Liraglutide Reduces Liver Steatosis and Improves Metabolic Indices in Obese Patients Without Diabetes: A 3-Month Prospective Study
Abstract
1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. The Impact of Liraglutide Therapy on Liver Steatosis (Measured by FibroScan®)
2.3. Impact of Liraglutide Therapy on Hepatic Steatosis Assessment Algorithms
2.4. Exploratory Markers in Liver Steatosis
2.5. Impact on Body Weight and Markers of Insulin Resistance
2.6. Correlations
2.7. Safety and Adverse Effects
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Inclusion and Exclusion Criteria
4.3. Anthropometric and Laboratory Assessments
4.4. Liver Steatosis Assessment
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
HIS | Hepatic Steatosis Index |
NLFS | NAFLD Liver Fat Score |
HOMA-IR | Homeostasis Model Assessment of Insulin Resistance |
QUICKI | Quantitative Insulin Sensitivity Check Index |
METS-IR | Metabolic Score for Insulin Resistance |
TyG | Triglyceride-Glucose index |
NAFLD | Non-Alcoholic Fatty Liver Disease |
MASH | Metabolic Dysfunction-Associated Steatohepatitis |
AST | Aspartate aminotransferase |
ALT | Alanine aminotransferase |
IFN-γ | Interferon gamma |
TNF-α | Tumor Necrosis Factor alpha |
GLP-1 | Glucagon-Like Peptide-1 |
FIB-4 | Fibrosis-4 index |
BMI | Body Mass Index |
SD | Standard Deviation |
Q1 | First quartile |
Q3 | Third quartile |
TCh | Total Cholesterol |
LDL | Low-Density Lipoprotein cholesterol |
HDL | High-Density Lipoprotein cholesterol |
TG | Triglycerides |
nHDL | non-HDL cholesterol |
Cr | Creatinine |
UA | Uric Acid |
Na | Natrium |
RBC | Red Blood Cells |
Hgb | Hemoglobin |
PLT | Platelets |
GGT | Gamma-glutamyl Transferase |
Bil | Bilirubine |
ALP | Alkaline Phosphatase |
HbA1 | Glycated Hemoglobin |
Glu | Glucose |
K | Potassium |
Cl | Chloride |
MCV | Mean Corpuscular Volume |
CAP | Controlled Attenuation Parameter® |
HDL | High-Density Lipoprotein |
APOA1 | Apolipoprotein A1 |
TIMP1 | Tissue Inhibitors of Metalloproteinase 1 |
a2M | Alpha-2-Macroglobulin |
MRI-PDFF | MRI proton density fat fraction |
apoA1 | Apolipoprotein A1 |
WC | Waist circumference |
WHR | Waist-to-hip ratio |
References
- Huang, D.Q.; Terrault, N.A.; Tacke, F.; Gluud, L.L.; Arrese, M.; Bugianesi, E.; Loomba, R. Global Epidemiology of Cirrhosis—Aetiology, Trends and Predictions. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 388–398. [Google Scholar] [CrossRef]
- Unalp-Arida, A.; Ruhl, C.E. Prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease and Fibrosis Defined by Liver Elastography in the United States Using National Health and Nutrition Examination Survey 2017-March 2020 and August 2021–August 2023 Data. Hepatology 2024. [Google Scholar] [CrossRef]
- Amini-Salehi, E.; Letafatkar, N.; Norouzi, N.; Joukar, F.; Habibi, A.; Javid, M.; Sattari, N.; Khorasani, M.; Farahmand, A.; Tavakoli, S.; et al. Global Prevalence of Nonalcoholic Fatty Liver Disease: An Updated Review Meta-Analysis Comprising a Population of 78 Million from 38 Countries. Arch. Med. Res. 2024, 55, 103043. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, J.; Zhong, Y.; He, C.; Hu, F. Healthy Lifestyle and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Study of the Efficacy of Fatty Liver Regression. Clin. Transl. Gastroenterol. 2025, 16, e00806. [Google Scholar] [CrossRef]
- Sadeghi, S.; Hosseinpanah, F.; Khalaj, A.; Mahdavi, M.; Valizadeh, M.; Taheri, H.; Barzin, M. The Journey of MASLD: Tracking Resolution, Relapse, and Predictive Factors after Sleeve Gastrectomy and One-Anastomosis Gastric Bypass, a Propensity Score-Matched Cohort Study. Diabetes Res. Clin. Pract. 2025, 219, 111969. [Google Scholar] [CrossRef]
- Martínez-Montoro, J.I.; Arranz-Salas, I.; Gutiérrez-Repiso, C.; Sánchez-García, A.; Ocaña-Wilhelmi, L.; Pinazo-Bandera, J.M.; Fernández-García, D.; Muñoz-Garach, A.; Morales-García, D.; García-Cortés, M.; et al. Weight Loss After Sleeve Gastrectomy According to Metabolic Dysfunction-Associated Steatotic Liver Disease Stage in Patients with Obesity: A Liver Biopsy-Based Prospective Study. Nutrients 2024, 16, 3857. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.; Shikora, S.; Eisenberg, D.; Angrisani, L.; Parmar, C.; Alqahtani, A.; Aminian, A.; Aarts, E.; Brown, W.; Cohen, R.V.; et al. Scientific Evidence for the Updated Guidelines on Indications for Metabolic and Bariatric Surgery (IFSO/ASMBS). Obes. Surg. 2024, 34, 3963–4096. [Google Scholar] [CrossRef]
- Forner, P.; Hocking, S. Pharmacotherapy for the Management of Overweight and Obesity. Aust. J. Gen. Pract. 2025, 54, 196–201. [Google Scholar] [CrossRef]
- Christaki, E.; Protopapa, C.; Siamidi, A.; Vlachou, M. Obesity Management: An Update on the Available Pharmacotherapy. Innov. Med. Omics 2025, 2, 8316. [Google Scholar] [CrossRef]
- Targher, G.; Mantovani, A.; Byrne, C.D.; Tilg, H. Recent Advances in Incretin-Based Therapy for MASLD: From Single to Dual or Triple Incretin Receptor Agonists. Gut 2025, 74, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Bołdys, A.; Bułdak, Ł.; Skudrzyk, E.; Machnik, G.; Okopień, B. The Impact of Glucagon and Exenatide on Oxidative Stress Levels and Antioxidative Enzyme Expression in in Vitro Induced Steatosis in HepG2 Cell Culture. Endokrynol. Pol. 2024, 75, 419–427. [Google Scholar] [CrossRef]
- Parameswaran, M.; Hasan, H.A.; Sadeque, J.; Jhaveri, S.; Avanthika, C.; Arisoyin, A.E.; Dhanani, M.B.; Rath, S.M. Factors That Predict the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Cureus 2021, 13, e20776. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A.; Pedra, G.; Ruiz-Casas, L.; Franks, B.; Dhillon, H.; Fernandes, J.D.d.R.; Mangla, K.K.; Augusto, M.; Romero-Gómez, M.; Schattenberg, J.M. Risk Factors for Fibrosis Progression in Non-Alcoholic Steatohepatitis: Analysis of the European Cohort in the Real-World GAIN Study. Gastroenterol. Y Hepatol. 2024, 47, 463–472. [Google Scholar] [CrossRef]
- Yanai, H.; Adachi, H.; Hakoshima, M.; Iida, S.; Katsuyama, H. Metabolic-Dysfunction-Associated Steatotic Liver Disease-Its Pathophysiology, Association with Atherosclerosis and Cardiovascular Disease, and Treatments. Int. J. Mol. Sci. 2023, 24, 15473. [Google Scholar] [CrossRef] [PubMed]
- Hartleb, M.; Wunsch, E.; Cichoż-Lach, H.; Drobnik, J.; Mastalerz-Migas, A. Management of Patients with Non-Alcoholic Fatty Liver Disease (NAFLD)—Recommendations for General Practitioners. Based on the Guidelines of the Polish Group of Experts on NAFLD. Lek. POZ 2019, 5, 323–334. [Google Scholar]
- Tomasiewicz, K.; Flisiak, R.; Halota, W.; Jaroszewicz, J.; Lebensztejn, D.; Lisik, W.; Małkowski, P.; Pawłowska, M.; Piekarska, A.; Simon, K.; et al. Recommendations for the Management of Non-Alcoholic Fatty Liver Disease (NAFLD). Clin. Exp. Hepatol. 2018, 4, 153–157. [Google Scholar] [CrossRef]
- Wang, W.; Huang, L.; Qiu, X.P.; Tu, M.; Guo, X.L. Monocytes to Apolipoprotein A1 Ratio Is Associated with Metabolic Dysfunction-Associated Fatty Liver Disease in Type 2 Diabetes Mellitus. Sci. Rep. 2024, 14, 31396. [Google Scholar] [CrossRef]
- Yang, M.H.; Sung, J.; Gwak, G.-Y. The Associations between Apolipoprotein B, A1, and the B/A1 Ratio and Nonalcoholic Fatty Liver Disease in Both Normal-Weight and Overweight Korean Population. J. Clin. Lipidol. 2016, 10, 289–298. [Google Scholar] [CrossRef]
- Aktary, M.L.; Eller, L.K.; Nicolucci, A.C.; Reimer, R.A. Cross-Sectional Analysis of the Health Profile and Dietary Intake of a Sample of Canadian Adults Diagnosed with Non-Alcoholic Fatty Liver Disease. Food Nutr. Res. 2020, 64. [Google Scholar] [CrossRef]
- Korakas, E.; Kountouri, A.; Pavlidis, G.; Oikonomou, E.; Vrentzos, E.; Michalopoulou, E.; Tsigkou, V.; Katogiannis, K.; Pliouta, L.; Balampanis, K.; et al. Semaglutide Concurrently Improves Vascular and Liver Indices in Patients With Type 2 Diabetes and Fatty Liver Disease. J. Endocr. Soc. 2024, 8, bvae122. [Google Scholar] [CrossRef] [PubMed]
- Nixdorf, L.; Hartl, L.; Ströhl, S.; Felsenreich, D.M.; Mairinger, M.; Jedamzik, J.; Richwien, P.; Mozayani, B.; Semmler, G.; Balcar, L.; et al. Rapid Improvement of Hepatic Steatosis and Liver Stiffness after Metabolic/Bariatric Surgery: A Prospective Study. Sci. Rep. 2024, 14, 17558. [Google Scholar] [CrossRef]
- Kirwan, J.P.; Axelrod, C.L.; Kullman, E.L.; Malin, S.K.; Dantas, W.S.; Pergola, K.; Del Rincon, J.P.; Brethauer, S.A.; Kashyap, S.R.; Schauer, P.R. Foregut Exclusion Enhances Incretin and Insulin Secretion After Roux-En-Y Gastric Bypass in Adults With Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2021, 106, e4192–e4201. [Google Scholar] [CrossRef] [PubMed]
- Pozowski, P.; Bilski, M.; Bedrylo, M.; Sitny, P.; Zaleska-Dorobisz, U. Modern Ultrasound Techniques for Diagnosing Liver Steatosis and Fibrosis: A Systematic Review with a Focus on Biopsy Comparison. World J. Hepatol. 2025, 17, 100033. [Google Scholar] [CrossRef] [PubMed]
- Reeder, S.B.; Hu, H.H.; Sirlin, C.B. Proton Density Fat—Fraction: A Standardized Mr—Based Biomarker of Tissue Fat Concentration. Magn. Reson. Imaging 2012, 36, 1011–1014. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef]
- Tudor, M.S.; Gheorman, V.; Simeanu, G.-M.; Dobrinescu, A.; Pădureanu, V.; Dinescu, V.C.; Forțofoiu, M.-C. Evolutive Models, Algorithms and Predictive Parameters for the Progression of Hepatic Steatosis. Metabolites 2024, 14, 198. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Obes. Facts 2024, 17, 374–444. [Google Scholar] [CrossRef]
- Buldak, L.; Machnik, G.; Skudrzyk, E.; Boldys, A.; Maliglowka, M.; Kosowski, M.; Basiak, M.; Buldak, R.J.; Okopien, B. Exenatide Prevents Statin-Related LDL Receptor Increase and Improves Insulin Secretion in Pancreatic Beta Cells (1.1E7) in a Protein Kinase A-Dependent Manner. J. Appl. Biomed. 2022, 20, 130–140. [Google Scholar] [CrossRef]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like Peptide-1 Receptor: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2024, 9, 234. [Google Scholar] [CrossRef]
- Mashayekhi, M.; Nian, H.; Mayfield, D.; Devin, J.K.; Gamboa, J.L.; Yu, C.; Silver, H.J.; Niswender, K.; Luther, J.M.; Brown, N.J. Weight Loss-Independent Effect of Liraglutide on Insulin Sensitivity in Individuals With Obesity and Prediabetes. Diabetes 2024, 73, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Rivera, F.B.; Chin, M.N.C.; Pine, P.L.S.; Ruyeras, M.M.J.; Galang, D.J.C.; Gandionco, K.M.; Morales, B.L.F.D.; Climaco, Z.M.V.; Bantayan, N.R.B.; Magalong, J.V.; et al. Glucagon-like Peptide 1 Receptor Agonists Modestly Reduced Low-Density Lipoprotein Cholesterol and Total Cholesterol Levels Independent of Weight Reduction: A Meta-Analysis and Meta-Regression of Placebo Controlled Randomized Controlled Trials. Curr. Med. Res. Opin. 2025, 41, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Liu, D.; Liu, Q.; Wang, X.; Ma, X.; Pan, H.; Feng, S.; Sun, Z.; Qiao, W.; Yang, M.; et al. Revisiting an Old Relationship: The Causal Associations of the ApoB/ApoA1 Ratio with Cardiometabolic Diseases and Relative Risk Factors-a Mendelian Randomization Analysis. Cardiovasc. Diabetol. 2024, 23, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, Y.; Tu, M.; Chen, H.J. Triglycerides to Apolipoprotein A1 Ratio: An Effective Insulin Resistance-Associated Index in Identifying Metabolic Dysfunction-Associated Fatty Liver Disease in Type 2 Diabetes Mellitus. Front. Endocrinol. 2024, 15, 1384059. [Google Scholar] [CrossRef]
- Mehta, M.; Shah, J.; Joshi, U. Understanding Insulin Resistance in NAFLD: A Systematic Review and Meta-Analysis Focused on HOMA-IR in South Asians. Cureus 2024, 16, e70768. [Google Scholar] [CrossRef]
- Tahapary, D.L.; Pratisthita, L.B.; Fitri, N.A.; Marcella, C.; Wafa, S.; Kurniawan, F.; Rizka, A.; Tarigan, T.J.E.; Harbuwono, D.S.; Purnamasari, D.; et al. Challenges in the Diagnosis of Insulin Resistance: Focusing on the Role of HOMA-IR and Tryglyceride/Glucose Index. Diabetes Metab. Syndr. 2022, 16, 102581. [Google Scholar] [CrossRef]
- Minh, H.V.; Tien, H.A.; Sinh, C.T.; Thang, D.C.; Chen, C.-H.; Tay, J.C.; Siddique, S.; Wang, T.-D.; Sogunuru, G.P.; Chia, Y.-C.; et al. Assessment of Preferred Methods to Measure Insulin Resistance in Asian Patients with Hypertension. J. Clin. Hypertens. 2021, 23, 529–537. [Google Scholar] [CrossRef]
- Duan, M.; Zhao, X.; Li, S.; Miao, G.; Bai, L.; Zhang, Q.; Yang, W.; Zhao, X. Metabolic Score for Insulin Resistance (METS-IR) Predicts All-Cause and Cardiovascular Mortality in the General Population: Evidence from NHANES 2001-2018. Cardiovasc. Diabetol. 2024, 23, 243. [Google Scholar] [CrossRef]
- Brandfon, S.; Eylon, A.; Khanna, D.; Parmar, M.S. Advances in Anti-Obesity Pharmacotherapy: Current Treatments, Emerging Therapies, and Challenges. Cureus 2023, 15, e46623. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, K.; Park, S.; Oh, J.; Park, J.; Jo, H.; Lee, H.; Cho, J.; Wen, X.; Cho, H.; et al. Adverse Drug Reaction Patterns of GLP --1 Receptor Agonists Approved for Obesity Treatment: Disproportionality Analysis from Global Pharmacovigilance Database. Diabetes Obes. Metab. 2025, 27, 3490–3502. [Google Scholar] [CrossRef]
- Kotronen, A.; Peltonen, M.; Hakkarainen, A.; Sevastianova, K.; Bergholm, R.; Johansson, L.M.; Lundbom, N.; Rissanen, A.; Ridderstråle, M.; Groop, L.; et al. Prediction of Non-Alcoholic Fatty Liver Disease and Liver Fat Using Metabolic and Genetic Factors. Gastroenterology 2009, 137, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.; Lu, S.; Xie, Q.; Peng, N.; Kuang, M.; Zou, Y. The Usefulness of Obesity and Lipid-Related Indices to Predict the Presence of Non-Alcoholic Fatty Liver Disease. Lipids Health Dis. 2021, 20, 134. [Google Scholar] [CrossRef] [PubMed]
Number of Patients | Age—Years (Mean ± SD) | BMI Before—kg/m2 (Mean ± SD or Median; Q1,Q3) | BMI After—kg/m2 (Mean ± SD or Median; Q1,Q3) | Body Weight Before—kg (Mean ± SD) | Body Weight After—kg (Mean ± SD or Median; Q1,Q3) | p-Value | WC Before—cm (Median; Q1,Q3) | WC After—cm (Median; Q1,Q3) | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|
Total | 28 | 49.1 ± 11.6 | 35.63 ± 5.10 | 33.81 ± 4.97 | 102.32 ± 17.53 | 97.41 (89.28; 100) | <0.001 | 98.1 (94.4; 109.7) | 96.2 (90.4; 103.5) | <0.001 |
Women | 19 | 49.9 ± 12.9 | 35.27 ± 4.72 | 33.5 ± 4.65 | 96.68 ± 11.58 | 91.86 ± 11.78 | <0.001 | 97.9 (93.7; 110.6) | 96.1 (90.2; 103.0) | <0.001 |
Men | 9 | 47.3 ± 8.6 | 35.06 (33.16; 36.39) | 34.47 ± 5.83 | 114.22 ± 22.36 | 109.13 ± 21.98 | <0.05 | 98.7 (95.5; 108.6) | 96.3 (92.7; 104.7) | <0.05 |
Parameter | Before Treatment | After Treatment | p-Value | Reference Range/Desired Value | ||||
Mean | SD | Mean | SD | |||||
TCh (mg/dL) | 189.45 | 44.25 | 174.66 | 50.86 | 0.22 | <190 | ||
LDL (mg/dL) | 104.27 | 43.94 | 96.91 | 46.95 | 0.55 | <115 | ||
HDL (mg/dL) | 55.34 | 15.84 | 52.99 | 13.68 | 0.11 | >60 | ||
TG (mg/dL) | 151.09 | 86.91 | 121.44 | 58.47 | <0.05 | <150 | ||
nHDL (mg/dL) | 134.10 | 44.93 | 121.67 | 48.82 | 0.32 | <145 | ||
UA (mg/dL) | 6.36 | 1.46 | 6.08 | 1.47 | 0.09 | 2.40–5.70 | ||
Cr (mg/dL) | 0.87 | 0.13 | 0.89 | 0.15 | 0.21 | 0.51–0.95 | ||
Na (mmol/L) | 139.14 | 1.54 | 140.11 | 2.11 | <0.05 | 136.0–145.0 | ||
RBC (106/μL) | 4.90 | 0.53 | 4.85 | 0.58 | 0.74 | 3.7–5.0 | ||
Hgb (g/dL) | 14.57 | 1.70 | 14.78 | 1.53 | 0.16 | 11.5–15.0 | ||
PLT (103/μL) | 267.89 | 62.25 | 289.39 | 67.83 | 0.11 | 130–400 | ||
Median | Q1 | Q3 | Median | Q1 | Q3 | p-Value | ||
ALT (UI/mL) | 30.20 | 22.15 | 47.80 | 28.15 | 21.53 | 43.33 | 0.07 | <35.0 |
AST (UI/mL) | 23.75 | 20.78 | 33.45 | 24.55 | 20.35 | 33.48 | 0.52 | <35.0 |
GGT (UI/mL) | 27.90 | 20.93 | 39.73 | 22.85 | 16.19 | 35.13 | <0.05 | <40 |
Bil (mg/dL) | 0.48 | 0.39 | 0.72 | 0.46 | 0.37 | 0.59 | <0.05 | 0.30–1.20 |
ALP (UI/mL) | 63.00 | 60.00 | 79.25 | 65.00 | 55.50 | 75.25 | 0.06 | 35–104 |
HbA1c (%) | 5.65 | 5.33 | 5.93 | 5.53 | 5.23 | 5.95 | <0.05 | 4.80–5.90 |
Insulin (µU/mL) | 17.30 | 9.62 | 26.65 | 18.25 | 11.87 | 24.43 | 0.56 | 2.6–24.9 |
Glu (mg/dL) | 98.45 | 88.90 | 105.00 | 90.85 | 83.48 | 100 | <0.05 | 70.00–99.00 |
K (mmol/L) | 4.33 | 4.10 | 4.55 | 4.36 | 4.20 | 4.50 | 0.71 | 3.50–5.10 |
Cl (mmol/L) | 102.95 | 101.15 | 102.70 | 102.20 | 100.60 | 103.40 | 0.32 | 98.00–107.00 |
MCV (fL) | 88.90 | 87.30 | 91.60 | 90.75 | 87.53 | 92.70 | <0.05 | 84–98 |
Parameter | Before Treatment | After Treatment | p-Value | ||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | ||
CAP (dB/m) | 305 | 232.5 | 325.5 | 268 | 241.5 | 297.0 | <0.05 |
steatosis | 3 | 1 | 3 | 2 | 1 | 3 | 0.08 |
Parameter | Before Treatment | After Treatment | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
HSI | 47.38 | 5.92 | 44.99 | 5.85 | <0.001 | ||
Median | Q1 | Q3 | Median | Q1 | Q3 | ||
NLFS | 1.83 | 0.12 | 3.04 | 1.35 | 0.08 | 2.84 | 0.91 |
Parameter | Before Treatment | After Treatment | p-Value | ||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | ||
APOA1 (µg/mL) | 73.60 | 60.60 | 83.20 | 67.30 | 55.90 | 80.25 | <0.05 |
TIMP1 (µg/mL) | 129.35 | 99.50 | 150.90 | 131.35 | 94.25 | 145.15 | 0.16 |
a2M (µg/L) | 223.30 | 180.85 | 283.88 | 246.80 | 204.15 | 353.63 | 0.2 |
Parameter | Before Treatment | After Treatment | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
QUICKI | 0.31 | 0.04 | 0.31 | 0.04 | 0.79 | ||
METS-IR | 53.01 | 10.93 | 49.68 | 10.13 | <0.001 | ||
TyG | 8.82 | 0.68 | 8.56 | 0.47 | <0.05 | ||
Median | Q1 | Q3 | Median | Q1 | Q3 | ||
HOMA-IR | 4.36 | 2.38 | 6.92 | 4.09 | 2.49 | 6.24 | 0.69 |
%Δ Body Weight | ||
---|---|---|
R | p | |
%Δ HSI | 0.413 | <0.05 |
%Δ QUICKI | −0.424 | <0.05 |
%Δ METS-IR | 0.694 | <0.001 |
%Δ TyG | 0.282 | 0.147 |
%Δ HOMA-IR | 0.426 | <0.05 |
%Δ NLFS | 0.034 | 0.418 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bołdys, A.; Bułdak, Ł.; Nicze, M.; Okopień, B. Liraglutide Reduces Liver Steatosis and Improves Metabolic Indices in Obese Patients Without Diabetes: A 3-Month Prospective Study. Int. J. Mol. Sci. 2025, 26, 5883. https://doi.org/10.3390/ijms26125883
Bołdys A, Bułdak Ł, Nicze M, Okopień B. Liraglutide Reduces Liver Steatosis and Improves Metabolic Indices in Obese Patients Without Diabetes: A 3-Month Prospective Study. International Journal of Molecular Sciences. 2025; 26(12):5883. https://doi.org/10.3390/ijms26125883
Chicago/Turabian StyleBołdys, Aleksandra, Łukasz Bułdak, Michał Nicze, and Bogusław Okopień. 2025. "Liraglutide Reduces Liver Steatosis and Improves Metabolic Indices in Obese Patients Without Diabetes: A 3-Month Prospective Study" International Journal of Molecular Sciences 26, no. 12: 5883. https://doi.org/10.3390/ijms26125883
APA StyleBołdys, A., Bułdak, Ł., Nicze, M., & Okopień, B. (2025). Liraglutide Reduces Liver Steatosis and Improves Metabolic Indices in Obese Patients Without Diabetes: A 3-Month Prospective Study. International Journal of Molecular Sciences, 26(12), 5883. https://doi.org/10.3390/ijms26125883