Extracellular Vesicles as Targeted Communicators in Complementary Medical Treatments
Abstract
1. Introduction
2. Fields and Hidden Micro-Level Processes
3. Vesicles and Exosomes as Darwin’s Gemmules
4. Vesicular Theory as the Basis of Meridians
5. Proposed Theory for Development of Meridians
- Vesicular communication is a key feature of multicellular development since it provides a process by which cells in the same tissue or region identify with and conform to the regulatory processes that must exist in multicellular organisms to enable them to develop. Those communication processes develop in the embryo.
- It is then plausible that cells that developed such communication early in embryonic development may still possess those communication connections when they become far apart in embryonic development.
- There is then no difficulty in understanding how surface therapeutic interventions may influence internal organs and systems. It would be a perfectly natural outcome of embryological development.
6. Molecular Composition and Targeting Mechanisms of Vesicular Communication
Targeting Peptide/Protein | Receptor | Target Cells/Organ | Function | Reference |
---|---|---|---|---|
IRGD peptide | Lamp2b | Breast cancer cell | Targeting delivery of DOX and effectively inhibit tumor growth | [45] |
CSTSMLKAC peptide | Lamp2b | Ischemic myocardium | Reduce inflammation, apoptosis and fibrosis, enhance angiogenesis, and cardiac function | [46] |
c (RgdyK) peptide | Integrin ovß3 | Ischemic brain injury area | Targeting delivery of curcumin inhibits the inflammatory response in lesion area | [45] |
RGE peptide | Neurokinin-1 | Glioma | Targeting delivery of cur | [47] |
c-Met binding peptide | c-Met | TNBC cells | Targeting delivery of DOX | [48] |
GEII peptide | EGFR | Breast cancer cell | Targeting delivery of the tumor inhibitory miRNA | [49] |
RVG peptide | Lamp2b | Brain neurons, microglia, and oligodendrocytes | Targeting delivery of siRNA and knockdown of Alzheimer’s disease-related genes | [50] |
RVG peptide | Acetylcholine receptor | Neuron cell | Targeting delivery opioid receptor mu siRNA to treat morphine addiction | [51] |
ApoA1 | SR-Bl receptor | Liver cancer cells | Targeting delivery Functional miR-26a | [52] |
7. Therapeutic Potential and Use as Markers of Disease States
8. Resurrection of Darwin’s Pangenesis Theory
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Craig Mitchell, F.Y.; Wiseman, N.; Lun, S.H. On Cold Damage; Churchill Livingstone: London, UK, 2000. [Google Scholar]
- Harper, D. Early Chinese Medical Literature: The Wawangdui Medical Manuscripts; Kegan Paul International: New York, NY, USA, 1998. [Google Scholar]
- Liu, J.-L.; Jing, X.-H.; Shi, H.; Chen, S.-P.; He, W.; Bai, W.-Z.; Zhu, B. Historical review about research on “Bonghan system” in China. Evid.-Based Complement. Altern. Med. 2013, 2013, 636081. [Google Scholar] [CrossRef] [PubMed]
- Soh, K.-S.; Kang, K.A.; Ryu, Y.H. 50 years of Bong-han theory and 10 years of primo vascular system. Evid.-Based Complement. Altern. Med. 2013, 2013, 587827. [Google Scholar] [CrossRef]
- Soh, K.-S. Reviews on recent Korean works on Bonghan systems. J. Int. Soc. Life Inf. Sci. 2005, 23, 82–88. [Google Scholar]
- Yamaoka, D. Comments on Professor Denis Noble’s OPINION article in The Journal of Physiology. J. Physiol. 2023, 601. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. On the Origins of Species by Means of Natural Selection; Murray: London, UK, 1859; Volume 247. [Google Scholar]
- Romanes, G. Darwin and After Darwin; CUP: Cambridge, UK, 1893. [Google Scholar]
- Lamarck, J.-B. Philosophie Zoologique; Flammarion: Paris, France, 1809. [Google Scholar]
- Darwin, C. The Variation of Animals and Plants Under Domestication, 1st ed.; John Murray: London, UK, 1868; Volume 2. [Google Scholar]
- Liu, Y. A new perspective on Darwin’s Pangenesis. Biol. Rev. 2008, 83, 141–149. [Google Scholar] [CrossRef]
- Weismann, A. The Germ-Plasm Theory of Heredity; Charles Scribener’s Sons: New York, NY, USA, 1893. [Google Scholar]
- Edelstein, L.R.; Smythies, J.R.; Quesenberry, P.J.; Noble, D. Exosomes: A Clinical Compendium; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Ohsumi, Y. Molecular mechanisms of autophagy in yeast. Nobel Lect. Dec. 2016, 7, 2016. [Google Scholar]
- Smith, K.; Spadafora, C. Sperm-mediated gene transfer: Applications and implications. Bioessays 2005, 27, 551–562. [Google Scholar] [CrossRef]
- Spadafora, C. The “evolutionary field” hypothesis. Non-Mendelian transgenerational inheritance mediates diversification and evolution. Prog. Biophys. Mol. Biol. 2018, 134, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Noble, D. Exosomes, gemmules, pangenesis and Darwin. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 487–501. [Google Scholar] [CrossRef]
- Phillips, D.; Noble, D. Bubbling beyond the barrier: Exosomal RNA as a vehicle for soma–germline communication. J. Physiol. 2024, 602, 2547–2563. [Google Scholar] [CrossRef]
- Wolf, P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 1967, 13, 269–288. [Google Scholar] [CrossRef]
- Li, N.-C.; Li, M.-Y.; Lu, Z.-X.; Li, M.-Y.; Zhuo, X.-M.; Chen, Y.; Wang, T.-T.; Xing, L.-Y.; Wang, M.-J.; Shan, K. Exosome is an important novel way of acupuncture information transmission. World J. Tradit. Chin. Med. 2020, 6, 377–383. [Google Scholar]
- Mo, C.; Zhao, J.; Liang, J.; Wang, H.; Chen, Y.; Huang, G. Exosomes: A novel insight into traditional Chinese medicine. Front. Pharmacol. 2022, 13, 844782. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Zhou, X.; Shi, L.-Q.; Chen, H.-Y.; Lu, M.; Ma, X.-D.; Ren, L. Exosomes may be the carrier of acupuncture treatment for major depressive disorder. Front. Behav. Neurosci. 2023, 17, 1107265. [Google Scholar] [CrossRef] [PubMed]
- Holme, B.; Bjornerud, B.; Pedersen, N.M.; de la Ballina, L.R.; Wesche, J.; Haugsten, E.M. Automated tracking of cell migration in phase contrast images with CellTraxx. Sci. Rep. 2023, 13, 22982. [Google Scholar] [CrossRef]
- Tremblay, K.D.; Zaret, K.S. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev. Biol. 2005, 280, 87–99. [Google Scholar] [CrossRef]
- Corbeil, D.; Lorico, A. Exosomes, microvesicles, and their friends in solid tumors. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 39–80. [Google Scholar] [CrossRef]
- Raimondo, S.; Saieva, L.; Alessandro, R. Hematologic malignancies: The exosome contribution in tumor progression. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 81–100. [Google Scholar] [CrossRef]
- Urabe, F.; Kosaka, N.; Asano, K.; Egawa, S.; Ochiya, T. Physiological and pathological functions of prostasomes: From basic research to clinical application. In Exosomes. A clinical Compendium; Edelstein, L., Smythies, J., Quesenberry, P., Noble, D., Eds.; Academic Press: Amsterdam, The Netherlands, 2020; pp. 101–1121. [Google Scholar] [CrossRef]
- Cheng, Y.; Schorey, J.S. The function and therapeutic use of exosomes in bacterial infections. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 123–146. [Google Scholar] [CrossRef]
- Pang, S.-W.; Teow, S.-Y. Emerging therapeutic roles of exosomes in HIV-1 infection. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 147–178. [Google Scholar] [CrossRef]
- Xander, P.; Cronemberger-Andrade, A.; Torrecilhas, A.C. Extracellular vesicles in parasitic disease. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 179–198. [Google Scholar] [CrossRef]
- Deftu, A.T.; Radu, B.M.; Cretoiu, D.; Deftu, A.F.; Cretoiu, S.M.; Xiao, J. Exosomes as intercellular communication messengers for cardiovascular and cerebrovascular diseases. Exosomes 2020, 199–238. [Google Scholar] [CrossRef]
- McBride, J.D.; Aickara, D.; Badiavas, E. Exosomes in cutaneous biology and dermatologic disease. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 239–255. [Google Scholar] [CrossRef]
- Hunter, R.W.; Dear, J.W.; Bailey, M.A. Exosomes in nephrology. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 257–283. [Google Scholar] [CrossRef]
- Mäger, I.; Willms, E.; Bonner, S.; Hill, A.F.; Wood, M.J. Extracellular vesicles in neurodegenerative disorders. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 285–305. [Google Scholar] [CrossRef]
- Kadota, T.; Kosaka, N.; Fujita, Y.; Araya, J.; Kuwano, K.; Ochiya, T. Extracellular vesicles in fibrotic diseases: New applications for fibrosis diagnosis and treatment. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 307–323. [Google Scholar] [CrossRef]
- Costantini, T.W.; Coimbra, R.; Eliceiri, B.P. Mechanisms of exosome-mediated immune cell crosstalk in inflammation and disease. Exosomes 2020, 325–342. [Google Scholar] [CrossRef]
- Le Lay, S.; Andriantsitohaina, R.; Martinez, M.C. Exosomes in metabolic syndrome. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 343–356. [Google Scholar] [CrossRef]
- Nair, S.; Salomon, C. Potential role of exosomes in reproductive medicine and pregnancy. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 357–381. [Google Scholar] [CrossRef]
- Alipoor, S.D.; Mortaz, E. Exosomes in respiratory disease. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 383–414. [Google Scholar] [CrossRef]
- Weber, S.R.; Zhou, M.; Zhao, Y.; Sundstrom, J.M. Exosomes in retinal diseases. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 415–431. [Google Scholar] [CrossRef]
- Zhou, Y.; Kosaka, N.; Xiao, Z.; Ochiya, T. MSC-exosomes in regenerative medicine. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 433–465. [Google Scholar] [CrossRef]
- Conigliaro, A.; Corrado, C.; Fontana, S.; Alessandro, R. Exosome basic mechanisms. In Exosomes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–21. [Google Scholar] [CrossRef]
- He, J.; Ren, W.; Wang, W.; Han, W.; Jiang, L.; Zhang, D.; Guo, M. Exosomal targeting and its potential clinical application. Drug. Deliv. Transl. Res. 2022, 12, 2385–2402. [Google Scholar] [CrossRef]
- Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef]
- Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014, 35, 2383–2390. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Zhao, Z.; Meng, Q.; Yu, Y.; Sun, J.; Yang, Z.; Chen, Y.; Li, J.; Ma, T. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J. Am. Heart Assoc. 2018, 7, e008737. [Google Scholar] [CrossRef]
- Jia, G.; Han, Y.; An, Y.; Ding, Y.; He, C.; Wang, X.; Tang, Q. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018, 178, 302–316. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, Y.; Ding, F.; Yang, J.; Li, J.; Gao, X.; Zhang, C.; Feng, J. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. Nanoscale 2020, 12, 10854–10862. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.-I.; Takanashi, M.; Sudo, K.; Ueda, S.; Ishikawa, A.; Matsuyama, N.; Fujita, K.; Mizutani, T.; Ohgi, T.; Ochiya, T. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 2013, 21, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Liu, Z.; Zhou, Y.; Chu, D.; Li, X.; Jiang, X.; Hou, D.; Chen, X.; Chen, Y. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci. Rep. 2015, 5, 17543. [Google Scholar] [CrossRef]
- Liang, G.; Kan, S.; Zhu, Y.; Feng, S.; Feng, W.; Gao, S. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int. J. Nanomed. 2018, 13, 585–599. [Google Scholar] [CrossRef]
- El-Andaloussi, S.; Lee, Y.; Lakhal-Littleton, S.; Li, J.; Seow, Y.; Gardiner, C.; Alvarez-Erviti, L.; Sargent, I.L.; Wood, M.J. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat. Protoc. 2012, 7, 2112–2126. [Google Scholar] [CrossRef]
- Urabe, F.; Patil, K.; Ramm, G.A.; Ochiya, T.; Soekmadji, C. Extracellular vesicles in the development of organ-specific metastasis. J. Extracell. Vesicles 2021, 10, e12125. [Google Scholar] [CrossRef]
- Frolova, L.; Li, I.T.S. Targeting Capabilities of Native and Bioengineered Extracellular Vesicles for Drug Delivery. Bioengineering 2022, 9, 496. [Google Scholar] [CrossRef]
- Wiklander, O.P.; Brennan, M.Á.; Lötvall, J.; Breakefield, X.O.; El Andaloussi, S. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 2019, 11, eaav8521. [Google Scholar] [CrossRef] [PubMed]
- Escude Martinez de Castilla, P.; Tong, L.; Huang, C.; Sofias, A.M.; Pastorin, G.; Chen, X.; Storm, G.; Schiffelers, R.M.; Wang, J.W. Extracellular vesicles as a drug delivery system: A systematic review of preclinical studies. Adv. Drug. Deliv. Rev. 2021, 175, 113801. [Google Scholar] [CrossRef] [PubMed]
- Hopkin, K. Core Concept: Extracellular vesicles garner interest from academia and biotech. Proc. Natl. Acad. Sci. USA 2016, 113, 9126–9128. [Google Scholar] [CrossRef]
- Candelario, K.M.; Steindler, D.A. The role of extracellular vesicles in the progression of neurodegenerative disease and cancer. Trends. Mol. Med. 2014, 20, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Mizenko, R.R.; Feaver, M.; Bozkurt, B.T.; Lowe, N.; Nguyen, B.; Huang, K.W.; Wang, A.; Carney, R.P. A critical systematic review of extracellular vesicle clinical trials. J. Extracell. Vesicles 2024, 13, e12510. [Google Scholar] [CrossRef]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; Marzooqi, S.A.; Jerobin, J.; Altemani, F.H.; Algehainy, N.; Alanazi, M.A.; Abou-Samra, A.B.; Kumar, R.; et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal. Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef]
- Salmond, N.; Williams, K.C. Isolation and characterization of extracellular vesicles for clinical applications in cancer—Time for standardization? Nanoscale Adv. 2021, 3, 1830–1852. [Google Scholar] [CrossRef]
- Cano, A.; Ettcheto, M.; Bernuz, M.; Puerta, R.; Esteban de Antonio, E.; Sanchez-Lopez, E.; Souto, E.B.; Camins, A.; Marti, M.; Pividori, M.I.; et al. Extracellular vesicles, the emerging mirrors of brain physiopathology. Int. J. Biol. Sci. 2023, 19, 721–743. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, Y.; Li, Y.; Luo, L.; Zhao, Y.; Yao, Y. Extracellular vesicles in cardiovascular diseases. Cell Death Discov. 2020, 6, 68. [Google Scholar] [CrossRef]
- Cruz, C.G.; Sodawalla, H.M.; Mohanakumar, T.; Bansal, S. Extracellular Vesicles as Biomarkers in Infectious Diseases. Biology 2025, 14, 182. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-T.; Tran, B.V.; Wang, J.J.; Liang, I.Y.; You, S.; Zhu, Y.; Agopian, V.G.; Tseng, H.-R.; Yang, J.D. The role of extracellular vesicles in disease progression and detection of hepatocellular carcinoma. Cancers 2021, 13, 3076. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-S. The potential of exosomes as theragnostics in various clinical situations. Exosomes 2020, 467–486. [Google Scholar] [CrossRef]
- Galton, F.I. Experiments in Pangenesis, by breeding from rabbits of a pure variety, into whose circulation blood taken from other varieties had previously been largely transfused. Proc. R. Soc. Lond. 1871, 19, 393–410. [Google Scholar]
- Paul Feyerabend, I.H. Against Method: Outline of an Anarchistic Theory of Knowledge; Verso Books: New York, NY, USA, 1993; ISBN 978-1844674428. [Google Scholar]
Date | Proposal, Theory, or Experiment | Positive or Negative |
---|---|---|
NINETEENTH CENTURY | ||
1809 | LAMARCK Philosophie Zoologique Gradual transformation of species by inheritance of acquired characteristics and first detailed Tree of Life | positive |
1837 | DARWIN Tree of Life sketch in Notebook B | neutral |
1858 | DARWIN & WALLACE Joint presentation of theory of Natural Selection | neutral |
1859 | DARWIN The Origin of Species | positive |
1866 | WALLACE proposes Natural Selection as sole process of evolution | negative |
1868 | DARWIN proposes existence of gemmules in The Variation of Animals and Plants under Domestication | positive |
1871 | GALTON performs transfusion experiments | negative |
1883 | WEISMANN proposes soma-germline BARRIER | negative |
TWENTIETH CENTURY | negative | |
1942 | JULIAN HUXLEY adopts the Weismann Barrier in Evolution: The Modern Synthesis | |
1950s | Around 50 studies on possible transfusion of micro-level processes by Russian scientists 45 out of 50 support the idea [11] | positive |
1956 | CRICK formulates Central Dogma of Molecular Biology | negative |
1963 | HUXLEY dethrones proteins in favour of DNA in 2nd edition of Evolution: The Modern Synthesis | negative |
1967 | Electron microscopy detects external vesicles thought to be cell debris [19] | neutral |
TWENTY-FIRST CENTURY | ||
2005 | Smith & Spadafora show transfer of RNAs to germline cells | positive |
2019 | Noble proposes that external vesicles correspond to Darwin’s gemmules | positive |
2024 | Phillips & Noble (2024) [18] summarize more than 100 experiments showing evidence of “bubbling beyond the barrier” | positive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Earm, K.; Earm, Y.E.; Noble, D. Extracellular Vesicles as Targeted Communicators in Complementary Medical Treatments. Int. J. Mol. Sci. 2025, 26, 5896. https://doi.org/10.3390/ijms26125896
Earm K, Earm YE, Noble D. Extracellular Vesicles as Targeted Communicators in Complementary Medical Treatments. International Journal of Molecular Sciences. 2025; 26(12):5896. https://doi.org/10.3390/ijms26125896
Chicago/Turabian StyleEarm, Keehyun, Yung E. Earm, and Denis Noble. 2025. "Extracellular Vesicles as Targeted Communicators in Complementary Medical Treatments" International Journal of Molecular Sciences 26, no. 12: 5896. https://doi.org/10.3390/ijms26125896
APA StyleEarm, K., Earm, Y. E., & Noble, D. (2025). Extracellular Vesicles as Targeted Communicators in Complementary Medical Treatments. International Journal of Molecular Sciences, 26(12), 5896. https://doi.org/10.3390/ijms26125896