Predicting Immunotherapy Efficacy with Machine Learning in Gastrointestinal Cancers: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Systematic Literature Review
2.2. Data Sources and Searches
2.3. Study Selection
- Performed on gastric or colorectal cancer patients with RNA expression data and outcome reported; studies consisting of mixed gastric/colorectal and other cancer types were included if data on specific RNA gene expression and outcomes (survival, response to ICI therapy) and ML methods was reported specifically for the gastric and/or colorectal population;
- Test or validation cohort receiving immune checkpoint inhibitor treatment (anti-PD-1 or anti-PD-L1, and/or anti-CTLA-4);
- Reporting clinical outcomes: data on response (RECIST) or progression-free/disease-free survival (PFS/DFS) or overall survival (OS) or recurrence-free survival (RFS).
2.4. Data Extraction and Risk of Bias Assessment
2.5. Statistical Analysis
Study | Tumor Type (Train) | IT in Training Cohort | Treatment (Train) | Verification Cohorts | IT Drug | Outcomes | ML Methods |
---|---|---|---|---|---|---|---|
Liu et al., 2022 [22] | CRC | No | CHT, targeted | CRC, Melanoma, Urothelial | anti-PD-L1 | OS, RFS, RR | LASSO, SVM, RF, XGBoost |
Lu et al., 2020 [7] | CRC, Gastric, Esophageal + other 1 cancers | Yes | anti-PD-1/PD-L1, anti-CTLA-4 | CRC, Gastric, Esophageal, andother 1 cancers | anti-PD-1/PD-L1, anti-CTLA-4 | OS, PFS, DCB/NDB | SVM |
Cheong et al., 2022 [1] | Gastric | No | CHT, surgery | Gastric | anti-PD-L1 | OS, RR | NTriPath, SVM |
Wei et al., 2022 [23] | Gastric | No | adjuvant CHT | Gastric, Melanoma, Urothelial | anti-PD-L1, anti-CTLA-4 | OS | LASSO-Cox |
He et al., 2022 [24] | Pan-cancer (TCGA) 2 | No | CHT * | Pan-cancer (TCGA, ICGC, and others) 3, mice, normal | anti-PD1, anti-CTLA-4 | OS | LASSO-Cox, RF |
Tang et al., 2022 [25] | Gastric | No | CHT | Gastric, Urothelial | anti-PD1 | OS, PFS, RR | LASSO-Cox |
Zhou et al., 2021 [26] | Gastric | No | CHT | Gastric, Urothelial, Melanoma, Lung | anti-PD-L1 | OS, RFS, RR | LASSO-Cox |
Lee et al., 2021 [13] | Melanoma, Pan-cancer (TCGA) 2 | Yes | CHT, anti-CTL, A-4 | Gastric, CRC, Melanoma, Lung, and others 4 | anti-PD1, anti-CTLA-4 | OS, PFS, RR | Cox proportional hazard model |
Zhao et al., 2023 [8] | Gastric, Melanoma | Yes | CHT, surgery, anti-PD1/anti-CTLA4 | Gastric, Melanoma | anti-PD1, anti-CTLA4 | PFS, RR | GCNN |
Study | Sample Size | Train/Test Split | Variable Selection | ROC AUC | ML Method | Model Type | Statistical Model Validation Methods | Software |
---|---|---|---|---|---|---|---|---|
Liu et al., 2022 [22], stemness-related genes | 432 (train)/184 (test) | split: 70/30 | PDs: 26 stemness gene sets from StemChecker; VS: I. ROC-AUC > 0.65 genes selected (247); II. LASSO regression and feature importance (RF, SVM, XGBoost) results intersected (nine) | No reported AUC on IT sets, two pairs of TPR/FPR could not be estimated in IT cohort: AUC train set: 0.996; AUC test set: 0.965 | logistic regression | binary classification model | internal: GOF; external: predictivity on test set | caret, R 4.0.5 |
Lu et al., 2020 [7], immune-oncology-related genes | 72 (train)/24 (test) | split: 75/25; CV outer loop: 70/30; CV inner loop: 60/40 | PDs: sequencing panel targets (395); VS: I. statistical filter; II. recursive feature elimination cross-validation (RFECV) (24) | AUC test set 0.74 | SVM linear kernel (Python) | binary classification model | internal: GOF, robustness by (10 + 3)-fold nested CV; external: predictivity on test set | scikit-learn, Python 3.6 |
Cheong et al., 2022 [1], 32-gene signature, molecular subtypes | 576 | no train/test split | NTriPath top three gastric cancer pathway genes (32) | TPR = 0.74, FPR = 0.27 is reported for IT (can be calculated) | SVM linear kernel | multiclass classification models | internal: robustness, LOO-CV | LIBSVM 3.17, Matlab R2018a |
Wei et al., 2022 [23], cancer stem cell-related genes | ~300 | no train/test split | PDs: I. OCLR- >mRNAsi; II. WGCNA to identify most correlated gene module with mRNAsi (2527); VS: LASSO-Cox regression | ROC AUC for OS 1, 3, 5 years (0.723, 0.697, 0.724) in GSE62254 train set. Independent IT cohorts: IMvigor210: OS 12 months: AUC 0.664, ITR: 0.736; GSE91061: ITR 0.667; PRJEB25780: ITR 0.816 | Cox regression | regression model | internal: GOF, robustness by 10-fold CV in 1 k iterations of Coxregression; external: predictivity on independent set and independent IT cohort | WGCNA, glmnet, ConsensusClusterPlus, survminer, timeROC, rms, R 3.6.3 |
He et al., 2022 [24], glutamine metabolism immunotherapy response genes | 6049 (train)/2606 (test) | split: 70/30 | PDs: results of latest reports and MSigDB (118); VS: genes ranked by mean accuracy decrease and mean Gini index decrease in RF modeling and intersected (16) | ROC AUC for ITR on TCGA (0.9173, n = 6049) and test (0.9162, n = 2606) cohorts and in anti-PD-L1 patients (0.8696, n = 24) | LASSO logistic regression | binary classification model | internal: GOF; external: predictivity on test set and independent IT cohort if GMIRS low/high groups were defined | survival, Random Forest, R 4.2.1, 4.0.0 |
Tang et al., 2022 [25], Cu-binding protein-related genes | ~400 | no train/test split | PDs: human Cu proteome and TCGA–STAD intersected (51) then intersecting DEGs(cancer vs. normal) (31); VS: I. univariate Cox regression- >associated prognosis (16); II. LASSO Cox regression (10) | Figure 3. ROC AUC for OS: 5 years AUC = 0.75, Figure 4. independent sets: OS 1 year AUC = 0.67 Figure 9. nomogram, AUC OS 1, 3, 5 years: 0.68, 0.69, 0.8 | Cox regression | regression model | internal: GOF; external: predictivity on independent cohorts | SPSS25, limma, R 4.1.0 |
Zhou et al., 2021 [26], senescence- related genes | ~400 | no train/test split | PDs: survival genes, DEGs (GC vs. normal), and senescence genes intersected; VS: LASSO Cox regression (6) | score + stage + age: OS 5 years AUC 0.794; ACRG independent cohort OS 1, 3, 5 years (0.805, 0.772, 0.745) | Cox regression | regression model | internal: GOF (nomogram); external: predictivity on independent cohort (nomogram), independent cohort response ratios | survminer, survival-ROC, rms, glmnet, R 3.6.1 |
Lee et al., 2021 [13], synthetic lethality/synthetic rescue | ~6300 | no train/test split | I. initial pool of drug target SR interactions; II. compact biomarker SR signatures for IT | ROC AUC calculations on independent test sets, Figure 6. AUC values not explicitly given, approx. 0.66 (melanoma)–0.86 (STAD); Figure 7. WINTHER, ITR, AUC = 0.72 | stratified Cox proportional hazard model | regression model | external: predictivity on multiple independent IT sets and WINTHER trial | survival, R |
Zhao et al., 2023 [8], attention scores | 121 (Liu), 45 (Kim), 50 (Gide) | split: 80/20 | AUC = 0.85 | geometric deep learning (graph neural network (GNN)) | classification model | internal: robustness: LOO-CV, 5-fold CV; external: predictivity on multiple independent IT test sets. sample size dependence study | PyTorch, lifelines, scikit-learn, Python 3.7.1 |
Source | Context | Genes |
---|---|---|
Liu et al., 2022 [22] | Stemness-related | GFPT1, PTMAP9, MOGAT3, DPM3, S100A12, PGM5, FUT6, SEMA3C, ADAM33 |
Lu et al., 2020 [7] | Immuno-oncology-related | IDO1, CCL22, IL13, TNFSF9, IFITM1, IFITM2, STAT1, IL1B, TAP1, NRP1, STAT6, CD163, KREMEN1, VCAM1, CCL2, LAPTM5, M6PR, BAGE, MAGEA3, MLANA, BRCA2, CDKN2A, EFNA4, PTEN |
Cheong et al., 2022 [1] | Molecular subtype characterization | ACTA2, AREG, ASCC2, BEST1, BRCA1, CREBBP, DDX5, EP300, ESR1, CIAO2A, FHL2, GNL3, HIPK2, HSF1, IGSF9, JUN, MSH6, NCOA6, TGS1, PARP1, PAWR, PCNA, PML, PPP2R5A, RPA1, SMAD3, SMARCA4, TP53, TP63, WRN, WT1, WTAP |
Wei et al., 2022 [23] | Stemness-related genes | CLNS1A, DUSP3, FANCA, FANCC, H3C2 |
He et al., 2022 [24] | Glutamine metabolism | CTPS2, E2F3, EIF2A, EPAS1, JAK2, L2HGDH, MIOS, PPAT, PYCR1, SDHD, SEH1L, SIRT5, SLC38A5, TET1, TGFB1 |
Tang et al., 2022 [25] | Cu-binding proteins | AFP, ALB, CP, ENOX1, F5, LOX, LOXL3, SLC31A1, SNCA, SPARC |
Zhou et al., 2021 [26] | Senescence-related | ADH1B, EZH2, IL1A, SERPINE1, SPARC, TNFAIP2 |
Lee et al., 2021 [13] | Synthetic lethality | CD27, IL15RA, TNFRSF13C |
Clinical markers | ICI efficacy-related traditional clinical biomarkers | MLH1, MLH3, MSH2, MSH3, MSH4, MSH5, MSH5-SAPCD1, MSH6, PMS2, CD274, CD8A, CD8B, CD8B2 |
3. Results
3.1. Literature Search
3.2. Study Characteristics
3.3. Biological Background of Predictive Gene Sets
3.4. Sources of Transcriptomic Data
3.5. Variable Selection
3.6. Modeling
3.7. Validation
3.8. Generalization of Gene Set Importance
3.9. Predictive Value of Key Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheong, J.-H.; Wang, S.C.; Park, S.; Porembka, M.R.; Christie, A.L.; Kim, H.; Kim, H.S.; Zhu, H.; Hyung, W.J.; Noh, S.H.; et al. Development and validation of a prognostic and predictive 32-gene signature for gastric cancer. Nat. Commun. 2022, 13, 774. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Chen, L.-T.; Ryu, M.-H.; Oh, D.-Y.; Oh, S.C.; Chung, H.C.; Lee, K.-W.; Omori, T.; Shitara, K.; Sakuramoto, S.; et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): A randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022, 23, 234–247. [Google Scholar] [CrossRef]
- Telli, T.A.; Bregni, G.; Camera, S.; Deleporte, A.; Hendlisz, A.; Sclafani, F. PD-1 and PD-L1 inhibitors in oesophago-gastric cancers. Cancer Lett. 2020, 469, 142–150. [Google Scholar] [CrossRef]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, H.; Jiao, X.; Zhou, W.; Han, W.; Li, S.; Liu, C.; Gong, J.; Li, J.; Zhang, X.; et al. Prediction of immune checkpoint inhibition with immune oncology-related gene expression in gastrointestinal cancer using a machine learning classifier. J. Immunother. Cancer 2020, 8, e000631. [Google Scholar] [CrossRef]
- Zhao, L.; Qi, X.; Chen, Y.; Qiao, Y.; Bu, D.; Wu, Y.; Luo, Y.; Wang, S.; Zhang, R.; Zhao, Y. Biological knowledge graph-guided investigation of immune therapy response in cancer with graph neural network. Brief. Bioinform. 2023, 24, bbad023. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Beaubier, N.; Bontrager, M.; Huether, R.; Igartua, C.; Lau, D.; Tell, R.; Bobe, A.M.; Bush, S.; Chang, A.L.; Hoskinson, D.C.; et al. Integrated genomic profiling expands clinical options for patients with cancer. Nat. Biotechnol. 2019, 37, 1351–1360. [Google Scholar] [CrossRef]
- Hayashi, H.; Takiguchi, Y.; Minami, H.; Akiyoshi, K.; Segawa, Y.; Ueda, H.; Iwamoto, Y.; Kondoh, C.; Matsumoto, K.; Takahashi, S.; et al. Site-Specific and Targeted Therapy Based on Molecular Profiling by Next-Generation Sequencing for Cancer of Unknown Primary Site: A Nonrandomized Phase 2 Clinical Trial. JAMA Oncol. 2020, 6, 1931–1938. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Nair, N.U.; Dinstag, G.; Chapman, L.; Chung, Y.; Wang, K.; Sinha, S.; Cha, H.; Kim, D.; Schperberg, A.V.; et al. Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell 2021, 184, 2487–2502.e13. [Google Scholar] [CrossRef]
- Rodon, J.; Soria, J.-C.; Berger, R.; Miller, W.H.; Rubin, E.; Kugel, A.; Tsimberidou, A.; Saintigny, P.; Ackerstein, A.; Braña, I.; et al. Genomic and transcriptomic profiling expands precision cancer medicine: The WINTHER trial. Nat. Med. 2019, 25, 751–758. [Google Scholar] [CrossRef]
- Tanioka, M.; Fan, C.; Parker, J.S.; Hoadley, K.A.; Hu, Z.; Li, Y.; Hyslop, T.M.; Pitcher, B.N.; Soloway, M.G.; Spears, P.A.; et al. Integrated Analysis of RNA and DNA from the Phase III Trial CALGB 40601 Identifies Predictors of Response to Trastuzumab-Based Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 5292–5304. [Google Scholar] [CrossRef] [PubMed]
- Vaske, O.M.; Bjork, I.; Salama, S.R.; Beale, H.; Shah, A.T.; Sanders, L.; Pfeil, J.; Lam, D.L.; Learned, K.; Durbin, A.; et al. Comparative Tumor RNA Sequencing Analysis for Difficult-to-Treat Pediatric and Young Adult Patients With Cancer. JAMA Netw. Open 2019, 2, e1913968. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Mayoh, C.; Lau, L.M.S.; Khuong-Quang, D.-A.; Pinese, M.; Kumar, A.; Barahona, P.; Wilkie, E.E.; Sullivan, P.; Bowen-James, R.; et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 2020, 26, 1742–1753. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ (Clin. Res. Ed.) 2021, 372, n160. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions Version (6.4); Cochrane: London, UK, 2023; Available online: www.training.cochrane.org/handbook (accessed on 1 April 2025).
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. 2024. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 1 April 2025).
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.-M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, H.; Weng, S.; Ren, Y.; Han, X. Stemness Refines the Classification of Colorectal Cancer With Stratified Prognosis, Multi-Omics Landscape, Potential Mechanisms, and Treatment Options. Front. Immunol. 2022, 13, 828330. [Google Scholar] [CrossRef]
- Wei, C.; Chen, M.; Deng, W.; Bie, L.; Ma, Y.; Zhang, C.; Liu, K.; Shen, W.; Wang, S.; Yang, C.; et al. Characterization of gastric cancer stem-like molecular features, immune and pharmacogenomic landscapes. Brief. Bioinform. 2022, 23, bbab386. [Google Scholar] [CrossRef]
- He, S.; Zhang, S.; Yao, Y.; Xu, B.; Niu, Z.; Liao, F.; Wu, J.; Song, Q.; Li, M.; Liu, Z. Turbulence of glutamine metabolism in pan-cancer prognosis and immune microenvironment. Front. Oncol. 2022, 12, 1064127. [Google Scholar] [CrossRef]
- Tang, X.; Guo, T.; Wu, X.; Gan, X.; Wang, Y.; Jia, F.; Zhang, Y.; Xing, X.; Gao, X.; Li, Z. Clinical Significance and Immune Infiltration Analyses of the Cuproptosis-Related Human Copper Proteome in Gastric Cancer. Biomolecules 2022, 12, 1459. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Niu, Z.; Wang, Y.; Zheng, Y.; Zhu, Y.; Wang, C.; Gao, X.; Gao, L.; Zhang, W.; Zhang, K.; et al. Senescence as a dictator of patient outcomes and therapeutic efficacies in human gastric cancer. Cell Death Discov. 2022, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Győrffy, B. Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br. J. Pharmacol. 2024, 181, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Á.; Munkácsy, G.; Győrffy, B. Pancancer survival analysis of cancer hallmark genes. Sci. Rep. 2021, 11, 6047. [Google Scholar] [CrossRef]
- Beck, B.; Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer 2013, 13, 727–738. [Google Scholar] [CrossRef]
- Edwards, D.N.; Ngwa, V.M.; Raybuck, A.L.; Wang, S.; Hwang, Y.; Kim, L.C.; Cho, S.H.; Paik, Y.; Wang, Q.; Zhang, S.; et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J. Clin. Investig. 2021, 131, e140100. [Google Scholar] [CrossRef]
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, X.; Zhang, L.; Zhang, J.; Li, C.; Zhang, N.; Xu, H.; Li, Y. A new Schiff base coordinated copper(II) compound induces apoptosis and inhibits tumor growth in gastric cancer. Cancer Cell Int. 2019, 19, 81. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Blockhuys, S.; Celauro, E.; Hildesjö, C.; Feizi, A.; Stål, O.; Fierro-González, J.C.; Wittung-Stafshede, P. Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics 2017, 9, 112–123. [Google Scholar] [CrossRef]
- OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models; Organisation for Economic Co-Operation and Development: Paris, France, 2014. [Google Scholar] [CrossRef]
- Lee, J.S.; Das, A.; Jerby-Arnon, L.; Arafeh, R.; Auslander, N.; Davidson, M.; McGarry, L.; James, D.; Amzallag, A.; Park, S.G.; et al. Harnessing synthetic lethality to predict the response to cancer treatment. Nat. Commun. 2018, 9, 2546. [Google Scholar] [CrossRef] [PubMed]
- Royston, P.; Altman, D.G. External validation of a Cox prognostic model: Principles and methods. BMC Med. Res. Methodol. 2013, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gao, J.; Beasley, G.; Jung, S.-H. LASSO and Elastic Net Tend to Over-Select Features. Mathematics 2023, 11, 3738. [Google Scholar] [CrossRef]
- Kovács, S.A.; Győrffy, B. Transcriptomic datasets of cancer patients treated with immune-checkpoint inhibitors: A systematic review. J. Transl. Med. 2022, 20, 249. [Google Scholar] [CrossRef]
- O’Gorman, D.B.; Costello, M.; Weiss, J.; Firth, S.M.; Scott, C.D. Decreased insulin-like growth factor-II/mannose 6-phosphate receptor expression enhances tumorigenicity in JEG-3 cells. Cancer Res. 1999, 59, 5692–5694. [Google Scholar]
- Chen, Z.; Ge, Y.; Landman, N.; Kang, J.X. Decreased expression of the mannose 6-phosphate/insulin-like growth factor-II receptor promotes growth of human breast cancer cells. BMC Cancer 2002, 2, 18. [Google Scholar] [CrossRef]
- Meireson, A.; Devos, M.; Brochez, L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front. Immunol. 2020, 11, 531491. [Google Scholar] [CrossRef]
- Nishi, M.; Yoshikawa, K.; Higashijima, J.; Tokunaga, T.; Kashihara, H.; Takasu, C.; Ishikawa, D.; Wada, Y.; Shimada, M. The Impact of Indoleamine 2,3-dioxygenase (IDO) Expression on Stage III Gastric Cancer. Anticancer Res. 2018, 38, 3387–3392. [Google Scholar] [CrossRef]
- Xiang, Z.; Li, J.; Song, S.; Wang, J.; Cai, W.; Hu, W.; Ji, J.; Zhu, Z.; Zang, L.; Yan, R.; et al. A positive feedback between IDO1 metabolite and COL12A1 via MAPK pathway to promote gastric cancer metastasis. J. Exp. Clin. Cancer Res. CR 2019, 38, 314. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, Y.; Zhang, S.; Wei, L.; Cheng, H.; Wang, J.; Wang, J. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death Dis. 2022, 13, 378. [Google Scholar] [CrossRef]
- Zeng, D.; Li, M.; Zhou, R.; Zhang, J.; Sun, H.; Shi, M.; Bin, J.; Liao, Y.; Rao, J.; Liao, W. Tumor Microenvironment Characterization in Gastric Cancer Identifies Prognostic and Immunotherapeutically Relevant Gene Signatures. Cancer Immunol. Res. 2019, 7, 737–750. [Google Scholar] [CrossRef]
- Long, G.V.; Dummer, R.; Hamid, O.; Gajewski, T.F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M.S.; Grob, J.-J.; Kim, T.M.; et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. Lancet Oncol. 2019, 20, 1083–1097. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Jiang, W.; Zeng, H.; Liu, Z.; Lin, Z.; Qu, Y.; Xiong, Y.; Wang, J.; Chang, Y.; et al. Tumor-infiltrating TNFRSF9+ CD8+ T cells define different subsets of clear cell renal cell carcinoma with prognosis and immunotherapeutic response. Oncoimmunology 2020, 9, 1838141. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Jiang, Z. TNFSF9 Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Pancreatic Cancer. J. Gastrointest. Cancer 2021, 52, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, Y. Role of TNFSF9 bidirectional signal transduction in antitumor immunotherapy. Eur. J. Pharmacol. 2022, 928, 175097. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, J.; Lu, Y.; Ma, Y.; Meng, Y.; Li, Q.; Gao, J.; Jiang, Z.; Guo, L.; Wang, W.; et al. Relationships of tumor differentiation and immune infiltration in gastric cancers revealed by single-cell RNA-seq analyses. Cell. Mol. Life Sci. CMLS 2023, 80, 57. [Google Scholar] [CrossRef]
- Fröhlich, A.; Loick, S.; Bawden, E.G.; Fietz, S.; Dietrich, J.; Diekmann, E.; Saavedra, G.; Fröhlich, H.; Niebel, D.; Sirokay, J.; et al. Comprehensive analysis of tumor necrosis factor receptor TNFRSF9 (4-1BB) DNA methylation with regard to molecular and clinicopathological features, immune infiltrates, and response prediction to immunotherapy in melanoma. eBioMedicine 2020, 52, 102647. [Google Scholar] [CrossRef]
- Chuckran, C.A.; Liu, C.; Bruno, T.C.; Workman, C.J.; Vignali, D.A. Neuropilin-1: A checkpoint target with unique implications for cancer immunology and immunotherapy. J. Immunother. Cancer 2020, 8, e000967. [Google Scholar] [CrossRef]
- Chuckran, C.A.; Cillo, A.R.; Moskovitz, J.; Overacre-Delgoffe, A.; Somasundaram, A.S.; Shan, F.; Magnon, G.C.; Kunning, S.R.; Abecassis, I.; Zureikat, A.H.; et al. Prevalence of intratumoral regulatory T cells expressing neuropilin-1 is associated with poorer outcomes in patients with cancer. Sci. Transl. Med. 2021, 13, eabf8495. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.-B.; Chen, G.-Y.; Xia, J.-G.; Zang, X.-W.; Yang, H.-Y.; Yang, L. Association of VCAM-1 overexpression with oncogenesis, tumor angiogenesis and metastasis of gastric carcinoma. World J. Gastroenterol. 2003, 9, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Tamura, G.; Waki, T.; Kawata, S.; Terashima, M.; Nishizuka, S.; Motoyama, T. Demethylation of MAGE promoters during gastric cancer progression. Br. J. Cancer 2004, 90, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhai, J.; You, Q.; Zhang, G.; He, M.; Yao, X.; Shen, L. Cancer-associated fibroblasts-derived VCAM1 induced by H. pylori infection facilitates tumor invasion in gastric cancer. Oncogene 2020, 39, 2961–2974. [Google Scholar] [CrossRef]
- Xie, C.; Subhash, V.V.; Datta, A.; Liem, N.; Tan, S.H.; Yeo, M.S.; Tan, W.L.; Koh, V.; Yan, F.L.; Wong, F.Y.; et al. Melanoma associated antigen (MAGE)-A3 promotes cell proliferation and chemotherapeutic drug resistance in gastric cancer. Cell. Oncol. 2016, 39, 175–186. [Google Scholar] [CrossRef]
- Belin, L.; Tan, A.; De Rycke, Y.; Dechartres, A. Progression-free survival as a surrogate for overall survival in oncology trials: A methodological systematic review. Br. J. Cancer 2020, 122, 1707–1714. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szincsak, S.; Király, P.; Szegvari, G.; Horváth, M.; Dora, D.; Lohinai, Z. Predicting Immunotherapy Efficacy with Machine Learning in Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 5937. https://doi.org/10.3390/ijms26135937
Szincsak S, Király P, Szegvari G, Horváth M, Dora D, Lohinai Z. Predicting Immunotherapy Efficacy with Machine Learning in Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2025; 26(13):5937. https://doi.org/10.3390/ijms26135937
Chicago/Turabian StyleSzincsak, Sara, Péter Király, Gabor Szegvari, Mátyás Horváth, David Dora, and Zoltan Lohinai. 2025. "Predicting Immunotherapy Efficacy with Machine Learning in Gastrointestinal Cancers: A Systematic Review and Meta-Analysis" International Journal of Molecular Sciences 26, no. 13: 5937. https://doi.org/10.3390/ijms26135937
APA StyleSzincsak, S., Király, P., Szegvari, G., Horváth, M., Dora, D., & Lohinai, Z. (2025). Predicting Immunotherapy Efficacy with Machine Learning in Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 26(13), 5937. https://doi.org/10.3390/ijms26135937