed Cell Death of Endothelial Cells in Myocardial Infarction and Its Potential Therapeutic Strategy. Cardiol. Res. Pract. 2022, 2022, 6558060. [Google Scholar] [CrossRef]
- Harada, S.; Nakamura, Y.; Shiraya, S.; Fujiwara, Y.; Kishimoto, Y.; Onohara, T.; Otsuki, Y.; Kishimoto, S.; Yamamoto, Y.; Hisatome, I.; et al. Smooth muscle cell sheet transplantation preserve cardiac function and minimize cardiac remodeling in a rat myocardial infarction model. J. Cardiothorac. Surg. 2016, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Virag, J.I.; Murry, C.E. Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am. J. Pathol. 2003, 163, 2433–2440. [Google Scholar] [CrossRef]
- Wen, Z.; Zheng, S.; Zhou, C.; Yuan, W.; Wang, J.; Wang, T. Bone marrow mesenchymal stem cells for post-myocardial infarction cardiac repair: microRNAs as novel regulators. J. Cell. Mol. Med. 2012, 16, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Mekala, S.R.; Wörsdörfer, P.; Bauer, J.; Stoll, O.; Wagner, N.; Reeh, L.; Loew, K.; Eckner, G.; Kwok, C.K.; Wischmeyer, E.; et al. Generation of Cardiomyocytes From Vascular Adventitia-Resident Stem Cells. Circ. Res. 2018, 123, 686–699. [Google Scholar] [CrossRef] [PubMed]
- Dou, D.; Lu, J.; Dou, J.; Huo, Y.; Gong, X.; Zhang, X.; Chen, X. Global regulatory considerations and practices for tumorigenicity evaluation of cell-based therapy. Regul. Toxicol. Pharmacol. 2025, 156, 105769. [Google Scholar] [CrossRef]
- Blanco, J.F.; García-Briñon, J.; Benito-Garzón, L.; Pescador, D.; Muntión, S.; Sánchez-Guijo, F. Human Bone Marrow Mesenchymal Stromal Cells Promote Bone Regeneration in a Xenogeneic Rabbit Model: A Preclinical Study. Stem Cells Int. 2018, 2018, 7089484. [Google Scholar] [CrossRef] [PubMed]
- Ai, K.; Liu, B.; Chen, X.; Huang, C.; Yang, L.; Zhang, W.; Weng, J.; Du, X.; Wu, K.; Lai, P. Optimizing CAR-T cell therapy for solid tumors: Current challenges and potential strategies. J. Hematol. Oncol. 2024, 17, 105. [Google Scholar] [CrossRef] [PubMed]
- Jadlowsky, J.K.; Hexner, E.O.; Marshall, A.; Grupp, S.A.; Frey, N.V.; Riley, J.L.; Veloso, E.; McConville, H.; Rogal, W.; Czuczman, C.; et al. Long-term safety of lentiviral or gammaretroviral gene-modified T cell therapies. Nat. Med. 2025, 31, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Summary of Functions | References |
---|---|---|
Mesenchymal Stem Cells | 1. Proliferate and differentiate into cardiomyocytes and ECs to assist angiogenesis and protect cardiomyocytes | [29,33,34] |
2. Secrete exosomes containing miR-214 to promote neovascularization | [37] | |
3. Overexpress GATA4 and MYOCD to reduce cardiomyocyte apoptosis | [38] | |
Bone Marrow Mononuclear Cells | 1. Differentiate into immune cells and ECs | [45] |
2. Secrete angiogenic factors in a paracrine manner | [46,47,48] | |
3. Immunosuppression: reduce T cell proliferation and inflammatory response | [49,50,51] | |
Adipose-Derived Stem Cells | 1. Directly differentiate into cardiomyocytes, vascular SMCs and ECs to restore cardiac function after MI | [53,54] |
2. Secrete a variety of cytokines (such as VEGF, HGF, IGF-1) to promote angiogenesis, reduce apoptosis and inhibit fibrosis | ||
Exogenous Cardiac Stem Cells | 1. Secrete anti-inflammatory factors and promote angiogenesis | [56] |
2. Regulate the biological behavior of cardiomyocytes and fibroblasts, inhibit the process of fibrosis, and promote myocardial repair | [57] | |
3. Directly differentiate into other cells and participate in the process of inflammation repair | [57] | |
Fibroblasts | 1. Transform into myofibroblasts to form fibrotic scars | [75] |
2. Regulate electrophysiological properties and intercellular signaling | [73] | |
3. Secrete cytokines | [74] | |
Cardiomyocytes | 1. Proliferate to promote myocardial regeneration | [79] |
2. Secrete cytokines in a paracrine manner | [80] | |
3. Regulate the cell cycle | [79] | |
Epicardial Cells | 1. Differentiate into cardiovascular cells | [86] |
2. Secrete cytokines and chemokines | [88] | |
3. Regulate inflammatory responses and promote angiogenesis | [86] | |
Immune Cells | 1. Secrete OSM and activate the Jagged-1-Notch1 signaling pathway to promote cardiomyocyte proliferation and scar-free regeneration 2. Participate in the inflammatory response and scarring 3. Modulate its phenotype and function to improve repair | [90,91] |
Endothelial Cells | 1. Migrate and proliferate to promote vascular regeneration | [95] |
2. Secrete cytokines and chemokines to regulate inflammation | [96] | |
3. Participate in ECM remodeling and immune microenvironment regulation | [97] | |
Smooth Muscle Cells | 1. Participate in the synthesis and remodeling of the extracellular matrix | [101,102,103] |
2. Exhibit anti-apoptotic properties | [103] | |
3. Provide mechanical support | [101] | |
4. Regulate inflammatory responses and immune cell recruitment | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Fu, Y.; Hu, L.; Chen, Y.; Li, P. Unraveling the Complex Cellular Repair Mechanisms Following Myocardial Infarction. Int. J. Mol. Sci. 2025, 26, 6002. https://doi.org/10.3390/ijms26136002
Chen R, Fu Y, Hu L, Chen Y, Li P. Unraveling the Complex Cellular Repair Mechanisms Following Myocardial Infarction. International Journal of Molecular Sciences. 2025; 26(13):6002. https://doi.org/10.3390/ijms26136002
Chicago/Turabian StyleChen, Ruiling, Yalin Fu, Ling Hu, Yuqing Chen, and Pengyun Li. 2025. "Unraveling the Complex Cellular Repair Mechanisms Following Myocardial Infarction" International Journal of Molecular Sciences 26, no. 13: 6002. https://doi.org/10.3390/ijms26136002
APA StyleChen, R., Fu, Y., Hu, L., Chen, Y., & Li, P. (2025). Unraveling the Complex Cellular Repair Mechanisms Following Myocardial Infarction. International Journal of Molecular Sciences, 26(13), 6002. https://doi.org/10.3390/ijms26136002