Assessing Genetic Variation in Guadua angustifolia Through RAD-Seq Analysis
Abstract
1. Introduction
2. Results
2.1. RADseq Libraries and SNP Calling
2.2. Genetic Diversity
2.3. Genetic Differentiation and Analysis of Molecular Variance
2.4. Population Structure
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. DNA Extraction and RADseq Library Preparation
4.3. Bioinformatic Analyses
4.3.1. Demultiplexing the Data and SNP Calling
4.3.2. Genetic Diversity Analyses
4.3.3. Population Structure and Phylogeny
4.3.4. Identical by Descent (IBD)
4.3.5. SNP’s Hotspot Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Londoño, X. El bambú en Colombia. Biot. Veg. 2011, 11. Available online: https://revista.ibp.co.cu/index.php/BV/article/view/485/882 (accessed on 18 June 2025).
- Londoño, X. Aspectos sobre la distribución y la ecología de los bambúes de Colombia (Poaceae: Bambusoideae). Caldasia 1990, 16, 139–153. [Google Scholar]
- Londoño, X. Diversidad de Bambúes. Diversidad de Bambúes en los Municipios de Florencia, Albania, San José de Fragua y Cartagena del Chaira del Departamento del Caquetá y Municipio La Macarena del Departamento del Meta—Colombia; INBAR: Beijing, China, 2021. [Google Scholar]
- Londoño, X.; Camayo, G.C.; Riaño, N.M.; López, Y. Characterization of the anatomy of Guadua angustifolia (Poaceae: Bambusoideae) culms. Bamboo Science and Culture: J. Amer. Bamboo Soc. 2002, 16, 18–31. [Google Scholar]
- Villanueva, F.P.; Cóndor, J.P.; Alca, A.M. Experiencias sobre la silvicultura y usos del bambú en Colombia. Xilema 2014, 27, 17–23. [Google Scholar]
- Gutiérrez, G.O.; de Lira Fuentes, R.C. Elaboración de biocarbón para el aprovechamiento de residuos proveniente de las podas de bambú (Guadua angustifolia). Rev. Mex. Agroecosistemas 2020, 7, 1. [Google Scholar]
- Cadena, J.F.A.; Valverde, B.R.; Íñiguez, J.C.; Barrera, L.C.; Sánchez, J.P.J.; Carrera, D.C.M. Posibilidades del bambú (Guadua angustifolia Kunth) para la alimentación humana en la Sierra Nororiental de Puebla, México. Nova Sci. 2019, 10, 137–153. [Google Scholar] [CrossRef]
- Avendaño-Uribe, B.E.; Díaz, L.A.; Castillo-Brieva, D. Model for mycorrhizal, soil and climate conditions analysis on productivity in Colombian bamboo forest. In X Congreso Latinoamericano de Dinámica de Sistemas; 2012; Available online: https://www.dinamica-de-sistemas.com/revista/dinamica-de-sistemas-15.pdf (accessed on 18 June 2025).
- Mosquera Martnez, O.M.; Gonzÿlez Cadavid, L.M. Caracterización fitoquímica de los extractos de acetona y contenido de lignina en culmos de Guadua angustifolia. Recur. Nat. Ambiente 2012, 65, 10–15. [Google Scholar]
- Durango Álvarez, E.S.; Gallardo Cabrera, C.; Contreras Contreras, A. Estudios para el aprovechamiento potencial de hojas de Guadua angustifolia Kunth (Poaceae), para el sector cosmético. Rev. Cuba. Farmacia 2015, 49. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75152015000300013 (accessed on 18 June 2025).
- Mosquera, O.M.; González, L.M.; Cortés, Y.J.; Camargo, J.C. Caracterización fitoquímica, determinación del contenido de lignina y la actividad antioxidante de los culmos de Guadua angustifolia Kunth. Rev. Fac. Cienc. Básicas 2015, 11, 124–135. [Google Scholar] [CrossRef]
- Sánchez-Matiz, J.J. Relación de la micorrización, la diversidad de Glomeromycota y las propiedades fisicoquímicas del suelo en poblaciones naturales de Guadua angustifolia Kunth. Bachelor’s Thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, March 2024. [Google Scholar]
- Chitiva, L.C.; Lozano-Puentes, H.S.; Londoño, X.; Leão, T.F.; Cala, M.P.; Ruiz-Sanchez, E.; Costa, G.M. Untargeted metabolomics approach and molecular networking analysis reveal changes in chemical composition under the influence of altitudinal variation in bamboo species. Front. Mol. Biosci. 2023, 10, 1192088. [Google Scholar] [CrossRef]
- Lozano-Puentes, H.S.; Sánchez-Matiz, J.J.; Ruiz-Sanchez, E.; Costa, G.M.; Díaz-Ariza, L.A. Guadua angustifolia Kunth leaves as a source for bioactive phenolic compounds: Optimization of ultrasound-assisted extraction using response surface methodology and antioxidant activities. Heliyon 2023, 9. [Google Scholar] [CrossRef] [PubMed]
- Chitiva, L.C.; Rezende-Teixeira, P.; Leão, T.F.; Lozano-Puentes, H.S.; Londoño, X.; Díaz-Ariza, L.A.; Castro-Gamboa, I. Metabolomic Profiling of Guadua Species and Its Correlation with Antioxidant and Cytotoxic Activities. ACS Omega 2024, 9, 36939–36960. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dong Li, D.; Yang, Z.; Zeng, Q.; Luo, Y.; He, N. Flavones produced by mulberry flavone synthase type I constitute a defense line against the ultraviolet-B stress. Plants 2020, 9, 215. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, C.; Liao, Z.; Liu, X.; Gong, Q.; Zhou, C.; Sun, C. Functional characterization of two flavone synthase II members in citrus. Hortic. Res. 2023, 10, uhad113. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ji, X.; Duan, L.; Ye, P.; Yang, J.; Zhan, R.; Ma, D. Gene mining and identification of a flavone synthase II involved in flavones biosynthesis by transcriptomic analysis and targeted flavonoid profiling in Chrysanthemum indicum L. Ind. Crops Prod. 2019, 134, 244–256. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L.J.; Wang, Y.; Liu, S.; Geng, Z.; Song, A.; Chen, F. Functional identification of a flavone synthase and a flavonol synthase genes affecting flower color formation in Chrysanthemum morifolium. Plant Physiol. Biochem. 2021, 166, 1109–1120. [Google Scholar] [CrossRef]
- Du, Y.; Chu, H.; Wang, M.; Chu, I.K.; Lo, C. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum. J. Exp. Bot. 2010, 61, 983–994. [Google Scholar] [CrossRef]
- Jiang, Y.N.; Wang, B.; Li, H.; Yao, L.M.; Wu, T.L. Flavonoid production is effectively regulated by RNAi interference of two flavone synthase genes from Glycine max. J. Plant Biol. 2010, 53, 425–432. [Google Scholar] [CrossRef]
- Guo, Z.H.; Ma, P.F.; Yang, G.Q.; Hu, J.Y.; Liu, Y.L.; Xia, E.H.; Li, D.Z. Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol. Plant 2019, 12, 1353–1365. [Google Scholar] [CrossRef]
- Ma, P.F.; Liu, Y.L.; Guo, C.; Jin, G.; Guo, Z.H.; Mao, L.; Li, D.Z. Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nat. Genet. 2024, 56, 710–720. [Google Scholar] [CrossRef]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016, 17, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Lowry, D.B.; Hoban, S.; Kelley, J.L.; Lotterhos, K.E.; Reed, L.K.; Antolin, M.F.; Storfer, A. Breaking RAD: An evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Molecular Ecology Resources 2017, 17, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ye, X.; Zhao, L.; Li, D.; Guo, Z.; Zhuang, H. Genome-wide RAD sequencing data provide unprecedented resolution of the phylogeny of temperate bamboos (Poaceae: Bambusoideae). Sci. Rep. 2017, 7, 11546. [Google Scholar] [CrossRef]
- Guo, C.; Ma, P.F.; Yang, G.Q.; Ye, X.Y.; Guo, Y.; Liu, J.X.; Li, D.Z. Parallel ddRAD and genome skimming analyses reveal a radiative and reticulate evolutionary history of the temperate bamboos. Syst. Biol. 2021, 70, 756–773. [Google Scholar] [CrossRef]
- Liu, J.X.; Zhou, M.Y.; Yang, G.Q.; Zhang, Y.X.; Ma, P.F.; Guo, C.; Li, D.Z. ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae: Bambusoideae). Mol. Phylogenetics Evol. 2020, 146, 106758. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Sanchez, E.; Maya-Lastra, C.; Perez-Garcia, M.D.L.L.; Garcia-Martinez, M.A. Phylogenomics and biogeography of Guadua: Insights into a neotropical woody bamboo genus. Am. J. Bot. 2025, 112, e70022. [Google Scholar] [CrossRef]
- da Silva Almeida Leal, G.; Leal, F.A.; Gomes, H.T.; de Souza, A.M.; Ribeiro, S.C.; Scherwinski-Pereira, J.E. Structure and genetic diversity of natural populations of Guadua weberbaueri in the southwestern Amazon, Brazil. J. For. Res. 2021, 32, 755–763. [Google Scholar] [CrossRef]
- Perez-Garcia, L.; Pérez-Alquicira, J.; Rico, Y.; Vargas-Ponce, O.; Montti, L.; Ruiz-Sanchez, E. Despite forest fragmentation, river connectivity maintains gene flow and diversity in Guadua trinii, a woody bamboo of the Atlantic Forest in Argentina. Hydrobiologia 2025, 852, 1637–1650. [Google Scholar] [CrossRef]
- Perez-Alquicira, J.; Aguilera-Lopez, S.; Rico, Y.; Ruiz-Sanchez, E. A population genetics study of three native Mexican woody bamboo species of Guadua (Poaceae: Bambusoideae: Bambuseae: Guaduinae) using nuclear microsatellite markers. Bot. Sci. 2021, 99, 542–559. [Google Scholar] [CrossRef]
- Silva, S.M.; Martins, K.; Costa, F.H.; Campos, T.D.; Scherwinski-Pereira, J.E. Genetic structure and diversity of native Guadua species (Poaceae: Bambusoideae) in natural populations of the Brazilian Amazon rainforest. An. Acad. Bras. Ciências 2020, 92, e20190083. [Google Scholar] [CrossRef]
- Marulanda, M.L.; Márquez, P.; Londoño, X. AFLP analysis of Guadua angustifolia (Poaceae: Bambusoideae) in Columbia with emphasis on the coffee region. J. Am. Bamboo Soc. 2002, 16, 32–42. [Google Scholar]
- Potosí, C.T.; Vallejo, F.A.; Palacio, J.D. Estimación mediante RAPD’s de la diversidad genética en Guadua en el departamento del Cauca, Colombia. Acta Agronómica 2006, 55. Available online: https://www.redalyc.org/pdf/1699/169920417008.pdf (accessed on 18 June 2024).
- Rugeles-Silva, P.A.; Posso-Terranova, A.M.; Londoño, X.; Barrera-Marín, N.; Muñoz-Flórez, J.E. Caracterización molecular de Guadua angustifolia Kunth mediante marcadores moleculares RAMs. Acta Agronómica 2012, 61, 325–330. [Google Scholar]
- Muñóz Florez, J.E.; Londoño, X.; Rugeles, P.; Posso, A.M.; Alirio Vallejo, F. Diversidad y estructura genética de Guadua angustifolia en la Ecorregión Cafetera colombiana. Recur. Nat. Ambiente 2010, 61, 45–52. [Google Scholar]
- Muñoz Flórez, J.E. Diversidad Genética, Estructura Poblacional y Selección de Clones Superiores de Guadua angustifolia Kunth en la Eco-Región Cafetera de Colombia. Ph.D. Thesis, Universidad Nacional de Colombia, Palmira, Colombia, May 2011. [Google Scholar]
- Caujapé, J. Brújula para Botánicos Desorientados en la Genética de Poblaciones; EXEGEN Ediciones: Las Palmas de Gran Canaria, Spain, 2006; Volume 133. [Google Scholar]
- Meirmans, P.G.; Liu, S.; van Tienderen, P.H. The analysis of polyploid genetic data. J. Hered. 2018, 109, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, L.; Ali, M.N.; Gantait, S.; Chakraborty, S. Bamboo: An overview on its genetic diversity and characterization. 3 Biotech. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Oumer, O.A.; Dagne, K.; Feyissa, T.; Tesfaye, K.; Durai, J.; Hyder, M.Z. Genetic diversity, population structure, and gene flow analysis of lowland bamboo [Oxytenanthera abyssinica (A. Rich.) Munro] in Ethiopia. Ecol. Evol. 2020, 10, 11217–11236. [Google Scholar] [CrossRef] [PubMed]
- Posso, A. Diversidad Genética y Estructura Poblacional de Guadua angustifolia Kunth en el eje Cafetero Colombiano. Master’s Thesis, Universidad Nacional de Colombia, Palmira, Colombia, May 2011. [Google Scholar]
- Nosil, P.; Funk, D.J.; Ortiz-Barrientos, D. Divergent selection and heterogeneous genomic divergence. Mol. Ecol. 2009, 18, 375–402. [Google Scholar] [CrossRef]
- Wu, J.; Lv, S.; Zhao, L.; Gao, T.; Yu, C.; Hu, J.; Ma, F. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. Planta 2023, 257, 108. [Google Scholar] [CrossRef]
- Rensing, S.A. Gene duplication as a driver of plant morphogenetic evolution. Curr. Opin. Plant Biol. 2014, 17, 43–48. [Google Scholar] [CrossRef]
- Chung, M.Y.; Merilä, J.; Li, J.; Mao, K.; López-Pujol, J.; Tsumura, Y.; Chung, M.G. Neutral and adaptive genetic diversity in plants: An overview. Front. Ecol. Evol. 2023, 11, 1116814. [Google Scholar] [CrossRef]
- Pang, F.; Niu, J.; Solanki, M.K.; Nosheen, S.; Liu, Z.; Wang, Z. PHD-finger family genes in wheat (Triticum aestivum L.): Evolutionary conservatism, functional diversification, and active expression in abiotic stress. Front. Plant Sci. 2022, 13, 1016831. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ives, A.R.; Zhu, H.; Tan, Y.; Chen, S.-C.; Yang, J.; Wang, B. Phylogenetic conservatism explains why plants are more likely to produce fleshy fruits in the tropics. Ecology 2022, 103, e03555. [Google Scholar] [CrossRef]
- Puentes, H.S.L.; Costa, G.M.; Ariza, L.A.D. PPV-4 Determinación de la composición de flavonoides de hojas de G. angustifolia Kunth en guaduales naturales del departamento de Nariño. Rev. Prod. Nat. 2022, 5, 176–178. [Google Scholar] [CrossRef]
- Kazlauckas, J.; Guaratini, M.T.G.; Moreno, P.R.H. Exploring the Discrepancies in the Biological Activities of Extracts From Guadua angustifolia Var. Bicolor Londoño Collected in Two Different Sites. Chem. Biodivers. 2025, e202500174. [Google Scholar] [CrossRef]
- Tarazona-Pulido, L.; Rugeles-Silva, P.A.; Cardona Tobar, K.M.; Díaz-Ariza, L.A.; Muñoz Florez, J.E.; López-Álvarez, D. Approach of Genetic Diversity of Lippia alba (Mill) and Petiveria alliacea L.: Medicinal Plants of Colombia. Plant Mol. Biol. 2024, 43, 602–616. [Google Scholar] [CrossRef]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Johnson, E.A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef] [PubMed]
- Wingett, S.W.; Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research 2018, 24, 1338. [Google Scholar] [CrossRef]
- Catchen, J.M.; Amores, A.; Hohenlohe, P.; Cresko, W.; Postlethwait, J.H. Stacks: Building and genotyping loci de novo from short-read sequences. G3 Genes Genomes Genet. 2011, 1, 171–182. [Google Scholar] [CrossRef]
- Maruki, T.; Lynch, M. Genotype calling from population-genomic sequencing data. G3 Genes Genomes Genet. 2017, 7, 1393–1404. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Liu, J.X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 2018, 18, 176–177. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef]
- Wickham, H. Manipulating data. In Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009; pp. 157–175. [Google Scholar]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef]
- Clausen, P.T.; Aarestrup, F.M.; Lund, O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef]
- Xu, G.; Deng, N.; Zhao, Z.; Judeh, T.; Flemington, E.; Zhu, D. SAMMate: A GUI tool for processing short read alignments in SAM/BAM format. Source Code Biol. Med. 2011, 6, 2. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
Population | Total No. of Sites | Variants | Total No. of SNPs |
---|---|---|---|
Tumaco | 72,539.17 | 417,031 | 44,855 |
Ricaurte | 146,263.60 | 509,148 | 66,946 |
La Florida | 148,561.66 | 533,485 | 76,134 |
Consacá | 237,316.337 | 573,023 | 105,470 |
Sa Lorenzo | 123,021.76 | 501,280 | 80,997 |
Chachagüí | 188,048.81 | 545,718 | 91,709 |
Population | Tumaco | Ricaurte | La Florida | Consacá | San Lorenzo | Chachagüí |
---|---|---|---|---|---|---|
No. of usable loci | 177,310 | 153,650 | 149,633 | 157,202 | 185,521 | 191,077 |
No. Ts | 22,602 | 23,456 | 33,062 | 38,740 | 34,598 | 28,884 |
No. Tv | 13,299 | 14,239 | 20,619 | 24,927 | 22,793 | 19,384 |
SNPs | 35,901 | 37,695 | 53,681 | 63,667 | 57,391 | 48,268 |
Ho | 0.78 | 0.589 | 0.407 | 0.398 | 0.507 | 0.585 |
He | 0.597 | 0.375 | 0.291 | 0.313 | 0.313 | 0.348 |
Pi | 0.139 ± 0.090 | 0.104 ± 0.053 | 0.119 ± 0.060 | 0.147 ± 0.074 | 0.110 ± 0.055 | 0.099 ± 0.050 |
Theta S (ΘS) | 19,582 ± 10,513 | 12,482 ± 4768 | 16,177 ± 5731 | 19,187 ± 6798 | 17,295 ± 6128 | 14,546 ± 5153 |
Theha Pi (Θπ) | 24,664 ± 16,097 | 16,013 ± 8285 | 17,877 ± 9021 | 23,210 ± 11,712 | 20,564 ± 10,377 | 19,091 ± 9633 |
FIS | −0.609 | −0.676 | −0.436 | −0.316 | −0.661 | −0.763 |
Source of Variation | d.f | Sum of Squares | Variance Components | Percentage Variation |
---|---|---|---|---|
Among populations groups | 5 | 48,017.83 | 377.32058 Va | 7.46 |
Within populations groups | 74 | 346,564.67 | 4683.30631 Vb | 92.54 |
Population | Tumaco | Ricaurte | La Florida | Consacá | San Lorenzo | Chachagüí |
---|---|---|---|---|---|---|
Tumaco | 0 | 0.082 | 0.168 | 0.175 | 0.098 | 0.156 |
Ricaurte | * | 0 | 0.218 | 0.241 | 0.146 | 0.218 |
La Florida | * | * | 0 | −0.044 | −0.026 | −0.051 |
Consacá | * | * | * | 0 | −0.028 | −0.054 |
Sa Lorenzo | * | - | * | * | 0 | −0.037 |
Chachagüí | * | * | - | * | - | 0 |
Collection Place | Samples Code | Latitude | Longitude | Elevation (m) | Voucher Number |
---|---|---|---|---|---|
Tumaco | 5; 7 | 1.619639 | −78.789861 | 7 | 30717 HPUJ |
Ricaurte | 9; 12 to 16 | 1.232028 | −78.030306 | 1.100 | 30718 HPUJ |
La Florida | 17 to 24 | 1.300000 | −77.403800 | 2.142 | 30719 HPUJ |
Consacá | 25 to 32 | 1.254000 | −77.487972 | 1.598 | 30720 HPUJ |
San Lorenzo | 33 to 40 | 1.596778 | −77.203472 | 1.712 | 30721 HPUJ |
Chachagūí | 41 to 48 | 1.374861 | −77.281861 | 1.865 | 30722 HPUJ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Puentes, H.S.; Tarazona-Pulido, L.; López-Alvarez, D.; Ruiz-Sanchez, E.; Costa, G.M.; Díaz-Ariza, L.A. Assessing Genetic Variation in Guadua angustifolia Through RAD-Seq Analysis. Int. J. Mol. Sci. 2025, 26, 5879. https://doi.org/10.3390/ijms26125879
Lozano-Puentes HS, Tarazona-Pulido L, López-Alvarez D, Ruiz-Sanchez E, Costa GM, Díaz-Ariza LA. Assessing Genetic Variation in Guadua angustifolia Through RAD-Seq Analysis. International Journal of Molecular Sciences. 2025; 26(12):5879. https://doi.org/10.3390/ijms26125879
Chicago/Turabian StyleLozano-Puentes, Hair Santiago, Lina Tarazona-Pulido, Diana López-Alvarez, Eduardo Ruiz-Sanchez, Geison M. Costa, and Lucia A. Díaz-Ariza. 2025. "Assessing Genetic Variation in Guadua angustifolia Through RAD-Seq Analysis" International Journal of Molecular Sciences 26, no. 12: 5879. https://doi.org/10.3390/ijms26125879
APA StyleLozano-Puentes, H. S., Tarazona-Pulido, L., López-Alvarez, D., Ruiz-Sanchez, E., Costa, G. M., & Díaz-Ariza, L. A. (2025). Assessing Genetic Variation in Guadua angustifolia Through RAD-Seq Analysis. International Journal of Molecular Sciences, 26(12), 5879. https://doi.org/10.3390/ijms26125879