Inhaled Allergy Diagnostics and Treatment in a Polluted Environment
Abstract
1. Introduction
2. Changes in Pollen Phenomenology
3. AIT as a Causal Method of Treatment
4. Diagnostic Methods Used in Qualification for AIT
5. Approaches to Improving Diagnostics and Treatment Assessment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Allergic rhinitis |
AIT | Allergen immunotherapy |
CRD | Component resolved diagnostics |
DEPs | Diesel exhaust particles |
NARES | Non-allergic eosinophilic rhinitis |
BAT | Basophil activation test |
NAR | Nonallergic rhinitis |
ELISA-FAB | Enzyme-linked immunosorbent-facilitated antigen binding assay |
PM | Particulate matter |
References
- Pawankar, R.; Canonica, G.W.; Holgate, S.; Lockey, R.; Blaiss, M. (Eds.) WAO White Book on Allergy: 2013 Update; World Allergy Organization: Milwaukee, MI, USA, 2013. [Google Scholar]
- Sedghy, F.; Varasteh, A.R.; Sankian, M.; Moghadam, M. Interaction Between Air Pollutants and Pollen Grains: The Role on the Rising Trend in Allergy. Rep Biochem. Mol. Biol. 2018, 6, 219–224. [Google Scholar] [PubMed] [PubMed Central]
- Damialis, A.; Traidl-Hoffmann, C.; Treudler, R. Climate Change and Pollen Allergies. In Biodiversity and Health in the Face of Climate Change; Marselle, M., Stadler, J., Korn, H., Irvine, K., Bonn, A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Sayeau, K.; Ellis, A.K. Air Pollution and Allergic Rhinitis: Role in Symptom Exacerbation and Strategies for Management. J. Asthma Allergy 2020, 13, 285–292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bousquet, J. Allergic rhinitis. Nat. Rev. Dis. Primers 2020, 6, 96. [Google Scholar] [CrossRef]
- Zuberbier, T.; Lötvall, J.; Simoens, S.; Subramanian, S.V.; Church, M.K. Economic burden of inadequate management of allergic diseases in the European Union: A GA2LEN review. Allergy 2014, 69, 1275–1279. [Google Scholar] [CrossRef]
- Burte, E.; Leynaert, B.; Marcon, A.; Bousquet, J.; Benmerad, M.; Bono, R.; Carsin, A.E.; de Hoogh, K.; Forsberg, B.; Gormand, F.; et al. Long-term air pollution exposure is associated with increased severity of rhinitis in 2 European cohorts. J. Allergy Clin. Immunol. 2020, 145, 834–842.e6. [Google Scholar] [CrossRef] [PubMed]
- Annesi-Maesano, I.; Rouve, S.; Desqueyroux, H.; Jankovski, R.; Klossek, J.M.; Thibaudon, M.; Demoly, P.; Didier, A. Grass pollen counts, air pollution levels and allergic rhinitis severity. Int. Arch. Allergy Immunol. 2012, 158, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.; Inoue, K.I. Environmental pollution and allergies. J. Toxicol. Pathol. 2017, 30, 193–199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, W.; Peden, D.B.; McConnell, R.; Fruin, S.; Diaz-Sanchez, D. Glutathione-S-transferase M1 regulation of diesel exhaust particle-induced pro-inflammatory mediator expression in normal human bronchial epithelial cells. Part. Fibre Toxicol. 2012, 9, 31. [Google Scholar] [CrossRef]
- Hu, J.; Yu, Y. Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: A critical review. Chemosphere 2019, 226, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, S.; Dinda, S.K.; Hazra, S.; Mukhopadhyay, R.; Samanta, S.; Dey, S.; Manna, D. Confronting allergies: Strategies for combating pollution and safeguarding our health. Front. Allergy 2025, 5, 1521072. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nittner-Marszalska, M. Immunotherapy—The causes of sub-optimal efficacy in inhaled allergies. Alergol. Pol. Pol. J. Allergol. 2021, 8, 31–39. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Haines, S.; Wang, E.; Nassikas, N.; Kinney, P. Synergistic health effects of air pollution, temperature, and pollen exposure: A systematic review of epidemiological evidence. Environ. Health 2020, 19, 130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, Z.; Dai, Y.; Akar-Ghibril, N.; Simpson, J.; Ren, H.; Zhang, L.; Hou, Y.; Wen, X.; Chang, C.; Tang, R.; et al. Impact of Air Pollution on Atopic Dermatitis: A Comprehensive Review. Clinic Rev. Allerg. Immunol. 2023, 65, 121–135. [Google Scholar] [CrossRef]
- Li, S.; Wu, W.; Wang, G.; Zhang, X.; Guo, Q.; Wang, B.; Cao, S.; Yan, M.; Pan, X.; Xue, T.; et al. Association between exposure to air pollution and risk of allergic rhinitis: A systematic review and meta-analysis. Environ. Res. 2022, 205, 112472. [Google Scholar] [CrossRef] [PubMed]
- De Frenne, P.; Van Langenhove, L.; Van Driessche, A.; Bertrand, C.; Verheyen, K.; Vangansbeke, P. Using archived television video footage to quantify phenology responses to climate change. Methods Ecol. Evol. 2018, 9, 1874–1882. [Google Scholar] [CrossRef]
- Ziello, C.; Sparks, T.H.; Estrella, N.; Belmonte, J.; Bergmann, K.C.; Bucher, E.; Brighetti, M.A.; Damialis, A.; Detandt, M.; Galán, C.; et al. Changes to airborne pollen counts across Europe. PLoS ONE 2012, 7, e34076. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Emberlin, J.; Detandt, M.; Gehrig, R.; Jaeger, S.; Nolard, N.; Rantio-Lehtimäki, A. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int. J. Biometeorol. 2002, 46, 159–170. [Google Scholar] [CrossRef]
- Newnham, R.M.; Sparks, T.H.; Skjøth, C.A.; Head, K.; Adams-Groom, B.; Smith, M. Pollen season and climate: Is the timing of birch pollen release in the UK approaching its limit? Int. J. Biometeorol. 2013, 57, 391–400. [Google Scholar] [CrossRef]
- Zhang, L.; Akdis, C.A. Environmental exposures drive the development of allergic diseases. Allergy 2024, 79, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Ouyang, Y.; Dang, B.; Zhang, L. Pollen grading prediction scale for patients with Artemisia pollen allergy in China: A 3-day moving predictive model. Clin. Transl. Allergy 2023, 13, e12280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stawoska, I.; Myszkowska, D.; Oliwa, J.; Skoczowski, A.; Wesełucha-Birczyńska, A.; Saja-Garbarz, D.; Ziemianin, M. Air pollution in the places of Betula pendula growth and development changes the physicochemical properties and the main allergen content of its pollen. PLoS ONE 2023, 18, e0279826. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wang, F.; Qiao, Z.; Deng, M.; Liu, Q.; Yang, X. Extreme temperatures exacerbated oxidative stress and airway inflammation in a mouse model of allergic asthma. Allergy 2024, 79, 1333–1335. [Google Scholar] [CrossRef] [PubMed]
- Sahiner, U.M.; Giovannini, M.; Escribese, M.M.; Paoletti, G.; Heffler, E.; Alvaro Lozano, M.; Barber, D.; Canonica, G.W.; Pfaar, O. Mechanisms of Allergen Immunotherapy and Potential Biomarkers for Clinical Evaluation. J. Pers. Med. 2023, 13, 845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Satitsuksanoa, P.; Angelina, A.; Palomares, O.; Akdis, M. Mechanisms in AIT: Insights 2021. Allergol. Select 2022, 6, 259–266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dhami, S.; Kakourou, A.; Asamoah, F.; Agache, I.; Lau, S.; Jutel, M.; Muraro, A.; Roberts, G.; Akdis, C.A.; Bonini, M.; et al. Allergen immunotherapy for allergic asthma: A systematic review and meta-analysis. Allergy 2017, 72, 1825–1848. [Google Scholar] [CrossRef] [PubMed]
- Bumbacea, R.S.; Boustani, R.; Panaitescu, C.; Haidar, L.; Buzan, M.R.; Bumbacea, D.; Laculiceanu, A.; Cojanu, C.; Spanu, D.; Agache, I. Mechanisms of allergen immunotherapy supporting its disease-modifying effect. Immunotherapy 2022, 14, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Epstein, T.E.G.; Rorie, A.C.; Ramon, G.D.; Keswani, A.; Bernstein, J.; Codina, R.; Codispoti, C.; Craig, T.; Dykewicz, M.; Ferastraoaru, D.; et al. Impact of climate change on aerobiology, rhinitis, and allergen immunotherapy: Work Group Report from the Aerobiology, Rhinitis, Rhinosinusitis & Ocular Allergy, and Immunotherapy, Allergen Standardization & Allergy Diagnostics Committees of the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 2025, 155, 1767–1782.e2. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Rudert, M. Sensitivity and specificity of standardised allergen extracts in skin prick test for diagnoses of IgE-mediated respiratory allergies. Clin. Transl. Allergy 2019, 9, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matricardi, P.M.; Kleine-Tebbe, J.; Hoffmann, H.J.; Valenta, R.; Hilger, C.; Hofmaier, S.; Aalberse, R.C.; Agache, I.; Asero, R.; Ballmer-Weber, B.; et al. EAACI Molecular Allergology User’s Guide. Pediatr. Allergy Immunol. 2016, 27 (Suppl. 23), 1–250. [Google Scholar] [CrossRef] [PubMed]
- Pomés, A.; Chapman, M.D.; Wünschmann, S. Indoor Allergens and Allergic Respiratory Disease. Curr. Allergy Asthma Rep. 2016, 16, 43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Altmann, F. Coping with cross-reactive carbohydrate determinants in allergy diagnosis. Allergo J. Int. 2016, 25, 98–105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oppenheimer, J. Skin testing versus in vitro testing in the evaluation of aeroallergy: The great debate. Am. J. Rhinol. Allergy 2015, 29, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Tschopp, J.M.; Sistek, D.; Schindler, C.; Leuenberger, P.; Perruchoud, A.P.; Wüthrich, B.; Brutsche, M.; Zellweger, J.P.; Karrer, W.; Brändli, O. Current allergic asthma and rhinitis: Diagnostic efficiency of three commonly used atopic markers (IgE, skin prick tests, and Phadiatop). Results from 8329 randomized adults from the SAPALDIA Study. Swiss Study on Air Pollution and Lung Diseases in Adults. Allergy 1998, 53, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Önell, A.; Whiteman, A.; Nordlund, B.; Baldracchini, F.; Mazzoleni, G.; Hedlin, G.; Grönlund, H.; Konradsen, J.R. Allergy testing in children with persistent asthma: Comparison of four diagnostic methods. Allergy 2017, 72, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Til-Pérez, G.; Carnevale, C.; Sarría-Echegaray, P.L.; Arancibia-Tagle, D.; Chugo-Gordillo, S.; Tomás-Barberán, M.D. Sensitization profile in patients with respiratory allergic diseases: Differences between conventional and molecular diagnosis (a cross-sectional study). Clin. Mol. Allergy 2019, 17, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferastraoaru, D.; Shtessel, M.; Lobell, E.; Hudes, G.; Rosenstreich, D.; de Vos, G. Diagnosing environmental allergies: Comparison of skin-prick, intradermal, and serum specific immunoglobulin E testing. Allergy Rhinol. 2017, 8, 53–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- EAACI Allergen Immunotherapy Guidelines Part 2: Recommendations European Academy of Allergy and Clinical Immunology; EAACI: Zurich, Switzerland, 2017; ISBN 978-3-9524815-1-6. Available online: https://hub.eaaci.org/education_books/allergen-immunotherapy-guidelines/ (accessed on 10 March 2025).
- Czarnobilska, M.; Bulanda, M.; Czarnobilska, E.; Dyga, W.; Mazur, M. The Role of the Basophil Activation Test in the Diagnosis of Drug-Induced Anaphylaxis. Diagnostics 2024, 14, 2036. [Google Scholar] [CrossRef]
- Demoly, P.; Passalacqua, G.; Pfaar, O.; Sastre, J.; Wahn, U. Management of the polyallergic patient with allergy immunotherapy: A practice-based approach. Allergy Asthma Clin. Immunol. 2016, 12, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meng, Y.; Lou, H.; Wang, Y.; Wang, X.; Cao, F.; Wang, K.; Chu, X.; Wang, C.; Zhang, L. Endotypes of chronic rhinitis: A cluster analysis study. Allergy 2019, 74, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Jąkalski, M.; Bożek, A.; Mangold, D.; Jarząb, J.; Canonica, G.W. Problem of nonresponse to allergen immunotherapy. Alergol. Pol. Pol. J. Allergol. 2019, 6, 134–140. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Wang, J.; Li, X.; Wang, C.; Chen, R.; Zhang, L. Impact of Air Pollutants and Pollen on the Severity of Nonallergic Rhinitis: A Data-Oriented Analysis. J. Asthma Allergy 2022, 15, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shen, S.; Deng, Y.; Wang, C.; Zhang, L. Air Pollution Exposure Affects Severity and Cellular Endotype of Chronic Rhinosinusitis with Nasal Polyps. Laryngoscope 2022, 132, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Gao, H.; Zhu, L.; Xu, Y.; Liu, H. Short-term association between ambient air pollution and childhood non-allergic rhinitis: A time-series study at a National Children’s Regional Medical Center, in Hefei, China, from 2015 to 2021. Ecotoxicol. Environ. Saf. 2025, 290, 117590. [Google Scholar] [CrossRef]
- Czarnobilska, E.; Bulanda, M.; Bulanda, D.; Mazur, M. The Influence of Air Pollution on the Development of Allergic Inflammation in the Airways in Krakow’s Atopic and Non-Atopic Residents. J. Clin. Med. 2021, 10, 2383. [Google Scholar] [CrossRef]
- Dunlop, J.; Matsui, E.; Sharma, H.P. Allergic Rhinitis: Environmental Determinants. Immunol. Allergy Clin. N. Am. 2016, 36, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, N.; Irvine, A.D.; Flohr, C. The Role of the Environment and Exposome in Atopic Dermatitis. Curr. Treat. Options Allergy 2021, 8, 222–241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Makra, L.; Coviello, L.; Gobbi, A.; Jurman, G.; Furlanello, C.; Brunato, M.; Ziska, L.H.; Hess, J.J.; Damialis, A.; Garcia, M.P.P.; et al. Forecasting daily total pollen concentrations on a global scale. Allergy 2024, 79, 2173–2185. [Google Scholar] [CrossRef] [PubMed]
- Zemelka-Wiacek, M.; Jutel, M. AIT 2023: Current innovation and future outlook. Allergol. Select 2023, 7, 219–228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giebel, G.D.; Speckemeier, C.; Schrader, N.F.; Abels, C.; Plescher, F.; Hillerich, V.; Wiedemann, D.; Börchers, K.; Wasem, J.; Blasé, N.; et al. Quality assessment of mHealth apps: A scoping review. Front. Health Serv. 2024, 4, 1372871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mulder, B.C.; Kasteleyn, M.J.; Hall, L.; van Vliet, A.J.; de Weger, L.A. Self-management and information needs of adults with seasonal allergic rhinitis in the Netherlands: A focus group study. J. Health Psychol. 2024, 30, 1291–1305. [Google Scholar] [CrossRef] [PubMed]
- Landesberger, V.; Grenzebach, K.; Schreiber, F.; Nowak, D.; Gröger, M.; Oppel, E.; Schaub, B.; French, L.E.; Kutzora, S.; Quartucci, C.; et al. Conception and pilot testing of a self-management health application for patients with pollen-related allergic rhinitis and allergic asthma-the APOLLO app. Sci. Rep. 2023, 13, 21568. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazur, M.; Czarnobilska, M.; Dyga, W.; Czarnobilska, E. Trends in the Epidemiology of Allergic Diseases of the Airways in Children Growing Up in an Urban Agglomeration. J. Clin. Med. 2022, 11, 2188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, T.; Shi, S.; Li, X.; Zhou, L.; Yu, Y.; Cai, Y.; Wang, J.; Kan, H.; Xu, Y.; Huang, C.; et al. Improved ambient air quality is associated with decreased prevalence of childhood asthma and infancy shortly after weaning is a sensitive exposure window. Allergy 2024, 79, 1166–1179. [Google Scholar] [CrossRef] [PubMed]
Diagnostic Method | Type | Advantages | Limitations | Clinical Value |
---|---|---|---|---|
Skin Prick Test (SPT) | In vivo | Low cost, quick, end-organ testing, immediate results | Sensitivity affected by extract quality, false negatives possible | First-line for most suspected allergies |
Specific IgE (ImmunoCAP) | In vitro | Quantitative, no risk of systemic reaction | Costly, may not reflect clinical relevance | Useful when skin test is contraindicated |
Component-Resolved Diagnosis (CRD)- Microarray (ISAC, Alex) | In vitro | Identifies specific protein components, detects cross-reactivity, provides extensive allergen profile, useful for polysensitized patients | Expensive, interpretation requires expertise, lower sensitivity for low sIgE levels | Increasing use for AIT qualification, supplementary to routine tests |
Basophil Activation Test (BAT) | In vitro | Reflects functional sensitization, identifies response to both pollen and pollution | Expensive, not widely available | Emerging tool for patient stratification and AIT response |
Provocation Tests | In vivo | Mimics natural exposure, confirms clinical relevance | Time-consuming, risk of reaction | Confirmatory in complex or ambiguous cases |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, M.; Czarnobilska, E. Inhaled Allergy Diagnostics and Treatment in a Polluted Environment. Int. J. Mol. Sci. 2025, 26, 5966. https://doi.org/10.3390/ijms26135966
Mazur M, Czarnobilska E. Inhaled Allergy Diagnostics and Treatment in a Polluted Environment. International Journal of Molecular Sciences. 2025; 26(13):5966. https://doi.org/10.3390/ijms26135966
Chicago/Turabian StyleMazur, Marcel, and Ewa Czarnobilska. 2025. "Inhaled Allergy Diagnostics and Treatment in a Polluted Environment" International Journal of Molecular Sciences 26, no. 13: 5966. https://doi.org/10.3390/ijms26135966
APA StyleMazur, M., & Czarnobilska, E. (2025). Inhaled Allergy Diagnostics and Treatment in a Polluted Environment. International Journal of Molecular Sciences, 26(13), 5966. https://doi.org/10.3390/ijms26135966