Complement System Inhibitors in Nephrology: An Update—Narrative Review
Abstract
1. Introduction
The Basics of Complement System
2. The Involvement of the Complement System in Nephrological Diseases
2.1. Atypical Hemolytic Uremic Syndrome (aHUS)
2.2. C3-Glomerulopathy
2.3. Immune-Complex Membranoproliferative Glomerulonephritis
2.4. Membranous Nephropathy
2.5. IgA Nephropathy and IgA-Associated Vasculitis with Nephritis
2.6. Systemic Lupus Erythematosus
2.7. Antiphospholipid Antibody Syndrome
2.8. ANCA-Associated Vasculitis
2.9. Diabetic Nephropathy
2.10. Focal–Segmental Glomerulosclerosis
3. Emerging Complement System Inhibitors
3.1. C3 Inhibition—Pegcetacoplan
3.2. Factor B Inhibition—Iptacopan
3.3. C5a Inhibition—Avacopan
3.4. C5 Inhibition—Eculizumab, Ravulizumab, Crovalimab, Nomacopan
3.5. Factor D Inhibition—Danicopan, Vemircopan
3.6. MASPs Inhibition—Narsoplimab
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAS | antiphospholipid antibody syndrome |
AAV | ANCA-associated vasculitis |
aHUS | atypical hemolytic–uremic syndrome |
ANCA | anti-neutrophil cytoplasmic antibody |
C3G | C3-glomerulopathy |
DAMP | Damage-associated molecular pattern |
DN | diabetic nephropathy |
EULAR | European Alliance of Associations for Rheumatology |
FACIT | functional assessment of chronic illness therapy |
FSGS | focal–segmental glomerulosclerosis |
IC-MPGN | immune complex membranoproliferative glomerulonephritis |
IgA | immunoglobulin A |
IgAN | IgA nephropathy |
IgAVN | IgA-associated vasculitis with nephritis |
IgG4 | Immunoglobulin G4 |
IgM | Immunoglobulin M |
KDIGO | Kidney Disease: Improving Global Outcomes |
MAC | Membrane attack complex |
MN | membranous nephropathy |
MPGN | membranoproliferative glomerulonephritis |
NADPH | nicotinamide adenine dinucleotide phosphate |
PAMP | Pathogen-associated molecular pattern |
PLA2R | Phospholipase A2 receptor |
PNH | Paroxysmal nocturnal hemoglobinuria |
ROS | Reactive oxygen species |
SLE | systemic lupus erythematosus |
STEC-HUS | Shiga toxin-related hemolytic uremic syndrome |
TCC | Terminal complement complex |
TMA | thrombotic microangiopathy |
References
- Stea, E.D.; D’Ettorre, G.; Mitrotti, A.; Gesualdo, L. The complement system in the pathogenesis and progression of kidney diseases: What doesn’t kill you makes you older. Eur. J. Intern. Med. 2024, 124, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Walport, M.J. Complement. First of two parts. N. Engl. J. Med. 2001, 344, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Koenderman, L.; Buurman, W.; Daha, M.R. The innate immune response. Immunol. Lett. 2014, 162, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Fremeaux-Bacchi, V.; Fakhouri, F.; Garnier, A.; Bienaimé, F.; Dragon-Durey, M.A.; Ngo, S.; Moulin, B.; Servais, A.; Provot, F.; Rostaing, L.; et al. Genetics and outcome of atypical hemolytic uremic syndrome: A nationwide French series comparing children and adults. Clin. J. Am. Soc. Nephrol. 2013, 8, 554–562. [Google Scholar] [CrossRef]
- Goodship, T.H.; Cook, H.T.; Fakhouri, F.; Fervenza, F.C.; Frémeaux-Bacchi, V.; Kavanagh, D.; Nester, C.M.; Noris, M.; Pickering, M.C.; Rodríguez de Córdoba, S.; et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2017, 91, 539–551. [Google Scholar] [CrossRef]
- Vivarelli, M.; Barratt, J.; Beck, L.H.; Fakhouri, F.; Gale, D.P.; Goicoechea de Jorge, E.; Mosca, M.; Noris, M.; Pickering, M.C.; Susztak, K.; et al. The role of complement in kidney disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2024, 106, 369–391. [Google Scholar] [CrossRef]
- Poppelaars, F.; Faria, B.; Schwaeble, W.; Daha, M.R. The Contribution of Complement to the Pathogenesis of IgA Nephropathy: Are Complement-Targeted Therapies Moving from Rare Disorders to More Common Diseases. J. Clin. Med. 2021, 10, 4715. [Google Scholar] [CrossRef]
- Tang, S.; Zhou, W.; Sheerin, N.S.; Vaughan, R.W.; Sacks, S.H. Contribution of renal secreted complement C3 to the circulating pool in humans. J. Immunol. 1999, 162, 4336–4341. [Google Scholar] [CrossRef]
- Tseng, M.H.; Lin, S.H.; Tsai, J.D.; Wu, M.S.; Tsai, I.J.; Chen, Y.C.; Chang, M.C.; Chou, W.C.; Chiou, Y.H.; Huang, C.C. Atypical hemolytic uremic syndrome: Consensus of diagnosis and treatment in Taiwan. J. Formos. Med. Assoc. 2023, 122, 366–375. [Google Scholar] [CrossRef]
- Genest, D.S.; Patriquin, C.J.; Licht, C.; John, R.; Reich, H.N. Renal Thrombotic Microangiopathy: A Review. Am. J. Kidney Dis. 2023, 81, 591–605. [Google Scholar] [CrossRef]
- Brocklebank, V.; Kumar, G.; Howie, A.J.; Chandar, J.; Milford, D.V.; Craze, J.; Evans, J.; Finlay, E.; Freundlich, M.; Gale, D.P.; et al. Long-term outcomes and response to treatment in diacylglycerol kinase epsilon nephropathy. Kidney Int. 2020, 97, 1260–1274. [Google Scholar] [CrossRef] [PubMed]
- Heiderscheit, A.K.; Hauer, J.J.; Smith, R.J.H. C3 glomerulopathy: Understanding an ultra-rare complement-mediated renal disease. Am. J. Med. Genet. C Semin. Med. Genet. 2022, 190, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Gamez, J.D.; Vrana, J.A.; Theis, J.D.; Bergen, H.R.; Zipfel, P.F.; Dogan, A.; Smith, R.J. Glomeruli of Dense Deposit Disease contain components of the alternative and terminal complement pathway. Kidney Int. 2009, 75, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Pickering, M.C.; Smith, R.J. C3 glomerulopathy: The genetic and clinical findings in dense deposit disease and C3 glomerulonephritis. Semin. Thromb. Hemost. 2014, 40, 465–471. [Google Scholar] [CrossRef]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Meuleman, M.S.; Vieira-Martins, P.; El Sissy, C.; Audard, V.; Baudouin, V.; Bertrand, D.; Bridoux, F.; Louillet, F.; Dossier, C.; Esnault, V.; et al. Rare Variants in Complement Gene in C3 Glomerulopathy and Immunoglobulin-Mediated Membranoproliferative GN. Clin. J. Am. Soc. Nephrol. 2023, 18, 1435–1445. [Google Scholar] [CrossRef]
- Iatropoulos, P.; Noris, M.; Mele, C.; Piras, R.; Valoti, E.; Bresin, E.; Curreri, M.; Mondo, E.; Zito, A.; Gamba, S.; et al. Complement gene variants determine the risk of immunoglobulin-associated MPGN and C3 glomerulopathy and predict long-term renal outcome. Mol. Immunol. 2016, 71, 131–142. [Google Scholar] [CrossRef]
- Ronco, P.; Beck, L.; Debiec, H.; Fervenza, F.C.; Hou, F.F.; Jha, V.; Sethi, S.; Tong, A.; Vivarelli, M.; Wetzels, J. Membranous nephropathy. Nat. Rev. Dis. Primers 2021, 7, 69. [Google Scholar] [CrossRef]
- Kistler, A.D.; Salant, D.J. Complement activation and effector pathways in membranous nephropathy. Kidney Int. 2024, 105, 473–483. [Google Scholar] [CrossRef]
- Bally, S.; Debiec, H.; Ponard, D.; Dijoud, F.; Rendu, J.; Fauré, J.; Ronco, P.; Dumestre-Perard, C. Phospholipase A2 Receptor-Related Membranous Nephropathy and Mannan-Binding Lectin Deficiency. J. Am. Soc. Nephrol. 2016, 27, 3539–3544. [Google Scholar] [CrossRef]
- Haddad, G.; Lorenzen, J.M.; Ma, H.; de Haan, N.; Seeger, H.; Zaghrini, C.; Brandt, S.; Kölling, M.; Wegmann, U.; Kiss, B.; et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J. Clin. Investig. 2021, 131, e140453. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Cui, Z.; Zhao, M.H. Complement C3a and C3a Receptor Activation Mediates Podocyte Injuries in the Mechanism of Primary Membranous Nephropathy. J. Am. Soc. Nephrol. 2022, 33, 1742–1756. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Okada, K.; Matsui, Y.; Fujimoto, K.; Adachi, H.; Yamaya, H.; Matsushita, M.; Yokoyama, H. Glomerular mannose-binding lectin deposition in intrinsic antigen-related membranous nephropathy. Nephrol. Dial. Transplant. 2018, 33, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Madden, B.; Debiec, H.; Morelle, J.; Charlesworth, M.C.; Gross, L.; Negron, V.; Buob, D.; Chaudhry, S.; Jadoul, M.; et al. Protocadherin 7-Associated Membranous Nephropathy. J. Am. Soc. Nephrol. 2021, 32, 1249–1261. [Google Scholar] [CrossRef]
- Hanset, N.; Aydin, S.; Demoulin, N.; Cosyns, J.P.; Castanares-Zapatero, D.; Crott, R.; Cambier, J.F.; Pochet, J.M.; Gillerot, G.; Reginster, F.; et al. Podocyte Antigen Staining to Identify Distinct Phenotypes and Outcomes in Membranous Nephropathy: A Retrospective Multicenter Cohort Study. Am. J. Kidney Dis. 2020, 76, 624–635. [Google Scholar] [CrossRef]
- Sethi, S. Membranous nephropathy: A single disease or a pattern of injury resulting from different diseases. Clin. Kidney J. 2021, 14, 2166–2169. [Google Scholar] [CrossRef]
- Seifert, L.; Zahner, G.; Meyer-Schwesinger, C.; Hickstein, N.; Dehde, S.; Wulf, S.; Köllner, S.M.S.; Lucas, R.; Kylies, D.; Froembling, S.; et al. The classical pathway triggers pathogenic complement activation in membranous nephropathy. Nat. Commun. 2023, 14, 473. [Google Scholar] [CrossRef]
- Dumont, C.; Mérouani, A.; Ducruet, T.; Benoit, G.; Clermont, M.J.; Lapeyraque, A.L.; Phan, V.; Patey, N. Clinical relevance of membrane attack complex deposition in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr. Nephrol. 2020, 35, 843–850. [Google Scholar] [CrossRef]
- Segarra, A.; Romero, K.; Agraz, I.; Ramos, N.; Madrid, A.; Carnicer, C.; Jatem, E.; Vilalta, R.; Lara, L.E.; Ostos, E.; et al. Mesangial C4d Deposits in Early IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2018, 13, 258–264. [Google Scholar] [CrossRef]
- Guo, W.Y.; Zhu, L.; Meng, S.J.; Shi, S.F.; Liu, L.J.; Lv, J.C.; Zhang, H. Mannose-Binding Lectin Levels Could Predict Prognosis in IgA Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 3175–3181. [Google Scholar] [CrossRef]
- Damman, J.; Mooyaart, A.L.; van den Bosch, T.P.P.; Seelen, M.A.; van Doorn, M.B. Lectin and alternative complement pathway activation in cutaneous manifestations of IgA-vasculitis: A new target for therapy. Mol. Immunol. 2022, 143, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Guo, W.Y.; Shi, S.F.; Liu, L.J.; Lv, J.C.; Medjeral-Thomas, N.R.; Lomax-Browne, H.J.; Pickering, M.C.; Zhang, H. Circulating complement factor H-related protein 5 levels contribute to development and progression of IgA nephropathy. Kidney Int. 2018, 94, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Medjeral-Thomas, N.R.; Lomax-Browne, H.J.; Beckwith, H.; Willicombe, M.; McLean, A.G.; Brookes, P.; Pusey, C.D.; Falchi, M.; Cook, H.T.; Pickering, M.C. Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int. 2017, 92, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Medjeral-Thomas, N.R.; Troldborg, A.; Constantinou, N.; Lomax-Browne, H.J.; Hansen, A.G.; Willicombe, M.; Pusey, C.D.; Cook, H.T.; Thiel, S.; Pickering, M.C. Progressive IgA Nephropathy Is Associated With Low Circulating Mannan-Binding Lectin-Associated Serine Protease-3 (MASP-3) and Increased Glomerular Factor H-Related Protein-5 (FHR5) Deposition. Kidney Int. Rep. 2018, 3, 426–438. [Google Scholar] [CrossRef]
- Tan, L.; Tang, Y.; Pei, G.; Zhong, Z.; Tan, J.; Zhou, L.; Wen, D.; Sheikh-Hamad, D.; Qin, W. A multicenter, prospective, observational study to determine association of mesangial C1q deposition with renal outcomes in IgA nephropathy. Sci. Rep. 2021, 11, 5467. [Google Scholar] [CrossRef]
- Kostopoulou, M.; Ugarte-Gil, M.F.; Pons-Estel, B.; van Vollenhoven, R.F.; Bertsias, G. The association between lupus serology and disease outcomes: A systematic literature review to inform the treat-to-target approach in systemic lupus erythematosus. Lupus 2022, 31, 307–318. [Google Scholar] [CrossRef]
- Macedo, A.C.; Isaac, L. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway. Front. Immunol. 2016, 7, 55. [Google Scholar] [CrossRef]
- Ling, G.S.; Crawford, G.; Buang, N.; Bartok, I.; Tian, K.; Thielens, N.M.; Bally, I.; Harker, J.A.; Ashton-Rickardt, P.G.; Rutschmann, S.; et al. C1q restrains autoimmunity and viral infection by regulating CD8+ T cell metabolism. Science 2018, 360, 558–563. [Google Scholar] [CrossRef]
- Weinstein, A.; Alexander, R.V.; Zack, D.J. A Review of Complement Activation in SLE. Curr. Rheumatol. Rep. 2021, 23, 16. [Google Scholar] [CrossRef]
- Tedesco, F.; Borghi, M.O.; Gerosa, M.; Chighizola, C.B.; Macor, P.; Lonati, P.A.; Gulino, A.; Belmonte, B.; Meroni, P.L. Pathogenic Role of Complement in Antiphospholipid Syndrome and Therapeutic Implications. Front. Immunol. 2018, 9, 1388. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Brodsky, R.A.; McCrae, K.R. Complement in the Pathophysiology of the Antiphospholipid Syndrome. Front. Immunol. 2019, 10, 449. [Google Scholar] [CrossRef] [PubMed]
- Meroni, P.L.; Macor, P.; Durigutto, P.; De Maso, L.; Gerosa, M.; Ferraresso, M.; Borghi, M.O.; Mollnes, T.E.; Tedesco, F. Complement activation in antiphospholipid syndrome and its inhibition to prevent rethrombosis after arterial surgery. Blood 2016, 127, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Ruffatti, A.; Tarzia, V.; Fedrigo, M.; Calligaro, A.; Favaro, M.; Macor, P.; Tison, T.; Cucchini, U.; Cosmi, E.; Tedesco, F.; et al. Evidence of complement activation in the thrombotic small vessels of a patient with catastrophic antiphospholipid syndrome treated with eculizumab. Autoimmun. Rev. 2019, 18, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Lonati, P.A.; Scavone, M.; Gerosa, M.; Borghi, M.O.; Pregnolato, F.; Curreli, D.; Podda, G.; Femia, E.A.; Barcellini, W.; Cattaneo, M.; et al. Blood Cell-Bound C4d as a Marker of Complement Activation in Patients With the Antiphospholipid Syndrome. Front. Immunol. 2019, 10, 773. [Google Scholar] [CrossRef]
- Ruffatti, A.; Tonello, M.; Calligaro, A.; Del Ross, T.; Favaro, M.; Zen, M.; Carletto, A.; Lotti, V.; Bertoldo, E.; Tedesco, F.; et al. High plasma C5a and C5b-9 levels during quiescent phases are associated to severe antiphospholipid syndrome subsets. Clin. Exp. Rheumatol. 2022, 40, 2088–2096. [Google Scholar] [CrossRef]
- Nalli, C.; Lini, D.; Andreoli, L.; Crisafulli, F.; Fredi, M.; Lazzaroni, M.G.; Bitsadze, V.; Calligaro, A.; Canti, V.; Caporali, R.; et al. Low Preconception Complement Levels Are Associated with Adverse Pregnancy Outcomes in a Multicenter Study of 260 Pregnancies in 197 Women with Antiphospholipid Syndrome or Carriers of Antiphospholipid Antibodies. Biomedicines 2021, 9, 671. [Google Scholar] [CrossRef]
- Kim, M.Y.; Guerra, M.M.; Kaplowitz, E.; Laskin, C.A.; Petri, M.; Branch, D.W.; Lockshin, M.D.; Sammaritano, L.R.; Merrill, J.T.; Porter, T.F.; et al. Complement activation predicts adverse pregnancy outcome in patients with systemic lupus erythematosus and/or antiphospholipid antibodies. Ann. Rheum. Dis. 2018, 77, 549–555. [Google Scholar] [CrossRef]
- Chen, M.; Jayne, D.R.W.; Zhao, M.H. Complement in ANCA-associated vasculitis: Mechanisms and implications for management. Nat. Rev. Nephrol. 2017, 13, 359–367. [Google Scholar] [CrossRef]
- Schreiber, A.; Xiao, H.; Jennette, J.C.; Schneider, W.; Luft, F.C.; Kettritz, R. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 2009, 20, 289–298. [Google Scholar] [CrossRef]
- Thurman, J.M. Complement and the Kidney: An Overview. Adv. Chronic Kidney Dis. 2020, 27, 86–94. [Google Scholar] [CrossRef]
- Lu, Q.; Hou, Q.; Cao, K.; Sun, X.; Liang, Y.; Gu, M.; Xue, X.; Zhao, A.Z.; Dai, C. Complement factor B in high glucose-induced podocyte injury and diabetic kidney disease. JCI Insight 2021, 6, e147716. [Google Scholar] [CrossRef] [PubMed]
- Yiu, W.H.; Li, R.X.; Wong, D.W.L.; Wu, H.J.; Chan, K.W.; Chan, L.Y.Y.; Leung, J.C.K.; Lai, K.N.; Sacks, S.H.; Zhou, W.; et al. Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrol. Dial. Transplant. 2018, 33, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Amer, F.; Syed, M.; Afzal, A.; Hussain, M.; Hassan, U.; Bashir, S.; Hameed, M.; Ishtiaq, S. IgM and C3 Deposition in Primary Focal Segmental Glomerulosclerosis (FSGS): A Clinical and Histopathological Spectrum. Cureus 2023, 15, e37346. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Cui, Z.; Gu, Q.H.; Zhang, Y.M.; Qu, Z.; Wang, X.; Wang, F.; Cheng, X.Y.; Meng, L.Q.; Liu, G.; et al. Complement activation profile of patients with primary focal segmental glomerulosclerosis. PLoS ONE 2020, 15, e0234934. [Google Scholar] [CrossRef]
- Bomback, A.S.; Daina, E.; Remuzzi, G.; Kanellis, J.; Kavanagh, D.; Pickering, M.C.; Sunder-Plassmann, G.; Walker, P.D.; Wang, Z.; Ahmad, Z.; et al. Efficacy and Safety of Pegcetacoplan in Kidney Transplant Recipients With Recurrent Complement 3 Glomerulopathy or Primary Immune Complex Membranoproliferative Glomerulonephritis. Kidney Int. Rep. 2025, 10, 87–98. [Google Scholar] [CrossRef]
- Dixon, B.P.; Greenbaum, L.A.; Huang, L.; Rajan, S.; Ke, C.; Zhang, Y.; Li, L. Clinical Safety and Efficacy of Pegcetacoplan in a Phase 2 Study of Patients with C3 Glomerulopathy and Other Complement-Mediated Glomerular Diseases. Kidney Int. Rep. 2023, 8, 2284–2293. [Google Scholar] [CrossRef]
- Mancuso, M.C.; Cugno, M.; Griffini, S.; Grovetti, E.; Nittoli, T.; Mastrangelo, A.; Tedesco, F.; Montini, G.; Ardissino, G. Efficacy of complement inhibition with pegcetacoplan in children with C3 glomerulopathy. Pediatr. Nephrol. 2025, 40, 1959–1963. [Google Scholar] [CrossRef]
- Guzman, G.L.; Perry, K.W. Pegcetacoplan for the Treatment of Paediatric C3 Glomerulonephritis: A Case Report. Nephrology 2025, 30, e70001. [Google Scholar] [CrossRef]
- Roman, E.; Fattizzo, B.; Shum, M.; Hanna, W.; Lentz, S.R.; Araujo, S.S.S.; Al-Adhami, M.; Grossi, F.V.; Gertz, M.A. Safety and efficacy of pegcetacoplan treatment for cold agglutinin disease and warm antibody autoimmune hemolytic anemia. Blood 2025, 145, 397–408. [Google Scholar] [CrossRef]
- Chan, T.W.; Than, H.; Tuy, T.; Goh, Y.T. Pegcetacoplan: The first and only C3-targeted therapy for the treatment of adults with paroxysmal nocturnal hemoglobinuria. Expert. Rev. Hematol. 2025, 18, 11–20. [Google Scholar] [CrossRef]
- Nishimori, H.; Nakazawa, H.; Tamura, S.; Uchida, T.; Usuki, K.; Szamosi, J.; de Latour, R.P.; Röth, A.; Panse, J. Efficacy, Safety, and Quality of Life of Pegcetacoplan in Japanese Patients with Paroxysmal Nocturnal Hemoglobinuria Treated within the Phase 3 PEGASUS Trial. Acta Haematol. 2025, 148, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S.M.; Navarro-Cabrera, J.R.; Comia, N.S.; Goh, Y.T.; Idrobo, H.; Kongkabpan, D.; Gómez-Almaguer, D.; Al-Adhami, M.; Ajayi, T.; Alvarenga, P.; et al. Pegcetacoplan controls hemolysis in complement inhibitor-naive patients with paroxysmal nocturnal hemoglobinuria. Blood Adv. 2023, 7, 2468–2478. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S.M. Safety and efficacy of pegcetacoplan in paroxysmal nocturnal hemoglobinuria. Ther. Adv. Hematol. 2022, 13, 20406207221114673. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.; Kelly, R.; Brindel, I.; Maafa, L.; Trikha, R.; Muus, P.; Munir, T.; Varghese, A.M.; Mitchell, L.; Nagumantry, S.; et al. Real-world experience of pegcetacoplan in paroxysmal nocturnal hemoglobinuria. Am. J. Hematol. 2024, 99, 816–823. [Google Scholar] [CrossRef]
- Xu, B. Novel targeted C3 inhibitor pegcetacoplan for paroxysmal nocturnal hemoglobinuria. Clin. Exp. Med. 2023, 23, 717–726. [Google Scholar] [CrossRef]
- Gerber, G.F.; Brodsky, R.A. Pegcetacoplan for paroxysmal nocturnal hemoglobinuria. Blood 2022, 139, 3361–3365. [Google Scholar] [CrossRef]
- Szlendak, U.; Budziszewska, B.; Spychalska, J.; Drozd-Sokołowska, J.; Patkowska, E.; Nowak, J. Paroxysmal nocturnal hemoglobinuria: Advances in the understanding of pathophysiology, diagnosis, and treatment. Pol. Arch. Intern. Med. 2022, 132, 16271. [Google Scholar] [CrossRef]
- Shah, S.; Chamlagain, R.; Musalman, Z.H.; Raj Adhikari, Y.; Chhetri, S.; Paudel, S.; Gundabolu, K.; Dhakal, P. Pegcetacoplan in paroxysmal nocturnal hemoglobinuria: A systematic review on efficacy and safety. Res. Pract. Thromb. Haemost. 2022, 6, e12781. [Google Scholar] [CrossRef]
- Hillmen, P.; Szer, J.; Weitz, I.; Röth, A.; Höchsmann, B.; Panse, J.; Usuki, K.; Griffin, M.; Kiladjian, J.J.; de Castro, C.; et al. Pegcetacoplan versus Eculizumab in Paroxysmal Nocturnal Hemoglobinuria. N. Engl. J. Med. 2021, 384, 1028–1037. [Google Scholar] [CrossRef]
- De Latour, R.P.; Szer, J.; Weitz, I.C.; Röth, A.; Höchsmann, B.; Panse, J.; Usuki, K.; Griffin, M.; Kiladjian, J.J.; de Castro, C.M.; et al. Pegcetacoplan versus eculizumab in patients with paroxysmal nocturnal haemoglobinuria (PEGASUS): 48-week follow-up of a randomised, open-label, phase 3, active-comparator, controlled trial. Lancet Haematol. 2022, 9, E648–E659. [Google Scholar] [CrossRef]
- Storm, B.S.; Christiansen, D.; Fure, H.; Ludviksen, J.K.; Lau, C.; Lambris, J.D.; Woodruff, T.M.; Brekke, O.L.; Braaten, T.; Nielsen, E.W.; et al. Air Bubbles Activate Complement and Trigger Hemostasis and C3-Dependent Cytokine Release Ex Vivo in Human Whole Blood. J. Immunol. 2021, 207, 2828–2840. [Google Scholar] [CrossRef] [PubMed]
- Vivarelli, M.; Bomback, A.; Ariceta, G.; Mastrangelo, A.; Nester, C.; Remuzzi, G.; Van De Kar, N.; Wang, Z.; Szamosi, J.; Decker, D.; et al. Pegcetacoplan Treatment Effect in Patients with Nephrotic Range Proteinuria: Results from the VALIANT Phase 3 Study in Patients with C3G or Primary (Idiopathic) IC-MPGN. In Proceedings of the 62nd ERA Congress, Vienna, Austria, 4–7 June 2025. Abstract: 3265. [Google Scholar]
- Syed, Y.Y. Iptacopan: First Approval. Drugs 2024, 84, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Barratt, J.; Rovin, B.; Kashihara, N.; Maes, B.; Zhang, H.; Trimarchi, H.; Kollins, D.; Papachristofi, O.; Jacinto-Sanders, S.; et al. Alternative Complement Pathway Inhibition with Iptacopan in IgA Nephropathy. N. Engl. J. Med. 2025, 392, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Rizk, D.V.; Perkovic, V.; Maes, B.; Kashihara, N.; Rovin, B.; Trimarchi, H.; Sprangers, B.; Meier, M.; Kollins, D.; et al. Results of a randomized double-blind placebo-controlled Phase 2 study propose iptacopan as an alternative complement pathway inhibitor for IgA nephropathy. Kidney Int. 2024, 105, 189–199. [Google Scholar] [CrossRef]
- Wong, E.; Nester, C.; Cavero, T.; Karras, A.; Le Quintrec, M.; Lightstone, L.; Eisenberger, U.; Soler, M.J.; Kavanagh, D.; Daina, E.; et al. Efficacy and Safety of Iptacopan in Patients With C3 Glomerulopathy. Kidney Int. Rep. 2023, 8, 2754–2764. [Google Scholar] [CrossRef]
- Bomback, A.S.; Kavanagh, D.; Vivarelli, M.; Meier, M.; Wang, Y.; Webb, N.J.A.; Trapani, A.J.; Smith, R.J.H. Alternative Complement Pathway Inhibition with Iptacopan for the Treatment of C3 Glomerulopathy-Study Design of the APPEAR-C3G Trial. Kidney Int. Rep. 2022, 7, 2150–2159. [Google Scholar] [CrossRef]
- Peffault de Latour, R.; Röth, A.; Kulasekararaj, A.G.; Han, B.; Scheinberg, P.; Maciejewski, J.P.; Ueda, Y.; de Castro, C.M.; Di Bona, E.; Fu, R.; et al. Oral Iptacopan Monotherapy in Paroxysmal Nocturnal Hemoglobinuria. N. Engl. J. Med. 2024, 390, 994–1008. [Google Scholar] [CrossRef]
- Jang, J.H.; Wong, L.; Ko, B.S.; Yoon, S.S.; Li, K.; Baltcheva, I.; Nidamarthy, P.K.; Chawla, R.; Junge, G.; Yap, E.S. Iptacopan monotherapy in patients with paroxysmal nocturnal hemoglobinuria: A 2-cohort open-label proof-of-concept study. Blood Adv. 2022, 6, 4450–4460. [Google Scholar] [CrossRef]
- De Castro, C.M.; Patel, B.J. Iptacopan for the treatment of paroxysmal nocturnal hemoglobinuria. Expert Opin. Pharmacother. 2024, 25, 2331–2339. [Google Scholar] [CrossRef]
- Xu, B.; Kang, B.; Chen, J.; Li, S.; Zhou, J. Factor B inhibitor iptacopan for the treatment of paroxysmal nocturnal hemoglobinuria. Blood Rev. 2024, 66, 101210. [Google Scholar] [CrossRef]
- Jayne, D.R.W.; Bruchfeld, A.N.; Harper, L.; Schaier, M.; Venning, M.C.; Hamilton, P.; Burst, V.; Grundmann, F.; Jadoul, M.; Szombati, I.; et al. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J. Am. Soc. Nephrol. 2017, 28, 2756–2767. [Google Scholar] [CrossRef] [PubMed]
- Geetha, D.; Dua, A.; Yue, H.; Springer, J.; Salvarani, C.; Jayne, D.; Merkel, P.; Au Peh, C.; Chakera, A.; Cooper, B.; et al. Efficacy and safety of avacopan in patients with ANCA-associated vasculitis receiving rituximab in a randomised trial. Ann. Rheum. Dis. 2024, 83, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, F.B.; Niles, J.L.; Jayne, D.R.W.; Merkel, P.A.; Bruchfeld, A.; Yue, H.; Schall, T.J.; Bekker, P.; Peh, C.A.; Chakera, A.; et al. Renal Recovery for Patients with ANCA-Associated Vasculitis and Low eGFR in the ADVOCATE Trial of Avacopan. Kidney Int. Rep. 2023, 8, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Chalkia, A.; Flossmann, O.; Jones, R.; Nair, J.R.; Simpson, T.; Smith, R.; Willcocks, L.; Jayne, D. Avacopan for ANCA-associated vasculitis with hypoxic pulmonary haemorrhage. Nephrol. Dial. Transplant. 2024, 39, 1473–1482. [Google Scholar] [CrossRef]
- Hellmich, B.; Sanchez-Alamo, B.; Schirmer, J.H.; Berti, A.; Blockmans, D.; Cid, M.C.; Holle, J.U.; Hollinger, N.; Karadag, O.; Kronbichler, A.; et al. EULAR recommendations for the management of ANCA-associated vasculitis: 2022 update. Ann. Rheum. Dis. 2024, 83, 30–47. [Google Scholar] [CrossRef]
- Floege, J.; Jayne, D.R.W.; Sanders, J.F.; Tesar, V.; Balk, E.M.; Gordon, C.E.; Adam, G.; Tonelli, M.A.; Cheung, M.; Earley, A.; et al. Executive summary of the KDIGO 2024 Clinical Practice Guideline for the Management of ANCA-Associated Vasculitis. Kidney Int. 2024, 105, 447–449. [Google Scholar] [CrossRef]
- Bomback, A.S.; Herlitz, L.C.; Kedia, P.P.; Petersen, J.; Yue, H.; Lafayette, R.A.; Bomback, A.; Parikh, S.; Nester, C.; Niles, J.; et al. Safety and Efficacy of Avacopan in Patients with Complement 3 Glomerulopathy: Randomized, Double-Blind Clinical Trial. J. Am. Soc. Nephrol. 2025, 36, 487–499. [Google Scholar] [CrossRef]
- Loirat, C.; Fakhouri, F.; Ariceta, G.; Besbas, N.; Bitzan, M.; Bjerre, A.; Coppo, R.; Emma, F.; Johnson, S.; Karpman, D.; et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr. Nephrol. 2016, 31, 15–39. [Google Scholar] [CrossRef]
- Raina, R.; Krishnappa, V.; Blaha, T.; Kann, T.; Hein, W.; Burke, L.; Bagga, A. Atypical Hemolytic-Uremic Syndrome: An Update on Pathophysiology, Diagnosis, and Treatment. Ther. Apher. Dial. 2019, 23, 4–21. [Google Scholar] [CrossRef]
- Bouwman, H.B.; Guchelaar, H.J. The efficacy and safety of eculizumab in patients and the role of C5 polymorphisms. Drug Discov. Today 2024, 29, 104134. [Google Scholar] [CrossRef]
- Nishimura, J.; Yamamoto, M.; Hayashi, S.; Ohyashiki, K.; Ando, K.; Brodsky, A.L.; Noji, H.; Kitamura, K.; Eto, T.; Takahashi, T.; et al. Genetic variants in C5 and poor response to eculizumab. N. Engl. J. Med. 2014, 370, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Boyer, O.; Niaudet, P. Hemolytic-Uremic Syndrome in Children. Pediatr. Clin. N. Am. 2022, 69, 1181–1197. [Google Scholar] [CrossRef] [PubMed]
- Garnier, A.; Brochard, K.; Kwon, T.; Sellier-Leclerc, A.L.; Lahoche, A.; Launay, E.A.; Nobili, F.; Caillez, M.; Taque, S.; Harambat, J.; et al. Efficacy and Safety of Eculizumab in Pediatric Patients Affected by Shiga Toxin-Related Hemolytic and Uremic Syndrome: A Randomized, Placebo-Controlled Trial. J. Am. Soc. Nephrol. 2023, 34, 1561–1573. [Google Scholar] [CrossRef] [PubMed]
- Wildes, D.M.; Harvey, S.; Costigan, C.S.; Sweeney, C.; Twomey, É.; Awan, A.; Gorman, K.M. Eculizumab in STEC-HUS: A paradigm shift in the management of pediatric patients with neurological involvement. Pediatr. Nephrol. 2024, 39, 315–324. [Google Scholar] [CrossRef]
- Loos, S.; Oh, J.; Kemper, M.J. Eculizumab in STEC-HUS: Need for a proper randomized controlled trial. Pediatr. Nephrol. 2018, 33, 1277–1281. [Google Scholar] [CrossRef]
- Lee, J.W.; Sicre de Fontbrune, F.; Wong Lee Lee, L.; Pessoa, V.; Gualandro, S.; Füreder, W.; Ptushkin, V.; Rottinghaus, S.T.; Volles, L.; Shafner, L.; et al. Ravulizumab (ALXN1210) vs. eculizumab in adult patients with PNH naive to complement inhibitors: The 301 study. Blood 2019, 133, 530–539. [Google Scholar] [CrossRef]
- Kulasekararaj, A.G.; Hill, A.; Rottinghaus, S.T.; Langemeijer, S.; Wells, R.; Gonzalez-Fernandez, F.A.; Gaya, A.; Lee, J.W.; Gutierrez, E.O.; Piatek, C.I.; et al. Ravulizumab (ALXN1210) vs. eculizumab in C5-inhibitor-experienced adult patients with PNH: The 302 study. Blood 2019, 133, 540–549. [Google Scholar] [CrossRef]
- Dingli, D.; Matos, J.E.; Lehrhaupt, K.; Krishnan, S.; Yeh, M.; Fishman, J.; Sarda, S.P.; Baver, S.B. The burden of illness in patients with paroxysmal nocturnal hemoglobinuria receiving treatment with the C5-inhibitors eculizumab or ravulizumab: Results from a US patient survey. Ann. Hematol. 2022, 101, 251–263. [Google Scholar] [CrossRef]
- Tanaka, K.; Adams, B.; Aris, A.M.; Fujita, N.; Ogawa, M.; Ortiz, S.; Vallee, M.; Greenbaum, L.A. The long-acting C5 inhibitor, ravulizumab, is efficacious and safe in pediatric patients with atypical hemolytic uremic syndrome previously treated with eculizumab. Pediatr. Nephrol. 2021, 36, 889–898. [Google Scholar] [CrossRef]
- Shahid, K.; Qayyum, S. Eculizumab Versus Ravulizumab for the Treatment of Atypical Hemolytic Uremic Syndrome: A Systematic Review. Cureus 2023, 15, e46185. [Google Scholar] [CrossRef]
- Lee, J.W.; Griffin, M.; Kim, J.S.; Lee Lee, L.W.; Piatek, C.; Nishimura, J.I.; Carrillo Infante, C.; Jain, D.; Liu, P.; Filippov, G.; et al. Addition of danicopan to ravulizumab or eculizumab in patients with paroxysmal nocturnal haemoglobinuria and clinically significant extravascular haemolysis (ALPHA): A double-blind, randomised, phase 3 trial. Lancet Haematol. 2023, 10, E955–E965. [Google Scholar] [CrossRef] [PubMed]
- Röth, A.; He, G.; Tong, H.; Lin, Z.; Wang, X.; Chai-Adisaksopha, C.; Lee, J.H.; Brodsky, A.; Hantaweepant, C.; Dumagay, T.E.; et al. Phase 3 randomized COMMODORE 2 trial: Crovalimab versus eculizumab in patients with paroxysmal nocturnal hemoglobinuria naive to complement inhibition. Am. J. Hematol. 2024, 99, 1768–1777. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xia, L.; Weng, J.; Zhang, F.; He, C.; Gao, S.; Jia, J.; Chang, A.C.; Lundberg, P.; Shi, J.; et al. Efficacy and safety of the C5 inhibitor crovalimab in complement inhibitor-naive patients with PNH (COMMODORE 3): A multicenter, Phase 3, single-arm study. Am. J. Hematol. 2023, 98, 1407–1414. [Google Scholar] [CrossRef]
- Dhillon, S. Crovalimab: First Approval. Drugs 2024, 84, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Röth, A.; Ichikawa, S.; Ito, Y.; Kim, J.S.; Nagy, Z.; Obara, N.; Panse, J.; Schrezenmeier, H.; Sica, S.; Soret, J.; et al. Crovalimab treatment in patients with paroxysmal nocturnal haemoglobinuria: Long-term results from the phase I/II COMPOSER trial. Eur. J. Haematol. 2023, 111, 300–310. [Google Scholar] [CrossRef]
- Röth, A.; Nishimura, J.I.; Nagy, Z.; Gaàl-Weisinger, J.; Panse, J.; Yoon, S.S.; Egyed, M.; Ichikawa, S.; Ito, Y.; Kim, J.S.; et al. The complement C5 inhibitor crovalimab in paroxysmal nocturnal hemoglobinuria. Blood 2020, 135, 912–920. [Google Scholar] [CrossRef]
- Schols, S.; Nunn, M.A.; Mackie, I.; Weston-Davies, W.; Nishimura, J.I.; Kanakura, Y.; Blijlevens, N.; Muus, P.; Langemeijer, S. Successful treatment of a PNH patient non-responsive to eculizumab with the novel complement C5 inhibitor coversin (nomacopan). Br. J. Haematol. 2020, 188, 334–337. [Google Scholar] [CrossRef]
- Yang, Z.; Nunn, M.A.; Le, T.D.; Simovic, M.O.; Edsall, P.R.; Liu, B.; Barr, J.L.; Lund, B.J.; Hill-Pryor, C.D.; Pusateri, A.E.; et al. Immunopathology of terminal complement activation and complement C5 blockade creating a pro-survival and organ-protective phenotype in trauma. Br. J. Pharmacol. 2023, 180, 422–440. [Google Scholar] [CrossRef]
- Kulasekararaj, A.G.; Risitano, A.M.; Maciejewski, J.P.; Notaro, R.; Browett, P.; Lee, J.W.; Huang, M.; Geffner, M.; Brodsky, R.A. Phase 2 study of danicopan in patients with paroxysmal nocturnal hemoglobinuria with an inadequate response to eculizumab. Blood 2021, 138, 1928–1938. [Google Scholar] [CrossRef]
- Risitano, A.M.; Kulasekararaj, A.G.; Lee, J.W.; Maciejewski, J.P.; Notaro, R.; Brodsky, R.; Huang, M.; Geffner, M.; Browett, P. Danicopan: An oral complement factor D inhibitor for paroxysmal nocturnal hemoglobinuria. Haematologica 2021, 106, 3188–3197. [Google Scholar] [CrossRef]
- Caravaca-Fontán, F.; Gutiérrez, E.; Sevillano, Á.M.; Praga, M. Targeting complement in IgA nephropathy. Clin. Kidney J. 2023, 16, ii28–ii39. [Google Scholar] [CrossRef] [PubMed]
- Dudler, T.; Yaseen, S.; Cummings, W.J. Development and characterization of narsoplimab, a selective MASP-2 inhibitor, for the treatment of lectin-pathway-mediated disorders. Front. Immunol. 2023, 14, 1297352. [Google Scholar] [CrossRef] [PubMed]
- Khaled, S.K.; Claes, K.; Goh, Y.T.; Kwong, Y.L.; Leung, N.; Mendrek, W.; Nakamura, R.; Sathar, J.; Ng, E.; Nangia, N.; et al. Narsoplimab, a Mannan-Binding Lectin-Associated Serine Protease-2 Inhibitor, for the Treatment of Adult Hematopoietic Stem-Cell Transplantation-Associated Thrombotic Microangiopathy. J. Clin. Oncol. 2022, 40, 2447–2457. [Google Scholar] [CrossRef] [PubMed]
- Pandrowala, A.; Ganatra, P.; Krishnan, V.P.; Sharma, A.N.; Chavan, S.; Bodhanwala, M.; Agarwal, B.; Hiwarkar, P. Narsoplimab for severe transplant-associated thrombotic microangiopathy. Thromb. J. 2023, 21, 26. [Google Scholar] [CrossRef]
- Watanabe-Kusunoki, K.; Anders, H.J. Balancing efficacy and safety of complement inhibitors. J. Autoimmun. 2024, 145, 103216. [Google Scholar] [CrossRef]
Regulatory Factor | Role |
---|---|
Factor I | Degradation of C3b and C4b |
Factor H and Factor R | Promotes the dissociation of the C3 convertase of the alternative pathway |
C4b-binding protein (C4BP) | Inhibits the classical and lectin pathways and also regulates the alternative pathway by acting as a cofactor for Factor I in C3b degradation |
MCP (Membrane Cofactor Protein, CD46) | Binds C3b and C4b and acts as a cofactor for Factor I in both the classical and alternative pathways |
DAF (Decay-Accelerating Factor, CD55) | Accelerates the dissociation of C3/C5 convertases in both the classical and alternative pathways |
Thrombomodulin (THBD) | Enhances the cofactor activity of Factor H and promotes the inactivation of the anaphylatoxins C3a and C5a |
CD59 (Protectin) | Prevents the incorporation of C9 into the C5b-8 complex, thereby inhibiting the formation of the membrane attack complex (MAC) |
Vitronectin (Protein S) | Binds to C5b-7 and C5b-8 complexes, preventing C9 polymerization and insertion into the membrane |
Clusterin (SP-40) | Inhibits MAC formation by binding to C5b-7 and C5b-8 complexes and preventing their membrane insertion |
High Complement Involvement | Intermediate Complement Involvement | Low Complement Involvement |
---|---|---|
Atypical hemolytic uremic syndrome C3-glomerulopathy Primary immune complex MPGN | ANCA-associated vasculitis IgA nephropathy Systemic lupus erythematosus Antiphospholipid antibody syndrome Membranous nephropathy Secondary TMA Secondary MPGN | Diabetic nephropathy Focal–segmental glomerulosclerosis |
Target | Inhibitors |
---|---|
Factor B | Iptacopan |
Factor D | Danicopan, Vemircopan |
MASP-2 | Narsoplimab |
C3, C3b | Pegcetacoplan |
C5 | Crovalimab, Eculizumab, Nomacopan, Ravulizumab |
C5a | Avacopan |
Study/Phase | Population | Treatment Duration | Key Outcomes |
---|---|---|---|
Phase 2 (Proof-of-concept) | 26 patients with native or recurrent C3G | 12 weeks |
|
Phase 2 Extension Study | Same cohort | 12 mo |
|
Phase 3 (APPEAR-c3G study) | Patients with C3G | 12 mo |
|
FDA approval granted in March 2025 for the treatment of C3G |
Disease | Effective Inhibitors | Outcomes |
---|---|---|
C3G | Pegcetacoplan, Iptacopan | ↓ Proteinuria, stabilized eGFR |
aHUS | Eculizumab, Ravulizumab | Improved renal function, ↓ TMA |
AAV | Avacopan | Remission, steroid-sparing, renal protection |
IgAN | Iptacopan | ↓ Proteinuria |
SLE (Lupus Nephritis) | Investigational C5 inhibitors | Ongoing trials |
MN | Investigational (C5/lectin pathway inhibitors) | Under investigation |
DN | Investigational (C5a, MASP inhibitors) | Adjunctive role under study |
FSGS | None established | Research phase |
Drug | Adverse Event |
---|---|
Pegcetacoplan (C3 inhibitor) |
|
Iptacopan (Factor B inhibitor) |
|
Eculizumab and Ravalizumab (C5 inhibitor) |
|
Avacopan (C5a receptor inhibitor) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apetrii, M.; Costache, A.D.; Costache Enache, I.I.; Voroneanu, L.; Covic, A.S.; Kanbay, M.; Covic, A. Complement System Inhibitors in Nephrology: An Update—Narrative Review. Int. J. Mol. Sci. 2025, 26, 5902. https://doi.org/10.3390/ijms26125902
Apetrii M, Costache AD, Costache Enache II, Voroneanu L, Covic AS, Kanbay M, Covic A. Complement System Inhibitors in Nephrology: An Update—Narrative Review. International Journal of Molecular Sciences. 2025; 26(12):5902. https://doi.org/10.3390/ijms26125902
Chicago/Turabian StyleApetrii, Mugurel, Alexandru Dan Costache, Irina Iuliana Costache Enache, Luminita Voroneanu, Andreea Simona Covic, Mehmet Kanbay, and Adrian Covic. 2025. "Complement System Inhibitors in Nephrology: An Update—Narrative Review" International Journal of Molecular Sciences 26, no. 12: 5902. https://doi.org/10.3390/ijms26125902
APA StyleApetrii, M., Costache, A. D., Costache Enache, I. I., Voroneanu, L., Covic, A. S., Kanbay, M., & Covic, A. (2025). Complement System Inhibitors in Nephrology: An Update—Narrative Review. International Journal of Molecular Sciences, 26(12), 5902. https://doi.org/10.3390/ijms26125902