Candidate Key Proteins of Tinnitus in the Auditory and Motor Systems of the Thalamus
Abstract
1. Introduction
2. Results
2.1. Auditory System
2.1.1. Gene Sets, Networks, and Key Proteins
2.1.2. GO Enrichment Analysis
2.1.3. Interactions of Key Proteins with Neurotransmitter Receptors
2.2. Motor System
2.2.1. Gene Sets, Networks, and Key Proteins
2.2.2. GO Enrichment Analysis
2.2.3. Interactions of Key Proteins with Neurotransmitter Receptors
3. Discussion
3.1. Methods Rationale
3.2. Role of BDNF
3.3. Key Proteins and Biological Processes in the Auditory System
3.3.1. Normal Hearing
3.3.2. Acoustic Stimulation
3.3.3. Tinnitus
3.4. Key Proteins and Biological Processes in the Motor System
3.4.1. Normal Hearing
3.4.2. Acoustic Stimulation
3.4.3. Tinnitus
3.5. Synaptic Transmission in the Auditory and Motor Systems
3.5.1. Auditory System
3.5.2. Motor System
3.6. Limitations
4. Material and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AS | Acoustic stimulation |
AuS | Auditory system |
BP | Biological process |
CC | Cellular component |
Clos | Closeness centrality |
Clus | Clustering coefficient |
CN | Cochlear nucleus |
Coex | Coexpression |
CS | Combined score |
EB | Edge betweeness |
Exp | Experimentally determined interaction |
GO | Gene ontology |
HDP | High-degree protein |
HSIP | High-score interaction protein |
IC | Inferior colliculus |
LTD | Long-term depression |
LTP | Long-term potentiation |
MGN | Medial geniculate nucleus |
MoS | Motor system |
NH | Normal hearing |
PPI | Protein protein interaction |
SG | Spiral ganglion |
Text | Automated text mining |
Tin | Tinnitus |
Appendix A
Gene | Name | Score |
---|---|---|
BDNF-AS | BDNF Antisense RNA | 22.3 |
BDNF | Brain Derived Neurotrophic Factor | 15.91 |
SLC6A4 | Solute Carrier Family 6 Member 4 | 12.01 |
GRIA3 | Glutamate Ionotropic Receptor AMPA Type Subunit 3 | 11.57 |
SNAP25 | Synaptosome Associated Protein 25 | 11.07 |
PVALB | Parvalbumin | 9.86 |
CACNA1A | Calcium Voltage-Gated Channel Subunit Alpha1 A | 9.02 |
SOD1 | Superoxide Dismutase 1 | 8.58 |
CAMK2G | Calcium/Calmodulin Dependent Protein Kinase II Gamma | 8.55 |
NTRK2 | Neurotrophic Receptor Tyrosine Kinase 2 | 8.49 |
UCN | Urocortin | 7.97 |
NEFL | Neurofilament Light Chain | 7.61 |
KARS1 | Lysyl-TRNA Synthetase 1 | 7.19 |
SLC17A8 | Solute Carrier Family 17 Member 8 | 6.87 |
NR3C1 | Nuclear Receptor Subfamily 3 Group C Member 1 | 6.58 |
CBS | Cystathionine Beta-Synthase | 6.19 |
OTOF | Otoferlin | 5.86 |
WHRN | Whirlin | 5.77 |
GDNF | Glial Cell Derived Neurotrophic Factor | 5.72 |
GPHN | Gephyrin | 5.62 |
MT-ND1 | Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 1 | 5.3 |
Cholinergic Receptor Nicotinic Alpha 10 Subunit | ||
CHRNA10 | Contactin 5 | 4.72 |
CNTN5 | Calcium Voltage-Gated Channel Subunit Alpha1 C | 4.69 |
CACNA1C | Cholinergic Receptor Nicotinic Alpha 9 Subunit | 4.51 |
CHRNA9 | Potassium Inwardly Rectifying Channel Subf. J Member 10 | 4.29 |
KCNJ10 | Catalase | 3.83 |
CAT | Gap Junction Protein Delta 2 | 3.43 |
GJD2 | SOD2 Overlapping Transcript 1 | 3.07 |
SOD2-OT1 | Gap Junction Protein Alpha 1 | 2.94 |
GJA1 | Calcium Voltage-Gated Channel Subunit Alpha1 D | 2.9 |
CACNA1D | OPA1 Mitochondrial Dynamin Like GTPase | 2.74 |
OPA1 | CD4 Molecule | 2.74 |
CD4 | Frataxin | 2.4 |
FXN | Protein Tyrosine Phosphatase Non-Receptor Type 11 | 2.22 |
PTPN11 | Potassium Voltage-Gated Channel Subfamily Q Member 1 | 2.03 |
KCNQ1 | 2.02 |
Gene | Name | Score |
---|---|---|
BDNF-AS | BDNF Antisense RNA | 23.55 |
BDNF | Brain Derived Neurotrophic Factor | 17.33 |
SLC6A4 | Solute Carrier Family 6 Member 4 | 14.09 |
SNCA | Synuclein Alpha | 13.62 |
SYP | Synaptophysin | 12.38 |
PVALB | Parvalbumin | 12.02 |
GRIN1 | Glutamate Ionotropic Receptor NMDA Type Subunit 1 | 11.59 |
CACNA1A | Calcium Voltage-Gated Channel Subunit Alpha1 A | 9.38 |
GFAP | Glial Fibrillary Acidic Protein | 8.99 |
CALB1 | Calbindin 1 | 8.52 |
TH | Tyrosine Hydroxylase | 8.44 |
NTRK2 | Neurotrophic Receptor Tyrosine Kinase 2 | 8.06 |
NEFL | Neurofilament Light Chain | 8.02 |
NR3C1 | Nuclear Receptor Subfamily 3 Group C Member 1 | 7.41 |
FOS | Fos Proto-Oncogene, AP-1 Transcription Factor Subunit | 7.34 |
CALB2 | Calbindin 2 | 6.55 |
SLC17A8 | Solute Carrier Family 17 Member 8 | 6.38 |
LOC110806262 | Solute Carrier Family 6 Member 4 Gene Promoter | 6.28 |
OTOF | Otoferlin | 5.96 |
SLC17A6 | Solute Carrier Family 17 Member 6 | 5.83 |
GPHN | Gephyrin | 5.52 |
CHRNA4 | Cholinergic Receptor Nicotinic Alpha 4 Subunit | 5.47 |
SLC12A5 | Solute Carrier Family 12 Member 5 | 5.4 |
NCAM1 | Neural Cell Adhesion Molecule 1 | 5.31 |
CREB1 | CAMP Responsive Element Binding Protein 1 | 4.54 |
CNTF | Ciliary Neurotrophic Factor | 4.45 |
KCNJ10 | Potassium Inwardly Rectifying Channel Subfam. J Member 10 | 3.57 |
OPA1 | OPA1 Mitochondrial Dynamin Like GTPase | 3.42 |
SOD2-OT1 | SOD2 Overlapping Transcript 1 | 3.33 |
CAT | Catalase | 3.09 |
JUN | Jun Proto-Oncogene, AP-1 Transcription Factor Subunit | 2.98 |
CACNA1D | Calcium Voltage-Gated Channel Subunit Alpha1 D | 2.86 |
EGF | Epidermal Growth Factor | 2.85 |
GSR | Glutathione-Disulfide Reductase | 2.79 |
MAP2 | Microtubule Associated Protein 2 | 2.14 |
EGR1 | Early Growth Response 1 | 2.01 |
SCT | Secretin | 1.44 |
KCNQ1 | Potassium Voltage-Gated Channel Subfamily Q Member 1 | 1.27 |
Gene | Name | Score |
---|---|---|
BDNF-AS* | BDNF Antisense RNA | 24.4 |
BDNF | Brain Derived Neurotrophic Factor | 20.34 |
CACNA1A | Calcium Voltage-Gated Channel Subunit Alpha1 A | 16.45 |
SLC6A4 | Solute Carrier Family 6 Member 4 | 14.72 |
SNCA | Synuclein Alpha | 13.49 |
SYP | Synaptophysin | 13.09 |
SNAP25 | Synaptosome Associated Protein 25 | 10.94 |
GRIN1 | Glutamate Ionotropic Receptor NMDA Type Subunit 1 | 10.77 |
NTF3 | Neurotrophin 3 | 9.99 |
SOD1 | Superoxide Dismutase 1 | 9.34 |
GFAP | Glial Fibrillary Acidic Protein | 9.2 |
TH | Tyrosine Hydroxylase | 8.65 |
CAMK2G | Calcium/Calmodulin Dependent Protein Kinase II Gamma | 8.63 |
NEFL | Neurofilament Light Chain | 8.54 |
GDNF | Glial Cell Derived Neurotrophic Factor | 8.26 |
KARS1 | Lysyl-TRNA Synthetase 1 | 7.67 |
PDYN | Prodynorphin | 7.6 |
CBS | Cystathionine Beta-Synthase | 7.54 |
TNF | Tumor Necrosis Factor | 7.16 |
NR3C1 | Nuclear Receptor Subfamily 3 Group C Member 1 | 7.11 |
SLC17A8 | Solute Carrier Family 17 Member 8 | 6.95 |
CALB1 | Calbindin 1 | 6.81 |
HSPA8 | Heat Shock Protein Family A (Hsp70) Member 8 | 6.71 |
GPHN | Gephyrin | 6.68 |
LOC110806262* | Solute Carrier Family 6 Member 4 Gene Promoter | 6.61 |
IL1B | Interleukin 1 Beta | 6.31 |
UCN | Urocortin | 6.24 |
IL6 | Interleukin 6 | 5.99 |
CALB2 | Calbindin 2 | 5.98 |
TRN-GTT2-1* | TRNA-Asn (Anticodon GTT) 2-1 | 5.69 |
TRN-GTT2-7* | TRNA-Asn (Anticodon GTT) 2-7 | 5.69 |
FOS | Fos Proto-Oncogene, AP-1 Transcription Factor Subunit | 5.59 |
NCAM1 | Neural Cell Adhesion Molecule 1 | 5.57 |
SLC17A6 | Solute Carrier Family 17 Member 6 | 5.44 |
OTOF | Otoferlin | 5.42 |
CACNA1C | Calcium Voltage-Gated Channel Subunit Alpha1 C | 5.4 |
SLC12A5 | Solute Carrier Family 12 Member 5 | 5.27 |
CACNA1D | Calcium Voltage-Gated Channel Subunit Alpha1 D | 5.23 |
KCNQ1 | Potassium Voltage-Gated Channel Subfamily Q Member 1 | 5.14 |
NTRK3 | Neurotrophic Receptor Tyrosine Kinase 3 | 4.97 |
NTRK1 | Neurotrophic Receptor Tyrosine Kinase 1 | 4.89 |
WHRN | Whirlin | 4.54 |
KCNJ10 | Potassium Inwardly Rectifying Channel Subfamily J Member 10 | 4.43 |
CACNA1E | Calcium Voltage-Gated Channel Subunit Alpha1 E | 4.37 |
CNTF | Ciliary Neurotrophic Factor | 4.31 |
CREB1 | CAMP Responsive Element Binding Protein 1 | 4.23 |
CD4 | CD4 Molecule | 3.97 |
OPA1 | OPA1 Mitochondrial Dynamin Like GTPase | 3.13 |
S100B | S100 Calcium Binding Protein B | 3 |
EGF | Epidermal Growth Factor | 2.93 |
FXN | Frataxin | 2.89 |
PTPN11 | Protein Tyrosine Phosphatase Non-Receptor Type 11 | 2.77 |
JUN | Jun Proto-Oncogene, AP-1 Transcription Factor Subunit | 2.71 |
AGTR1 | Angiotensin II Receptor Type 1 | 2.69 |
EGR1 | Early Growth Response 1 | 2.37 |
FGF2 | Fibroblast Growth Factor 2 | 2.35 |
MAP2 | Microtubule Associated Protein 2 | 2.01 |
SCT | Secretin | 1.89 |
Gene | Name | Score |
---|---|---|
BDNF-AS | BDNF Antisense RNA | 21.49 |
BDNF | Brain Derived Neurotrophic Factor | 17.7 |
CHAT | Choline O-Acetyltransferase | 15.35 |
PVALB | Parvalbumin | 10.74 |
SOD1 | Superoxide Dismutase 1 | 9.47 |
TARDBP | TAR DNA Binding Protein | 9.45 |
SHANK3 | SH3 And Multiple Ankyrin Repeat Domains 3 | 9.45 |
CACNA1A | Calcium Voltage-Gated Channel Subunit Alpha1 A | 9.41 |
SLC1A3 | Solute Carrier Family 1 Member 3 | 7.18 |
COMT | Catechol-O-Methyltransferase | 6.16 |
OPRK1 | Opioid Receptor Kappa 1 | 5.96 |
MAPK1 | Mitogen-Activated Protein Kinase 1 | 5.61 |
PLA2G6 | Phospholipase A2 Group VI | 5.48 |
AKT1 | AKT Serine/Threonine Kinase 1 | 5.33 |
POMC | Proopiomelanocortin | 5.32 |
TBK1 | TANK Binding Kinase 1 | 5.22 |
MT-CO2 | Mitochondrially Encoded Cytochrome C Oxidase II | 4.94 |
SPG7 | SPG7 Matrix AAA Peptidase Subunit, Paraplegin | 4.82 |
DYRK1A | Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A | 4.57 |
TACR3 | Tachykinin Receptor 3 | 4.31 |
TRA-TGC7-1 | TRNA-Ala (Anticodon TGC) 7-1 | 3.5 |
EPRS1 | Glutamyl-Prolyl-TRNA Synthetase 1 | 3.18 |
KCND3 | Potassium Voltage-Gated Channel Subfamily D Member 3 | 3.12 |
SOD2-OT1 | SOD2 Overlapping Transcript 1 | 2.87 |
CALM1 | Calmodulin 1 | 2.78 |
IGF1 | Insulin Like Growth Factor 1 | 2.49 |
PRL | Prolactin | 2.49 |
GNB1 | G Protein Subunit Beta 1 | 2.17 |
DAB1 | DAB Adaptor Protein 1 | 1.8 |
SNORD15A | Small Nucleolar RNA, C/D Box 15A | 1.72 |
SLC16A1 | Solute Carrier Family 16 Member 1 | 1.06 |
Gene | Name | Score |
---|---|---|
BDNF-AS | BDNF Antisense RNA | 22.74 |
BDNF | Brain Derived Neurotrophic Factor | 19.12 |
DRD2 | Dopamine Receptor D2 | 17.07 |
SNCA | Synuclein Alpha | 13.35 |
GABBR1 | Gamma-Aminobutyric Acid Type B Receptor Subunit 1 | 13.03 |
PVALB | Parvalbumin | 12.9 |
ACHE | Acetylcholinesterase (Yt Blood Group) | 12.18 |
SLC6A3 | Solute Carrier Family 6 Member 3 | 11.41 |
MAPT | Microtubule Associated Protein Tau | 9.71 |
CACNA1A | Calcium Voltage-Gated Channel Subunit Alpha1 A | 9.38 |
HTR2A | 5-Hydroxytryptamine Receptor 2A | 9.3 |
HTR1A | 5-Hydroxytryptamine Receptor 1A | 8.74 |
CALB1 | Calbindin 1 | 8.53 |
COMT | Catechol-O-Methyltransferase | 8.4 |
TH | Tyrosine Hydroxylase | 8.17 |
TSPO | Translocator Protein | 7.71 |
HTR3A | 5-Hydroxytryptamine Receptor 3A | 7.11 |
GAD1 | Glutamate Decarboxylase 1 | 7.01 |
DRD3 | Dopamine Receptor D3 | 6.48 |
MAPK1 | Mitogen-Activated Protein Kinase 1 | 5.5 |
OXT | Oxytocin/Neurophysin I Prepropeptide | 5.44 |
POMC | Proopiomelanocortin | 5.44 |
AKT1 | AKT Serine/Threonine Kinase 1 | 5.37 |
GABRA1 | Gamma-Aminobutyric Acid Type A Receptor Subunit Alpha1 | 5.08 |
NOS1 | Nitric Oxide Synthase 1 | 4.76 |
NTS | Neurotensin | 4.38 |
CNTF | Ciliary Neurotrophic Factor | 4.14 |
RPS27A | Ribosomal Protein S27a | 3.33 |
NOS2 | Nitric Oxide Synthase 2 | 3.32 |
SOD2-OT1 | SOD2 Overlapping Transcript 1 | 3.26 |
SGCE | Sarcoglycan Epsilon | 2.17 |
FGF14 | Fibroblast Growth Factor 14 | 1.92 |
Gene | Name | Score |
---|---|---|
BDNF-AS | BDNF Antisense RNA | 25.83 |
BDNF | Brain Derived Neurotrophic Factor | 22.14 |
CACNA1A | Calcium Voltage-Gated Channel Subunit Alpha1 A | 16.46 |
SNCA | Synuclein Alpha | 13.22 |
NPY | Neuropeptide Y | 10.31 |
SOD1 | Superoxide Dismutase 1 | 10.27 |
TACR1 | Tachykinin Receptor 1 | 9.02 |
AKT1 | AKT Serine/Threonine Kinase 1 | 8.87 |
TSPO | Translocator Protein | 8.68 |
TH | Tyrosine Hydroxylase | 8.39 |
SLC1A3 | Solute Carrier Family 1 Member 3 | 7.58 |
COMT | Catechol-O-Methyltransferase | 7.27 |
CALB1 | Calbindin 1 | 6.81 |
ATXN2 | Ataxin 2 | 6.63 |
GAD1 | Glutamate Decarboxylase 1 | 6.46 |
VIP | Vasoactive Intestinal Peptide | 6.43 |
POMC | Proopiomelanocortin | 6.17 |
SLC1A2 | Solute Carrier Family 1 Member 2 | 6.05 |
MAPK1 | Mitogen-Activated Protein Kinase 1 | 5.87 |
TAC1 | Tachykinin Precursor 1 | 5.81 |
SPG7 | SPG7 Matrix AAA Peptidase Subunit, Paraplegin | 4.33 |
CNTF | Ciliary Neurotrophic Factor | 4.01 |
TACR3 | Tachykinin Receptor 3 | 3.96 |
KCND3 | Potassium Voltage-Gated Channel Subfamily D Member 3 | 3.89 |
PGR-AS1 | PGR Antisense RNA 1 | 3.71 |
ATXN7 | Ataxin 7 | 3.63 |
NOS2 | Nitric Oxide Synthase 2 | 3.29 |
ATXN3 | Ataxin 3 | 2.99 |
MAPK3 | Mitogen-Activated Protein Kinase 3 | 2.95 |
IGF1 | Insulin Like Growth Factor 1 | 2.75 |
DAB1 | DAB Adaptor Protein 1 | 2.31 |
KIF1A | Kinesin Family Member 1A | 2.07 |
FGF14 | Fibroblast Growth Factor 14 | 2.03 |
TFRC | Transferrin Receptor | 1.95 |
ATXN8OS | ATXN8 Opposite Strand LncRNA | 1.68 |
FGF2 | Fibroblast Growth Factor 2 | 1.66 |
LINC02605 | Long Intergenic Non-Protein Coding RNA 2605 | 1.4 |
MIR211 | MicroRNA 211 | 1.35 |
References
- Baguley, D.; McFerran, D.; Hall, D. Tinnitus. Lancet 2013, 382, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Tziridis, K.; Friedrich, J.; Brüeggemann, P.; Mazurek, B.; Schulze, H. 402-Estimation of Tinnitus-Related Socioeconomic Costs in Germany. Int. J. Environ. Res. Public Health 2022, 19, 10455. [Google Scholar] [CrossRef] [PubMed]
- Jarach, C.M.; Karydou, K.; Trochidis, I.; Bernal-Robledano, A.; van den Brandt, P.A.; Cima, R.; Cederroth, C.R.; Lopez-Escamez, J.A.; Ghislandi, S.; Hall, D.A.; et al. The Out-of-Pocket Expenses of People with Tinnitus in Europe. J. Epidemiol. 2024, 34, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Pyott, S.J.; Pavlinkova, G.; Yamoah, E.N.; Fritzsch, B. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Annu. Rev. Neurosci. 2024, 47, 1–20. [Google Scholar] [CrossRef]
- Géléoc, G.S.G.; Holt, J.R. Sound Strategies for Hearing Restoration. Science 2014, 344, 1241062. [Google Scholar] [CrossRef]
- Gross, J.; Knipper, M.; Mazurek, B. Candidate Key Proteins in Tinnitus: A Bioinformatic Study of Synaptic Transmission in Spiral Ganglion Neurons. Cell. Mol. Neurobiol. 2023, 43, 4189–4207. [Google Scholar] [CrossRef]
- Gross, J.; Knipper, M.; Mazurek, B. Candidate Key Proteins in Tinnitus-A Bioinformatic Study of Synaptic Transmission in the Cochlear Nucleus. Biomedicines 2024, 12, 1615. [Google Scholar] [CrossRef]
- Gross, J.; Knipper, M.; Mazurek, B. Candidate Key Proteins in Tinnitus-A Bioinformatic Study of Synaptic Transmission in the Inferior Colliculus. Int. J. Mol. Sci. 2025, 26, 1831. [Google Scholar] [CrossRef]
- De Vis, C.; Barry, K.M.; Mulders, W.H.A.M. Hearing Loss Increases Inhibitory Effects of Prefrontal Cortex Stimulation on Sound Evoked Activity in Medial Geniculate Nucleus. Front. Synaptic Neurosci. 2022, 14, 840368. [Google Scholar] [CrossRef]
- Jalal, B.; Chamberlain, S.R.; Sahakian, B.J. Obsessive-Compulsive Disorder: Etiology, Neuropathology, and Cognitive Dysfunction. Brain Behav. 2023, 13, e3000. [Google Scholar] [CrossRef]
- Middleton, J.W.; Tzounopoulos, T. Imaging the Neural Correlates of Tinnitus: A Comparison between Animal Models and Human Studies. Front. Syst. Neurosci. 2012, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.M.; Robertson, D.; Mulders, W.H.A.M. Medial Geniculate Neurons Show Diverse Effects in Response to Electrical Stimulation of Prefrontal Cortex. Hear. Res. 2017, 353, 204–212. [Google Scholar] [CrossRef]
- Brinkmann, P.; Kotz, S.A.; Smit, J.V.; Janssen, M.L.F.; Schwartze, M. Auditory Thalamus Dysfunction and Pathophysiology in Tinnitus: A Predictive Network Hypothesis. Brain Struct. Funct. 2021, 226, 1659–1676. [Google Scholar] [CrossRef] [PubMed]
- Almasabi, F.; Janssen, M.L.F.; Devos, J.; Moerel, M.; Schwartze, M.; Kotz, S.A.; Jahanshahi, A.; Temel, Y.; Smit, J.V. The Role of the Medial Geniculate Body of the Thalamus in the Pathophysiology of Tinnitus and Implications for Treatment. Brain Res. 2022, 1779, 147797. [Google Scholar] [CrossRef]
- Ito, T.; Oliver, D.L. The Basic Circuit of the IC: Tectothalamic Neurons with Different Patterns of Synaptic Organization Send Different Messages to the Thalamus. Front. Neural Circuits 2012, 6, 48. [Google Scholar] [CrossRef]
- Hockley, A.; Malmierca, M.S. Auditory Processing Control by the Medial Prefrontal Cortex: A Review of the Rodent Functional Organisation. Hear. Res. 2024, 443, 108954. [Google Scholar] [CrossRef]
- Groenewegen, H.J. The Basal Ganglia and Motor Control. Neural Plast. 2003, 10, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Zitnik, M.; Li, M.M.; Wells, A.; Glass, K.; Morselli Gysi, D.; Krishnan, A.; Murali, T.M.; Radivojac, P.; Roy, S.; Baudot, A.; et al. Current and Future Directions in Network Biology. Bioinform. Adv. 2024, 4, vbae099. [Google Scholar] [CrossRef]
- Niemann, U.; Boecking, B.; Brueggemann, P.; Spiliopoulou, M.; Mazurek, B. Heterogeneity in Response to Treatment across Tinnitus Phenotypes. Sci. Rep. 2024, 14, 2111. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X.; Liu, H.; Zheng, C.; Rao, K.; Fang, Y.; Zhou, H.; Xiong, S. Identification of Key Genes and Crucial Modules Associated with Coronary Artery Disease by Bioinformatics Analysis. Int. J. Mol. Med. 2014, 34, 863–869. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Sherman, B.T.; Huang, D.W.; Tan, Q.; Guo, Y.; Bour, S.; Liu, D.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID Knowledgebase: A Gene-Centered Database Integrating Heterogeneous Gene Annotation Resources to Facilitate High-Throughput Gene Functional Analysis. BMC Bioinform. 2007, 8, 426. [Google Scholar] [CrossRef]
- Ashtiani, M.; Salehzadeh-Yazdi, A.; Razaghi-Moghadam, Z.; Hennig, H.; Wolkenhauer, O.; Mirzaie, M.; Jafari, M. A Systematic Survey of Centrality Measures for Protein-Protein Interaction Networks. BMC Syst. Biol. 2018, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Shen, Y.; Wu, X.; Dai, H.; Li, Y.; Liu, J.; Tao, D.-D. Topological Features of Brain Functional Networks Are Reorganized during Chronic Tinnitus: A Graph-Theoretical Study. Eur. J. Neurosci. 2025, 61, e16643. [Google Scholar] [CrossRef]
- Rahiminejad, S.; Maurya, M.R.; Subramaniam, S. Topological and Functional Comparison of Community Detection Algorithms in Biological Networks. BMC Bioinform. 2019, 20, 212. [Google Scholar] [CrossRef]
- Takei, N.; Sasaoka, K.; Inoue, K.; Takahashi, M.; Endo, Y.; Hatanaka, H. Brain-Derived Neurotrophic Factor Increases the Stimulation-Evoked Release of Glutamate and the Levels of Exocytosis-Associated Proteins in Cultured Cortical Neurons from Embryonic Rats. J. Neurochem. 1997, 68, 370–375. [Google Scholar] [CrossRef]
- Terreros, G.; Jorratt, P.; Aedo, C.; Elgoyhen, A.B.; Delano, P.H. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice. J. Neurosci. Off. J. Soc. Neurosci. 2016, 36, 7198–7209. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.A.R.; Haq, M.M.; Lee, J.H.; Jeong, S. Multi-Faceted Regulation of CREB Family Transcription Factors. Front. Mol. Neurosci. 2024, 17, 1408949. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef]
- Manohar, S.; Ramchander, P.V.; Salvi, R.; Seigel, G.M. Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure. Neuroscience 2019, 399, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, H.; Suzuki, A.; Zhao, S.; Tsytsarev, V.; Lo, F.-S.; Hayashi, Y.; Itohara, S.; Iwasato, T.; Erzurumlu, R.S. Thalamic NMDA Receptor Function Is Necessary for Patterning of the Thalamocortical Somatosensory Map and for Sensorimotor Behaviors. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 12001–12014. [Google Scholar] [CrossRef]
- Dai, Q.; Qu, T.; Shen, G.; Wang, H. Characterization of the Neural Circuitry of the Auditory Thalamic Reticular Nucleus and Its Potential Role in Salicylate-Induced Tinnitus. Front. Neurosci. 2024, 18, 1368816. [Google Scholar] [CrossRef] [PubMed]
- Lauretani, F.; Giallauria, F.; Testa, C.; Zinni, C.; Lorenzi, B.; Zucchini, I.; Salvi, M.; Napoli, R.; Maggio, M.G. Dopamine Pharmacodynamics: New Insights. Int. J. Mol. Sci. 2024, 25, 5293. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.; Dunning, J.L.; Contet, C. At the Heart of the Interoception Network: Influence of the Parasubthalamic Nucleus on Autonomic Functions and Motivated Behaviors. Neuropharmacology 2022, 204, 108906. [Google Scholar] [CrossRef] [PubMed]
- Noseda, R.; Borsook, D.; Burstein, R. Neuropeptides and Neurotransmitters That Modulate Thalamo-Cortical Pathways Relevant to Migraine Headache. Headache 2017, 57 (Suppl. S2), 97–111. [Google Scholar] [CrossRef]
- Mazurek, B.; Stöver, T.; Haupt, H.; Klapp, B.F.; Adli, M.; Gross, J.; Szczepek, A.J. The significance of stress: Its role in the auditory system and the pathogenesis of tinnitus. HNO 2010, 58, 162–172. [Google Scholar] [CrossRef]
- Shim, H.J.; Lee, L.H.; Huh, Y.; Lee, S.Y.; Yeo, S.G. Age-Related Changes in the Expression of NMDA, Serotonin, and GAD in the Central Auditory System of the Rat. Acta Otolaryngol. Stockh. 2012, 132, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Westmoreland, J.J.; Bayazitov, I.T.; Eddins, D.; Pani, A.K.; Smeyne, R.J.; Yu, J.; Blundon, J.A.; Zakharenko, S.S. Specific Disruption of Thalamic Inputs to the Auditory Cortex in Schizophrenia Models. Science 2014, 344, 1178–1182. [Google Scholar] [CrossRef]
- Niu, X.; Tahera, Y.; Canlon, B. Environmental Enrichment to Sound Activates Dopaminergic Pathways in the Auditory System. Physiol. Behav. 2007, 92, 34–39. [Google Scholar] [CrossRef]
- Perea, G.; Gómez, R.; Mederos, S.; Covelo, A.; Ballesteros, J.J.; Schlosser, L.; Hernández-Vivanco, A.; Martín-Fernández, M.; Quintana, R.; Rayan, A.; et al. Activity-Dependent Switch of GABAergic Inhibition into Glutamatergic Excitation in Astrocyte-Neuron Networks. eLife 2016, 5, e20362. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Lin, S.-H.; Malewicz, N.M.; Zhang, Y.; Zhang, Y.; Goulding, M.; LaMotte, R.H.; Ma, Q. Identifying the Pathways Required for Coping Behaviours Associated with Sustained Pain. Nature 2019, 565, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Zieglgänsberger, W. Substance P and Pain Chronicity. Cell Tissue Res. 2019, 375, 227–241. [Google Scholar] [CrossRef]
- Onaga, T. Tachykinin: Recent Developments and Novel Roles in Health and Disease. Biomol. Concepts 2014, 5, 225–243. [Google Scholar] [CrossRef]
- Wang, W.; Deng, D.; Jenkins, K.; Zinsmaier, A.K.; Zhou, Q.; Bao, S. Correlation of Electrophysiological and Gene Transcriptional Dysfunctions in Single Cortical Parvalbumin Neurons After Noise Trauma. Neuroscience 2022, 482, 87–99. [Google Scholar] [CrossRef]
- Leal, G.; Comprido, D.; Duarte, C.B. BDNF-Induced Local Protein Synthesis and Synaptic Plasticity. Neuropharmacology 2014, 76, 639–656. [Google Scholar] [CrossRef]
- Meis, S.; Endres, T.; Lessmann, V. Postsynaptic BDNF Signalling Regulates Long-Term Potentiation at Thalamo-Amygdala Afferents. J. Physiol. 2012, 590, 193–208. [Google Scholar] [CrossRef]
- Li, H.-Y.; Zhu, M.-Z.; Yuan, X.-R.; Guo, Z.-X.; Pan, Y.-D.; Li, Y.-Q.; Zhu, X.-H. A Thalamic-Primary Auditory Cortex Circuit Mediates Resilience to Stress. Cell 2023, 186, 1352–1368.e18. [Google Scholar] [CrossRef] [PubMed]
- Pisani, A.; Paciello, F.; Del Vecchio, V.; Malesci, R.; De Corso, E.; Cantone, E.; Fetoni, A.R. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J. Pers. Med. 2023, 13, 652. [Google Scholar] [CrossRef]
- Reichardt, L.F. Neurotrophin-Regulated Signalling Pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef]
- Uzay, B.; Kavalali, E.T. Genetic Disorders of Neurotransmitter Release Machinery. Front. Synaptic Neurosci. 2023, 15, 1148957. [Google Scholar] [CrossRef]
- Shin, O.-H. Exocytosis and Synaptic Vesicle Function. Compr. Physiol. 2014, 4, 149–175. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Lima, L.; Carvalho, S.; Mota-Pereira, J.; Pimentel, P.; Maia, D.; Correia, D.; Barroso, M.F.; Gomes, S.; Cruz, A.; et al. The Impact of BDNF, NTRK2, NGFR, CREB1, GSK3B, AKT, MAPK1, MTOR, PTEN, ARC, and SYN1 Genetic Polymorphisms in Antidepressant Treatment Response Phenotypes. Int. J. Mol. Sci. 2023, 24, 6758. [Google Scholar] [CrossRef] [PubMed]
- Rosskothen-Kuhl, N.; Hildebrandt, H.; Birkenhäger, R.; Illing, R.-B. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation. Front. Cell. Neurosci. 2018, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Gildea, H.K.; Liddelow, S.A. Mechanisms of Astrocyte Aging in Reactivity and Disease. Mol. Neurodegener. 2025, 20, 21. [Google Scholar] [CrossRef]
- Nowacka-Chmielewska, M.M.; Liśkiewicz, D.; Liśkiewicz, A.; Przybyła, M.; Marczak, Ł.; Wojakowska, A.; Grabowska, K.; Grabowski, M.; Barski, J.J.; Małecki, A. Global Proteome Profiling of the Temporal Cortex of Female Rats Exposed to Chronic Stress and the Western Diet. Nutrients 2022, 14, 1934. [Google Scholar] [CrossRef]
- Morrow, A.; Smale, L.; Meek, P.D.; Lundrigan, B. Trade-Offs in the Sensory Brain between Diurnal and Nocturnal Rodents. Brain. Behav. Evol. 2024, 99, 123–143. [Google Scholar] [CrossRef]
- Kelly, M.N.; Smith, D.N.; Sunshine, M.D.; Ross, A.; Zhang, X.; Gumz, M.L.; Esser, K.A.; Mitchell, G.S. Circadian Clock Genes and Respiratory Neuroplasticity Genes Oscillate in the Phrenic Motor System. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R1058–R1067. [Google Scholar] [CrossRef]
- Li, Z.-C.; Fang, B.-X.; Yuan, L.-X.; Zheng, K.; Wu, S.-X.; Zhong, N.; Zeng, X.-L. 76-Analysis of Studies in Tinnitus-Related Gene Research. Noise Health 2021, 23, 95–107. [Google Scholar] [CrossRef]
- Wang, H.; Brozoski, T.J.; Ling, L.; Hughes, L.F.; Caspary, D.M. Impact of Sound Exposure and Aging on Brain-Derived Neurotrophic Factor and Tyrosine Kinase B Receptors Levels in Dorsal Cochlear Nucleus 80 Days Following Sound Exposure. Neuroscience 2011, 172, 453–459. [Google Scholar] [CrossRef]
- Li, D.; Liu, X.; Liu, T.; Liu, H.; Tong, L.; Jia, S.; Wang, Y.-F. Neurochemical Regulation of the Expression and Function of Glial Fibrillary Acidic Protein in Astrocytes. Glia 2020, 68, 878–897. [Google Scholar] [CrossRef] [PubMed]
- Mennink, L.M.; Aalbers, M.W.; van Dijk, P.; van Dijk, J.M.C. The Role of Inflammation in Tinnitus: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1000. [Google Scholar] [CrossRef] [PubMed]
- Tamatta, R.; Singh, A.K. Critical Role of microRNAs in Cellular Quality Control during Brain Aging and Neurological Disorders: Interplay between Autophagy and Proteostasis. Life Sci. 2025, 369, 123563. [Google Scholar] [CrossRef]
- Han, K.-H.; Cho, H.; Han, K.-R.; Mun, S.-K.; Kim, Y.-K.; Park, I.; Chang, M. Role of microRNA-375-3p-mediated Regulation in Tinnitus Development. Int. J. Mol. Med. 2021, 48, 136. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Du, F.; Westmoreland, J.J.; Han, S.B.; Wang, Y.-D.; Eddins, D.; Bayazitov, I.T.; Devaraju, P.; Yu, J.; Mellado Lagarde, M.M.; et al. Thalamic miR-338-3p Mediates Auditory Thalamocortical Disruption and Its Late Onset in Models of 22q11.2 Microdeletion. Nat. Med. 2017, 23, 39–48. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, M.; Wang, X.; Liu, K.; Wan, Y.; Li, M.; Liu, L.; Zhang, C. Abnormal Expression of MicroRNAs Induced by Chronic Unpredictable Mild Stress in Rat Hippocampal Tissues. Mol. Neurobiol. 2018, 55, 917–935. [Google Scholar] [CrossRef]
- Salokas, K.; Liu, X.; Öhman, T.; Chowdhury, I.; Gawriyski, L.; Keskitalo, S.; Varjosalo, M. Physical and Functional Interactome Atlas of Human Receptor Tyrosine Kinases. EMBO Rep. 2022, 23, e54041. [Google Scholar] [CrossRef]
- Li, Y.-C.; Yang, S.-S.; Gao, W.-J. Disruption of Akt Signaling Decreases Dopamine Sensitivity in Modulation of Inhibitory Synaptic Transmission in Rat Prefrontal Cortex. Neuropharmacology 2016, 108, 403–414. [Google Scholar] [CrossRef]
- Meng, L.; Du, C.-P.; Lu, C.-Y.; Zhang, K.; Li, L.; Yan, J.-Z.; Hou, X.-Y. Neuronal Activity-Induced SUMOylation of Akt1 by PIAS3 Is Required for Long-Term Potentiation of Synaptic Transmission. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2021, 35, e21769. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, L.; Pei, L.; Ju, W.; Ahmadian, G.; Lu, J.; Wang, Y.; Liu, F.; Wang, Y.T. Control of Synaptic Strength, a Novel Function of Akt. Neuron 2003, 38, 915–928. [Google Scholar] [CrossRef]
- Kashino, M.; Kondo, H.M. Functional Brain Networks Underlying Perceptual Switching: Auditory Streaming and Verbal Transformations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Sabetta, E.; Ferrari, D.; Massimo, L.; Kõks, S. Tandem Repeat Expansions and Copy Number Variations as Risk Factors and Diagnostic Tools for Amyotrophic Lateral Sclerosis. Front. Neurol. 2025, 16, 1522445. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.-L.L.; Li, S.; Dai, W.P.; Zhou, D.; Cai, D. Balanced Active Core in Heterogeneous Neuronal Networks. Front. Comput. Neurosci. 2018, 12, 109. [Google Scholar] [CrossRef] [PubMed]
- Wersinger, C.; Banta, M.; Sidhu, A. Comparative Analyses of Alpha-Synuclein Expression Levels in Rat Brain Tissues and Transfected Cells. Neurosci. Lett. 2004, 358, 95–98. [Google Scholar] [CrossRef]
- Garcia-Garcia, M.; Via, M.; Zarnowiec, K.; SanMiguel, I.; Escera, C.; Clemente, I.C. COMT and DRD2/ANKK-1 Gene-Gene Interaction Account for Resetting of Gamma Neural Oscillations to Auditory Stimulus-Driven Attention. PLoS ONE 2017, 12, e0172362. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.N.; Dilnashin, H.; Birla, H.; Singh, S.S.; Zahra, W.; Rathore, A.S.; Singh, B.K.; Singh, S.P. The Role of PI3K/Akt and ERK in Neurodegenerative Disorders. Neurotox. Res. 2019, 35, 775–795. [Google Scholar] [CrossRef]
- Butler, B.; Sambo, D.; Khoshbouei, H. Alpha-Synuclein Modulates Dopamine Neurotransmission. J. Chem. Neuroanat. 2017, 83, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, S.; Chen, H.; Yun, B.; Zhang, Z.; Wang, X.; Wu, Y.; Lv, J.; He, Y.; Li, W.; et al. Identification of Key Genes and Therapeutic Drugs for Cocaine Addiction Using Integrated Bioinformatics Analysis. Front. Neurosci. 2023, 17, 1201897. [Google Scholar] [CrossRef]
- Khawaja, A.M.; Rogers, D.F. Tachykinins: Receptor to Effector. Int. J. Biochem. Cell Biol. 1996, 28, 721–738. [Google Scholar] [CrossRef]
- Pal, I.; Bhattacharyya, A.; V-Ghaffari, B.; Williams, E.D.; Xiao, M.; Rutherford, M.A.; Rubio, M.E. Female GluA3-KO Mice Show Early Onset Hearing Loss and Afferent Swellings in Ambient Sound Levels. bioRxiv 2024. bioRxiv:2024.02.21.581467. [Google Scholar] [CrossRef]
- Alinaghipour, A.; Salami, M.; Nabavizadeh, F. Nanocurcumin Substantially Alleviates Noise Stress-Induced Anxiety-like Behavior: The Roles of Tight Junctions and NMDA Receptors in the Hippocampus. Behav. Brain Res. 2022, 432, 113975. [Google Scholar] [CrossRef] [PubMed]
- Price, C.N.; Moncrieff, D. Defining the Role of Attention in Hierarchical Auditory Processing. Audiol. Res. 2021, 11, 112–128. [Google Scholar] [CrossRef]
- Duquette-Laplante, F.; Belleau-Matte, A.; Jemel, B.; Jutras, B.; Koravand, A. The Impact of Noise on Auditory Processing in Children and Adults: A Time-Frequency Analysis Perspective. Brain Res. 2025, 1856, 149589. [Google Scholar] [CrossRef] [PubMed]
- Hyde, M.; Choueiry, J.; Smith, D.; de la Salle, S.; Nelson, R.; Impey, D.; Baddeley, A.; Aidelbaum, R.; Millar, A.; Knott, V. Cholinergic Modulation of Auditory P3 Event-Related Potentials as Indexed by CHRNA4 and CHRNA7 Genotype Variation in Healthy Volunteers. Neurosci. Lett. 2016, 623, 36–41. [Google Scholar] [CrossRef]
- Sahley, T.L.; Anderson, D.J.; Hammonds, M.D.; Chandu, K.; Musiek, F.E. Evidence for a Dynorphin-Mediated Inner Ear Immune/Inflammatory Response and Glutamate-Induced Neural Excitotoxicity: An Updated Analysis. J. Neurophysiol. 2019, 122, 1421–1460. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, C. 30 Years of Dynorphins--New Insights on Their Functions in Neuropsychiatric Diseases. Pharmacol. Ther. 2009, 123, 353–370. [Google Scholar] [CrossRef]
- Sahley, T.L.; Hammonds, M.D.; Musiek, F.E. Endogenous Dynorphins, Glutamate and N-Methyl-d-Aspartate (NMDA) Receptors May Participate in a Stress-Mediated Type-I Auditory Neural Exacerbation of Tinnitus. Brain Res. 2013, 1499, 80–108. [Google Scholar] [CrossRef]
- Zhang, W.W.Y.; Wang, Y.; Chu, Y.X. Tacr3/NK3R: Beyond Their Roles in Reproduction. ACS Chem. Neurosci. 2020, 11, 2935–2943. [Google Scholar] [CrossRef]
- Oehme, P.; Hilse, H.; Morgenstern, E.; Göres, E. Substance P: Does It Produce Analgesia or Hyperalgesia? Science 1980, 208, 305–307. [Google Scholar] [CrossRef]
- Oehme, P.; Roske, I.; Nieber, K.; Richter, R.; Rathsack, R.; Krause, W.; Minenko, A. Does a Relationship Exist between Stress and Opioid Dependence? Prog. Clin. Biol. Res. 1990, 328, 429–431. [Google Scholar]
- Follansbee, T.; Domocos, D.; Nguyen, E.; Nguyen, A.; Bountouvas, A.; Velasquez, L.; Iodi Carstens, M.; Takanami, K.; Ross, S.E.; Carstens, E. Inhibition of Itch by Neurokinin 1 Receptor (Tacr1)-Expressing ON Cells in the Rostral Ventromedial Medulla in Mice. eLife 2022, 11, e69626. [Google Scholar] [CrossRef] [PubMed]
- Wojtas, M.N.; Diaz-González, M.; Stavtseva, N.; Shoam, Y.; Verma, P.; Buberman, A.; Izhak, I.; Geva, A.; Basch, R.; Ouro, A.; et al. Interplay between Hippocampal TACR3 and Systemic Testosterone in Regulating Anxiety-Associated Synaptic Plasticity. Mol. Psychiatry 2024, 29, 686–703. [Google Scholar] [CrossRef] [PubMed]
- Mehboob, R.; Oehme, P.; Anwar, T.; von Kries, J.P. Substance P—A Regulatory Peptide with Defense and Repair Functions. Results and Perspectives for the Fight against COVID-19. Front. Neurol. 2024, 15, 1370454. [Google Scholar] [CrossRef] [PubMed]
- Aljaber, B.; Martinez, D.; Stokes, N.; Bailey, J. Improving MeSH Classification of Biomedical Articles Using Citation Contexts. J. Biomed. Inform. 2011, 44, 881–896. [Google Scholar] [CrossRef]
HDP | Clus | Clos | Degree | HSIP | Coex | Exp | Text | CS | EB |
---|---|---|---|---|---|---|---|---|---|
NH | |||||||||
BDNF | 0.32 | 0.65 | 15 | NTRK2 | 60 | 691 | 999 | 999 | 14.3 |
GDNF | 48 | 0 | 963 | 963 | 14.9 | ||||
PVALB | 0.33 | 0.57 | 12 | BDNF * | 47 | 0 | 774 | 776 | 18.5 |
SNAP25 | 0.44 | 0.58 | 11 | CACNA1A * | 166 | 0 | 857 | 875 | 24.1 |
AS | |||||||||
BDNF | 0.53 | 0.76 | 24 | NTRK2 | 60 | 961 | 999 | 999 | 2.7 |
CREB1 | 0 | 0 | 956 | 956 | 4.8 | ||||
GFAP | 0.53 | 0.72 | 22 | SYP * | 239 | 0 | 826 | 860 | 6.2 |
SYP | 0.62 | 0.68 | 20 | NCAM1 * | 184 | 54 | 880 | 899 | 6.9 |
Tin | |||||||||
BDNF | 0.45 | 0.76 | 37 | NTRK3 | 65 | 65 | 999 | 999 | 21.7 |
NTRK1 | 60 | 65 | 999 | 999 | 10.1 | ||||
NTF3 | 82 | 958 | 774 | 991 | 12.0 | ||||
GDNF | 48 | 0 | 963 | 963 | 6.5 | ||||
CREB1 | 0 | 0 | 956 | 956 | 5.6 | ||||
GFAP | 0.49 | 0.72 | 33 | S100B * | 238 | 87 | 901 | 925 | 5.6 |
TNF ** | 0.53 | 0.67 | 28 | IL1B | 616 | 0 | 993 | 998 | 4.5 |
IL6 | 261 | 0 | 989 | 994 | 4.3 | ||||
JUN | 151 | 0 | 881 | 989 | 3.3 | ||||
CD4 | 92 | 0 | 966 | 968 | 7.0 |
Normal Hearing (NH) Gene List: 36 IDs, 125 Chart Records, p < 0.01 | Acoustic Stimulation (AS) Gene List: 38 IDs, 95 Chart Records, p < 0.01 | Tinnitus (Tin) Gene List: 58 IDs, 236 Chart Records, p < 0.01 |
---|---|---|
Significance: 2.3E-6 to 3.1E-4 -synapse (9 *) -monoatomic ion channel complex (5) -dendrite (6) -neuron projection (6) -axon (6) | Significance: 1.7E-9 to 2.3E-6 -neuron projection (10) -terminal bouton (6) -dendrite (10) -synapse (10) -axon (8) | Significance: 4.3E-13 to 1.2E-7 -neuronal cell body (15) -dendrite (14) -neuron projection (11) -monoatomic ion channel complex (7) -terminal bouton (6) |
Key protein list: 6 IDs, 22 chart records, p < 0.05 | Key protein list:6 IDs, 17 chart records, p < 0.05 | Key protein list: 13 IDs, 118 chart records, p < 0.05 |
Significance: 3.0E-3 to 3.1E-2 -axon (3) -synapse (3) -perinuclear region of cytoplasm (3) -cytoplasm (5) -synaptic vesicle (2) | Significance: 1.2E-2 to 3.1E-2 -terminal bouton (2) -perinuclear region of cytoplasm (3) -synaptic vesicle (2) | Significance: 4.3E-4 to 1.1E-3 -extracellular space (7) -axon (4) |
HDP | Clus | Clos | Degree | HSIP | Coex | Exp | Text | CS | EB |
---|---|---|---|---|---|---|---|---|---|
NH | |||||||||
AKT1 | 0.22 | 0.71 | 14 | IGF1 | 0 | 63 | 934 | 935 | 17.8 |
BDNF | 0.30 | 0.62 | 12 | COMT | 0 | 0 | 919 | 919 | 16.7 |
SOD1 | 0.36 | 0.53 | 8 | TARDBP | 77 | 0 | 989 | 989 | 15.5 |
AS | 919 | ||||||||
BDNF | 0.46 | 0.83 | 24 | COMT | 0 | 0 | 944 | 919 | 5.58 |
TH | 0.54 | 0.74 | 20 | SLC6A3 | 147 | 0 | 975 | 950 | 4.64 |
SNCA | 0 | 95 | 924 | 997 | 7.17 | ||||
DRD2 | 0.56 | 0.73 | 19 | COMT | 0 | 0 | 995 | 924 | 6.83 |
SLC6A3 | 54 | 380 | 999 | 5.74 | |||||
Tin | 779 | ||||||||
BDNF | 0.41 | 0.71 | 21 | MAPK3 | 0 | 0 | 872 | 942 | 10.4 |
AKT1 | 0.44 | 0.68 | 17 | MAPK1 | 118 | 110 | 432 | 988 | 10.3 |
MAPK3 | 266 | 11 | 775 | 957 | 5.4 | ||||
NOS2 | 0 | 45 | 934 | 976 | 22.8 | ||||
IGF1 | 0 | 63 | 975 | 935 | 7.08 | ||||
TH | 0.53 | 0.62 | 16 | SNCA | 0 | 95 | 997 | 13.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gross, J.; Knipper, M.; Mazurek, B. Candidate Key Proteins of Tinnitus in the Auditory and Motor Systems of the Thalamus. Int. J. Mol. Sci. 2025, 26, 5804. https://doi.org/10.3390/ijms26125804
Gross J, Knipper M, Mazurek B. Candidate Key Proteins of Tinnitus in the Auditory and Motor Systems of the Thalamus. International Journal of Molecular Sciences. 2025; 26(12):5804. https://doi.org/10.3390/ijms26125804
Chicago/Turabian StyleGross, Johann, Marlies Knipper, and Birgit Mazurek. 2025. "Candidate Key Proteins of Tinnitus in the Auditory and Motor Systems of the Thalamus" International Journal of Molecular Sciences 26, no. 12: 5804. https://doi.org/10.3390/ijms26125804
APA StyleGross, J., Knipper, M., & Mazurek, B. (2025). Candidate Key Proteins of Tinnitus in the Auditory and Motor Systems of the Thalamus. International Journal of Molecular Sciences, 26(12), 5804. https://doi.org/10.3390/ijms26125804