Coenzyme Q10 and Xenobiotic Metabolism: An Overview
Abstract
1. Introduction
2. CoQ10 and Pesticide/Herbicide Toxicity
3. CoQ10 and Heavy Metal Toxicity
4. CoQ10 and Industrial Solvent Toxicity
5. CoQ10 and Aircraft Fume Events
6. CoQ10 and Endocrine Disruptors
7. CoQ10 and Carcinogens
8. CoQ10 and Pharmacological Drug Toxicity
9. Lifestyle-Related Toxicants
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crane, F.L. Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 2001, 20, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Mantle, D.; Turton, N.; Hargreaves, I.P. Depletion and Supplementation of Coenzyme Q10 in Secondary Deficiency Disorders. Front. Biosci. (Landmark Ed.) 2022, 27, 322. [Google Scholar] [CrossRef] [PubMed]
- Mantle, D.; Millichap, L.; Castro-Marrero, J.; Hargreaves, I.P. Primary Coenzyme Q10 deficiency: An update. Antioxidants 2023, 12, 1652. [Google Scholar] [CrossRef] [PubMed]
- Garud, A.; Pawar, S.; Patil, M.S.; Kale, S.R.; Patil, S. A scientific review of pesticides: Classification, toxicity, health effects, sustainability, and environmental impact. Cureus 2024, 16, e67945. [Google Scholar] [CrossRef]
- Sherer, T.B.; Richardson, J.R.; Testa, C.M.; Seo, B.B.; Panov, A.V.; Yagi, T.; Matsuno-Yagi, A.; Miller, G.W.; Greenamyre, J.T. Mechanism of toxicity of pesticides acting at complex I: Relevance to environmental etiologies of Parkinson’s disease. J. Neurochem. 2007, 100, 1469–1479. [Google Scholar] [CrossRef]
- Sule, R.O.; Condon, L.; Gomes, A.V. A common feature of pesticides: Oxidative stress-the role of oxidative stress in pesticide-induced toxicity. Oxid. Med. Cell. Longev. 2022, 2022, 5563759. [Google Scholar] [CrossRef]
- Hossain, M.; Suchi, T.T.; Samiha, F.; Islam, M.M.; Tully, F.A.; Hasan, J.; Rahman, A.; Shill, M.C.; Bepari, A.K.; Rahman, G.S.; et al. Coenzyme Q10 ameliorates carbofuran induced hepatotoxicity and nephrotoxicity in wister rats. Heliyon 2023, 9, e13727. [Google Scholar] [CrossRef]
- Alghibiwi, H.K.; Alhusiani, A.M.; Sarawi, W.S.; Fadda, L.; Alomar, H.A.; Alsaab, J.S.; Hasan, I.H.; Alonazi, A.S.; Alrasheed, N.M.; Alhabardi, S. Coenzyme Q10 and its liposomal form prevent copper cardiotoxicity by attenuating oxidative stress, TLR-4/NF-κB signaling and necroptosis in rats. Cell. Mol. Biol. (Noisy-Le-Grand) 2025, 71, 118–124. [Google Scholar] [CrossRef]
- Chali, S.E.N.; Khanbabaei, R.; Juybari, A.A.D.; Fatahi, E.; Kalai, R.B. Coenzyme Q10 treatment and diazinon exposure in parental male rats: Effects of the exposure on their neonatal brains. Toxicol. Res. 2023, 12, 264–269. [Google Scholar] [CrossRef]
- Binukumar, B.K.; Gupta, N.; Sunkaria, A.; Kandimalla, R.; Wani, W.Y.; Sharma, D.R.; Bal, A.; Gill, K.D. Protective efficacy of coenzyme Q10 against DDVP-induced cognitive impairments and neurodegeneration in rats. Neurotox. Res. 2012, 21, 345–357. [Google Scholar] [CrossRef]
- Wu, J.; Jia, Y.; Liao, Y.; Yang, D.; Ren, H.; Xie, Z.; Hu, J.; Lu, Y. Protective effect and mechanism of CoQ10 in mitochondrial dysfunction in diquat-induced renal proximal tubular injury. J. Biochem. Mol. Toxicol. 2024, 38, e70023. [Google Scholar] [CrossRef] [PubMed]
- Yen, D.H.T.; Chan, J.Y.H.; I Huang, C.; Lee, C.H.; Chan, S.H.H.; Chang, A.Y.W. Coenzyme q10 confers cardiovascular protection against acute mevinphos intoxication by ameliorating bioenergetic failure and hypoxia in the rostral ventrolateral medulla of the rat. Shock 2005, 23, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Attia, H.N.; Maklad, Y.A. Neuroprotective effects of coenzyme Q10 on paraquat-induced Parkinson’s disease in experimental animals. Behav. Pharmacol. 2018, 29, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaran, K.; Leahy, S.; Harrison, K.; Sikorska, M.; Sandhu, J.K.; Cohen, J.; Keshan, C.; Lopatin, D.; Miller, H.; Borowy-Borowski, H.; et al. Orally delivered water soluble Coenzyme Q10 (Ubisol-Q10) blocks on-going neurodegeneration in rats exposed to paraquat: Potential for therapeutic application in Parkinson’s disease. BMC Neurosci. 2014, 15, 21. [Google Scholar] [CrossRef]
- Somayajulu-Niţu, M.; Sandhu, J.K.; Cohen, J.; Sikorska, M.; Sridhar, T.; Matei, A.; Borowy-Borowski, H.; Pandey, S. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and parkinsonism in adult rats: Neuro-protection and amelioration of symptoms by water-soluble formulation of coenzyme Q10. BMC Neurosci. 2009, 10, 88. [Google Scholar] [CrossRef]
- Shayesteh, M.R.H.; Hami, Z.; Chamanara, M.; Parvizi, M.R.; Golaghaei, A.; Nassireslami, E. Evaluation of the protective effect of coenzyme Q10 on hepatotoxicity caused by acute phosphine poisoning. Int. J. Immunopathol. Pharmacol. 2024, 38, 3946320241250286. [Google Scholar] [CrossRef]
- Akinmoladun, A.C.; Saliu, I.; Abilogun, O.; Ajibola, O.H.; Amoo, Z.A.; Ojo, O.B.; Farombi, E.O.; Olaleye, M.T. Comparative influence of kolaviron and coenzyme Q10 on complex I activity, glutamate clearance, 3,4-dihydroxyphenethylamine metabolism, and redox stress in rotenone-induced neurotoxicity. Niger. J. Physiol. Sci. 2022, 37, 165–173. [Google Scholar] [CrossRef]
- Moon, Y.; Lee, K.H.; Park, J.; Geum, D.; Kim, K. Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: Protective effect of coenzyme Q10. J. Neurochem. 2005, 93, 1199–1208. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2024, 99, 153–209. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Y.; Shi, L.; Hussain, R.; Mehmood, K.; Tang, Z.; Zhang, H. Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology 2022, 469, 153136. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.A.; Al-Sultan, A.I.; Yacoubi, M.T. Coenzyme Q10 counteracts testicular injury induced by sodium arsenite in rats. Eur. J. Pharmacol. 2011, 655, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Mwaeni, V.K.; Nyariki, J.N.; Jillani, N.; Omwenga, G.; Ngugi, M.; Isaac, A.O. Coenzyme Q10 protected against arsenite and enhanced the capacity of 2,3-dimercaptosuccinic acid to ameliorate arsenite-induced toxicity in mice. BMC Pharmacol. Toxicol. 2021, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Paunović, M.G.; Matić, M.M.; I Ognjanović, B.; Saičić, Z.S. Antioxidative and haematoprotective activity of coenzyme Q10 and vitamin E against cadmium-induced oxidative stress in Wistar rats. Toxicol. Ind. Health 2017, 33, 746–756. [Google Scholar] [CrossRef]
- Saha, R.; Roychoudhury, S.; Kar, K.; Varghese, A.; Nandi, P.; Sharma, G.; Formicki, G.; Slama, P.; Kolesarova, A. Coenzyme Q10 ameliorates cadmium induced reproductive toxicity in male rats. Physiol. Res. 2019, 68, 141–145. [Google Scholar] [CrossRef]
- Iftikhar, A.; Akhtar, M.F.; Saleem, A.; Riaz, A.; Zehravi, M.; Rahman, H.; Ashraf, G.M.; Grzmil, P. Comparative potential of zinc sulfate, L-carnitine, lycopene, and coenzyme Q10 on cadmium-induced male infertility. Int. J. Endocrinol. 2022, 2022, 6266613. [Google Scholar] [CrossRef]
- Antar, S.A.; Abdo, W.; Helal, A.I.; Abduh, M.S.; Hakami, Z.H.; Germoush, M.O.; Alsulimani, A.; Al-Noshokaty, T.M.; El-Dessouki, A.M.; ElMahdy, M.K.; et al. Coenzyme Q10 mitigates cadmium cardiotoxicity by downregulating NF-κB/NLRP3 inflammasome axis and attenuating oxidative stress in mice. Life Sci. 2024, 348, 122688. [Google Scholar] [CrossRef]
- Mazandaran, A.A.; Khodarahmi, P. The protective role of Coenzyme Q10 in metallothionein-3 expression in liver and kidney upon rats’ exposure to lead acetate. Mol. Biol. Rep. 2021, 48, 3107–3115. [Google Scholar] [CrossRef]
- Kadry, M.O.; Megeed, R.M.A. Ubiquitous toxicity of mercuric chloride in target tissues and organs: Impact of bidecarenone and liposomal-ubidecarenone STAT 5A/PTEN/PI3K/AKT signaling pathways. J. Trace Elem. Med. Biol. 2022, 74, 127058. [Google Scholar] [CrossRef]
- Abd-Elhakim, Y.M.; Hashem, M.M.; Abo-El-Sooud, K.; Mousa, M.R.; Soliman, A.M.; Mouneir, S.M.; Ismail, S.H.; Hassan, B.A.; El-Nour, H.H. Interactive effects of cadmium and titanium dioxide nanoparticles on hepatic tissue in rats: Ameliorative role of coenzyme 10 via modulation of the NF-κB and TNFα pathway. Food Chem. Toxicol. 2023, 182, 114191. [Google Scholar] [CrossRef]
- Carelli, V.; Ross-Cisneros, F.N.; Sadun, A.A. Optic nerve degeneration and mitochondrial dysfunction: Genetic and acquired optic neuropathies. Neurochem. Int. 2002, 40, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Conrad, T.; Landry, G.M.; Aw, T.Y.; Nichols, R.; McMartin, K.E. Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro. Clin. Toxicol. 2016, 54, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Rothman, N.; Vermeulen, R.; Zhang, L.; Hu, W.; Yin, S.; Rappaport, S.M.; Smith, M.T.; Jones, D.P.; Rahman, M.; Lan, Q.; et al. Metabolome-wide association study of occupational exposure to benzene. Carcinogenesis 2021, 42, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.V.; Mesadri, J.; Gonçalves, D.F.; Cordeiro, L.M.; da Silva, A.F.; Baptista, F.B.O.; Wagner, R.; Corte, C.L.D.; Soares, F.A.A.; Ávila, D.S. Neurotoxicity induced by toluene: In silico and in vivo evidences of mitochondrial dysfunction and dopaminergic neurodegeneration. Environ. Pollut. 2022, 298, 118856. [Google Scholar] [CrossRef]
- Wang, D.; Lin, D.; Feng, G.; Yang, X.; Deng, L.; Li, P.; Zhang, Z.; Zhang, W.; Guo, Y.; Wang, Y.; et al. Impact of chronic benzene poisoning on aberrant mitochondrial DNA methylation: A prospective observational study. Front. Public Health 2023, 11, 990051. [Google Scholar] [CrossRef]
- Mishra, P.; Kiran, N.S.; Ferreira, L.F.R.; Yadav, K.K.; Mulla, S.I. New insights into the bioremediation of petroleum contaminants: A systematic review. Chemosphere 2023, 326, 138391. [Google Scholar] [CrossRef]
- Sawicka, E.; Długosz, A. Toluene and P-xylene mixture exerts antagonistic effect on lipid peroxidation in vitro. Int. J. Occup. Med. Environ. Health 2008, 21, 201–209. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhao, Y.; Wang, G.; Song, Y.; Wei, Z.; Jin, M.; Yang, D.; Yin, J.; Li, J.; Liu, W. Protection from benzene-induced immune dysfunction in mice. Toxicology 2022, 468, 153103. [Google Scholar] [CrossRef]
- Beach, A.C.; Harmon, J. Additive effects and potential inhibitory mechanism of some common aromatic pollutants on in vitro mitochondrial respiration. J. Biochem. Toxicol. 1992, 7, 155–161. [Google Scholar] [CrossRef]
- Chirapapaisan, N.; Uiprasertkul, M.; Chuncharunee, A. The effect of coenzyme Q10 and curcumin on chronic methanol intoxication induced retinopathy in rats. J. Med. Assoc. Thai. 2012, 95 (Suppl. S4), S76–S81. [Google Scholar]
- Yoshikawa, T.; Furukawa, Y.; Wakamatsu, Y.; Nishida, K.; Takemura, S.; Tanaka, H.; Kondo, M. The protection of coenzyme Q10 against carbon tetrachloride hepatotoxicity. Gastroenterol. Jpn 1981, 16, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Kishi, T.; Takahashi, T.; Okamoto, T. Cytosolic NADPH-UQ reductase-linked recycling of cellular ubiquinol: Its protective effect against carbon tetrachloride hepatotoxicity in rat. Mol. Asp. Med. 1997, 18, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Faddah, L.; Abdel-Baky, A.; Bayoumi, A. Protective effect of L-carnitine and coenzyme Q10 on CCl4-induced liver injury in rats. Sci. Pharm. 2010, 78, 881–896. [Google Scholar] [CrossRef] [PubMed]
- Elbaky, N.A.A.; El-Orabi, N.F.; Fadda, L.M.; Abd-Elkader, O.H.; Ali, H.M. Role of N-acetylcysteine and coenzyme Q10 in the amelioration of myocardial energy expenditure and oxidative stress, induced by carbon tetrachloride intoxication in rats. Dose-Response 2018, 16, 1559325818790158. [Google Scholar] [CrossRef]
- Korkina, L.; Deeva, I.; Ibragimova, G.; Shakula, A.; Luci, A.; De Luca, C. Coenzyme Q10-containing composition (Immugen®) protects against occupational and environmental stress in workers of the gas and oil industry. BioFactors 2003, 18, 245–254. [Google Scholar] [CrossRef]
- Burdon, J.; Budnik, L.T.; Baur, X.; Hageman, G.; Howard, C.V.; Roig, J.; Coxon, L.; Furlong, C.E.; Gee, D.; Loraine, T.; et al. Health consequences of exposure to aircraft contaminated air and fume events: A narrative review and medical protocol for the investigation of exposed aircrew and passengers. Environ. Health 2023, 22, 43. [Google Scholar] [CrossRef]
- Weiss, T.; Koslitz, S.; Nöllenheidt, C.; Caumanns, C.; Hedtmann, J.; Käfferlein, H.U.; Brüning, T. Biomonitoring of volatile organic compounds and organophosphorus flame retardands in commercial aircrews after “fume and smell events”. Int. J. Hyg. Environ. Health 2024, 259, 114381. [Google Scholar] [CrossRef]
- Mantle, D.; Hargreaves, I.P. Organophosphate poisoning and coenzyme Q10: An overview. Br. J. Neurosci. Nurs. 2018, 14, 206–214. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Y.; Tao, W.; Liu, F.; Yang, S.; Zhao, A.; Song, D.; Li, X. Coenzyme Q10 ameliorates BPA-induced apoptosis by regulating autophagy-related lysosomal pathways. Ecotoxicol. Environ. Saf. 2021, 221, 112450. [Google Scholar] [CrossRef]
- Carneiro, M.F.H.; Shin, N.; Karthikraj, R.; Barbosa, F.; Kannan, K.; Colaiácovo, M.P. Antioxidant CoQ10 restores fertility by rescuing bisphenol A-induced oxidative DNA damage in the Caenorhabditis elegans Germline. Genetics 2020, 214, 381–395. [Google Scholar] [CrossRef]
- Güleş, Ö.; Kum, Ş.; Yıldız, M.; Boyacıoğlu, M.; Ahmad, E.; Naseer, Z.; Eren, Ü. Protective effect of coenzyme Q10 against bisphenol-A-induced toxicity in the rat testes. Toxicol. Ind. Health 2019, 35, 466–481. [Google Scholar] [CrossRef] [PubMed]
- Eid, R.A.; Abadi, A.M.; El-Kott, A.F.; Zaki, M.S.A.; Abd-Ella, E.M. The antioxidant effects of coenzyme Q10 on albino rat testicular toxicity and apoptosis triggered by bisphenol A. Environ. Sci. Pollut. Res. 2023, 30, 42339–42350. [Google Scholar] [CrossRef] [PubMed]
- Lone, Y.; Bhide, M.; Koiri, R.K. Amelioratory effect of coenzyme Q10 on potential human carcinogen Microcystin-LR induced toxicity in mice. Food Chem. Toxicol. 2017, 102, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Yenilmez, A.; Isikli, B.; Aral, E.; Degirmenci, I.; Sutken, E.; Baycu, C. Antioxidant effects of melatonin and coenzyme Q10 on oxidative damage caused by single-dose ochratoxin a in rat kidney. Chin. J. Physiol. 2010, 53, 310–317. [Google Scholar] [CrossRef]
- Perumal, S.S.; Shanthi, P.; Sachdanandam, P. Combined efficacy of tamoxifen and coenzyme Q10 on the status of lipid peroxidation and antioxidants in DMBA induced breast cancer. Mol. Cell. Biochem. 2005, 273, 151–160. [Google Scholar] [CrossRef]
- Sakano, K.; Takahashi, M.; Kitano, M.; Sugimura, T.; Wakabayashi, K. Suppression of azoxymethane-induced colonic premalignant lesion formation by coenzyme Q10 in rats. Asian Pac. J. Cancer Prev. 2007, 7, 599–603. [Google Scholar]
- Varga, Z.V.; Ferdinandy, P.; Liaudet, L.; Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Circ. Physiol. 2015, 309, H1453–H1467. [Google Scholar] [CrossRef]
- Abdullah, A.Q.; Hamed, A.B.; Fahad, A.J. Protective effect of coenzyme Q10 against doxorubicin-induced cardiotoxicity: Scoping review article. Saudi Pharm. J. 2023, 32, 101882. [Google Scholar] [CrossRef]
- Fouad, A.A.; Jresat, I. Hepatoprotective effect of coenzyme Q10 in rats with acetaminophen toxicity. Environ. Toxicol. Pharmacol. 2012, 33, 158–167. [Google Scholar] [CrossRef]
- da Silva, R.H.S.; de Moura, M.; de Paula, L.; Arantes, K.C.; da Silva, M.; de Amorim, J.; Miguel, M.P.; Martins, D.B.; Silva, D.d.M.e.; Melo, M.M.; et al. Effects of coenzyme Q10 and N-acetylcysteine on experimental poisoning by paracetamol in Wistar rats. PLoS ONE 2023, 18, e0290268. [Google Scholar] [CrossRef]
- Amimoto, T.; Matsura, T.; Koyama, S.-Y.; Nakanishi, T.; Yamada, K.; Kajiyama, G. Acetaminophen-induced hepatic injury in mice: The role of lipid peroxidation and effects of pretreatment with coenzyme Q10 and alpha-tocopherol. Free Radic. Biol. Med. 1995, 19, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Chen, S.; Tang, H.; Fang, W.; Chen, K.; Chen, X. CoQ10 protects against acetaminophen-induced liver injury by enhancing mitophagy. Toxicol. Appl. Pharmacol. 2021, 410, 115355. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Tang, Y.; Fang, W.; He, T.; Chen, X.; Zhang, P. CoQ10 promotes resolution of necrosis and liver regeneration after acetaminophen-induced liver injury. Toxicol. Sci. 2021, 185, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Sunar, M.; Yazici, G.N.; Mammadov, R.; Kurt, N.; Arslan, Y.K.; Süleyman, H. Coenzyme Q10 effect on cisplatin-induced oxidative retinal injury in rats. Cutan. Ocul. Toxicol. 2021, 40, 312–318. [Google Scholar] [CrossRef]
- Özcan, P.; Fıçıcıoğlu, C.; Kizilkale, O.; Yesiladali, M.; Tok, O.E.; Ozkan, F.; Esrefoglu, M. Can Coenzyme Q10 supplementation protect the ovarian reserve against oxidative damage? J. Assist. Reprod. Genet. 2016, 33, 1223–1230. [Google Scholar] [CrossRef]
- Fatima, S.; Suhail, N.; Alrashed, M.; Wasi, S.; Aljaser, F.S.; AlSubki, R.A.; Alsharidah, A.S.; Banu, N. Epigallocatechin gallate and coenzyme Q10 attenuate cisplatin-induced hepatotoxicity in rats via targeting mitochondrial stress and apoptosis. J. Biochem. Mol. Toxicol. 2021, 35, e22701. [Google Scholar] [CrossRef]
- Astolfi, L.; Simoni, E.; Valente, F.; Ghiselli, S.; Hatzopoulos, S.; Chicca, M.; Martini, A.; Gallyas, F. Coenzyme Q10 plus multivitamin treatment prevents cisplatin ototoxicity in rats. PLoS ONE 2016, 11, e0162106. [Google Scholar] [CrossRef]
- Zhao, L. Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatol. J. Cardiol. 2019, 22, 232–239. [Google Scholar] [CrossRef]
- Aydin, I.; Erisgin, Z.; Cinar, E.; Barak, M.Z.; Tekelioglu, Y.; Usta, M.; Mutlu, H.S.; Turkoglu, I. Should combined MTX and CoQ10 use be reconsidered in terms of steatosis? A biochemical, flow cytometry, histopathological experimental study. Drug Chem. Toxicol. 2024, 1–14. [Google Scholar] [CrossRef]
- Mohamed, D.I.; Khairy, E.; Tawfek, S.S.; Habib, E.K.; Fetouh, M.A. Coenzyme Q10 attenuates lung and liver fibrosis via modulation of autophagy in methotrexate treated rat. Biomed. Pharmacother. 2019, 109, 892–901. [Google Scholar] [CrossRef]
- Arafa, E.-S.A.; Hassanein, E.H.; Ibrahim, N.A.; Buabeid, M.A.; Mohamed, W.R. Involvement of Nrf2-PPAR-γ signaling in Coenzyme Q10 protecting effect against methotrexate-induced testicular oxidative damage. Int. Immunopharmacol. 2024, 129, 111566. [Google Scholar] [CrossRef] [PubMed]
- Kiremitli, T.; Kiremitli, S.; Akselim, B.; Yilmaz, B.; Mammadov, R.; Tor, I.; Yazici, G.; Gulaboglu, M. Protective effect of Coenzyme Q10 on oxidative ovarian and uterine damage induced by methotrexate in rats. Hum. Exp. Toxicol. 2021, 40, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Yahyazadeh, A.; Başak, F.; Demirel, M.A. Efficacy of coenzyme Q10 and curcumin on antioxidant enzyme activity and hippocampal alteration following exposure to cyclophosphamide in male rat. Tissue Cell 2023, 86, 102296. [Google Scholar] [CrossRef] [PubMed]
- Hussein, Z.; Michel, H.E.; El-Naga, R.N.; El-Demerdash, E.; Mantawy, E.M. Coenzyme Q10 ameliorates cyclophosphamide-induced chemobrain by repressing neuronal apoptosis and preserving hippocampal neurogenesis: Mechanistic roles of Wnt/β-catenin signaling pathway. NeuroToxicology 2024, 105, 21–33. [Google Scholar] [CrossRef]
- Kara, O. Protective effect of coenzyme Q10 in cyclophosphamide-induced kidney damage in rats. Front. Public Health 2024, 70, e20230990. [Google Scholar] [CrossRef]
- Akbel, E.; Kucukkurt, I.; Ince, S.; Demirel, H.H.; Acaroz, D.A.; Zemheri-Navruz, F.; Kan, F. Investigation of protective effect of resveratrol and coenzyme Q10 against cyclophosphamide-induced lipid peroxidation, oxidative stress and DNA damage in rats. Toxicol. Res. 2023, 13, tfad123. [Google Scholar] [CrossRef]
- Moreno-Fernández, A.M.; Cordero, M.D.; Garrido-Maraver, J.; Alcocer-Gómez, E.; Casas-Barquero, N.; Carmona-López, M.I.; Sánchez-Alcázar, J.A.; de Miguel, M. Oral treatment with amitriptyline induces coenzyme Q deficiency and oxidative stress in psychiatric patients. J. Psychiatr. Res. 2012, 46, 341–345. [Google Scholar] [CrossRef]
- Cordero, M.D.; Moreno-Fernández, A.M.; Gomez-Skarmeta, J.L.; de Miguel, M.; Garrido-Maraver, J.; Oropesa-Ávila, M.; Rodríguez-Hernández, Á.; Navas, P.; Sánchez-Alcázar, J.A. Coenzyme Q10 and alpha-tocopherol protect against amitriptyline toxicity. Toxicol. Appl. Pharmacol. 2009, 235, 329–337. [Google Scholar] [CrossRef]
- Nagib, M.M.; Tadros, M.G.; Rahmo, R.M.; Sabri, N.A.; Khalifa, A.E.; Masoud, S.I. Ameliorative effects of α-tocopherol and/or coenzyme Q10 on phenytoin-induced cognitive impairment in rats: Role of VEGF and BDNF-TrkB-CREB pathway. Neurotox. Res. 2018, 35, 451–462. [Google Scholar] [CrossRef]
- D’aChille, G.; Morroni, G. Side effects of antibiotics and perturbations of mitochondria functions. Int. Rev. Cell Mol. Biol. 2023, 377, 121–139. [Google Scholar]
- Dalhoff, A. Selective toxicity of antibacterial agents—Still a valid concept or do we miss chances and ignore risks? Infection 2020, 49, 29–56. [Google Scholar] [CrossRef] [PubMed]
- Sugahara, K.; Hirose, Y.; Mikuriya, T.; Hashimoto, M.; Kanagawa, E.; Hara, H.; Shimogori, H.; Yamashita, H. Coenzyme Q10 protects hair cells against aminoglycoside. PLoS ONE 2014, 9, e108280. [Google Scholar] [CrossRef] [PubMed]
- Fetoni, A.; Eramo, S.; Rolesi, R.; Troiani, D.; Paludetti, G. Antioxidant treatment with coenzyme Q-ter in prevention of gentamycin ototoxicity in an animal model. Acta Otorhinolaryngol. Ital. 2012, 32, 103–110. [Google Scholar] [PubMed]
- Baskaran, U.L.; Sabina, E.P. The food supplement coenzyme Q10 and suppression of antitubercular drug-induced hepatic injury in rats: The role of antioxidant defence system, anti-inflammatory cytokine IL-10. Cell Biol. Toxicol. 2015, 31, 211–219. [Google Scholar] [CrossRef]
- Teranishi, M.-A.; Karbowskia, M.; Kuronob, C.; Nishizawaa, Y.; Usukuraa, J.; Sojib, T.; Wakabayashi, T. Effects of coenzyme Q10 on changes in the membrane potential and rate of generation of reactive oxygen species in hydrazine- and chloramphenicol-treated rat liver mitochondria. Arch. Biochem. Biophys. 1999, 366, 157–167. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, Y.; Shao, R.; Xiao, F.; Lin, F.; Dai, H.; Pan, L. Propofol produces neurotoxicity by inducing mitochondrial apoptosis. Exp. Ther. Med. 2022, 24, 630. [Google Scholar] [CrossRef]
- Vanlander, A.V.; Okun, J.G.; de Jaeger, A.; Smet, J.; De Latter, E.; De Paepe, B.; Dacremont, G.; Wuyts, B.; Vanheel, B.; De Paepe, P.; et al. Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme q. Anesthesiology 2015, 122, 343–352. [Google Scholar] [CrossRef]
- Bergamini, C.; Moruzzi, N.; Volta, F.; Faccioli, L.; Gerdes, J.; Mondardini, M.C.; Fato, R. Role of mitochondrial complex I and protective effect of CoQ10 supplementation in propofol induced cytotoxicity. J. Bioenerg. Biomembr. 2016, 48, 413–423. [Google Scholar] [CrossRef]
- Kilicaslan, B.; Akinci, S.B.; Saricaoglu, F.; O Yılbas, S.; A Ozkaya, B. Effects of coenzyme Q10 in a propofol infusion syndrome model of rabbits. Asian Biomed. 2023, 17, 173–184. [Google Scholar] [CrossRef]
- Hanley, P.J.; Ray, J.; Brandt, U.; Daut, J. Halothane, isoflurane and sevoflurane inhibit NADH: Ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J. Physiol. 2002, 544, 687–693. [Google Scholar] [CrossRef]
- Yang, M.; Tan, H.; Zhang, K.; Lian, N.; Yu, Y.; Yu, Y. Protective effects of Coenzyme Q10 against sevoflurane-induced cognitive impairment through regulating apolipoprotein E and phosphorylated Tau expression in young mice. Int. J. Dev. Neurosci. 2020, 80, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Caso, G.; Kelly, P.; McNurlan, M.A.; Lawson, W.E. Effect of coenzyme q10 on myopathic symptoms in patients treated with statins. Am. J. Cardiol. 2007, 99, 1409–1412. [Google Scholar] [CrossRef] [PubMed]
- Fedacko, J.; Pella, D.; Fedackova, P.; Hänninen, O.; Tuomainen, P.; Jarcuska, P.; Lopuchovsky, T.; Jedlickova, L.; Merkovska, L.; Littarru, G.P. Coenzyme Q10 and selenium in statin-associated myopathy treatment. Can. J. Physiol. Pharmacol. 2013, 91, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Šabovič, M.; Skarlovnik, A.; Janić, M.; Lunder, M.; Turk, M. Coenzyme Q10 supplementation decreases statin-related mild-to-moderate muscle symptoms: A randomized clini-cal study. Med. Sci. Monit. 2014, 20, 2183–2188. [Google Scholar] [CrossRef]
- Derosa, G.; D’ANgelo, A.; Maffioli, P. Coenzyme q10 liquid supplementation in dyslipidemic subjects with statin-related clinical symptoms: A double-blind, randomized, placebo-controlled study. Drug Des. Dev. Ther. 2019, 13, 3647–3655. [Google Scholar] [CrossRef]
- Young, J.M.; Florkowski, C.M.; Molyneux, S.L.; McEwan, R.G.; Frampton, C.M.; George, P.M.; Scott, R.S. Effect of coenzyme Q(10) supplementation on simvastatin-induced myalgia. Am. J. Cardiol. 2007, 100, 1400–1403. [Google Scholar] [CrossRef]
- Bookstaver, D.A.; Burkhalter, N.A.; Hatzigeorgiou, C. Effect of coenzyme Q10 supplementation on statin-induced myalgias. Am. J. Cardiol. 2012, 110, 526–529. [Google Scholar] [CrossRef]
- Bogsrud, M.P.; Langslet, G.; Ose, L.; Arnesen, K.-E.; Stuen, M.C.S.; Malt, U.F.; Woldseth, B.; Retterstøl, K. No effect of combined coenzyme Q10 and selenium supplementation on atorvastatin-induced myopathy. Scand. Cardiovasc. J. 2013, 47, 80–87. [Google Scholar] [CrossRef]
- Taylor, B.A.; Lorson, L.; White, C.M.; Thompson, P.D. A randomized trial of coenzyme Q10 in patients with confirmed statin myopathy. Atherosclerosis 2015, 238, 329–335. [Google Scholar] [CrossRef]
- Ahmad, K.; Manongi, N.J.; Rajapandian, R.; Wala, S.M.; Al Edani, E.M.; A Samuel, E.; Franchini, A.P.A. Effectiveness of Coenzyme Q10 supplementation in statin-induced myopathy: A systematic review. Cureus 2024, 16, e68316. [Google Scholar] [CrossRef]
- Denmark, D.; Ruhoy, I.; Wittmann, B.; Ashki, H.; Koran, L.M. Altered plasma mitochondrial metabolites in persistently symptomatic individuals after a GBCA-assisted MRI. Toxics 2022, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Zager, R.A.; Johnson, A.C.; Hanson, S.Y. Radiographic contrast media–induced tubular injury: Evaluation of oxidant stress and plasma membrane integrity. Kidney Int. 2003, 64, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Blas-Garcia, A.; Apostolova, N.; Esplugues, J.V. Oxidative stress and mitochondrial impairment after treatment with anti-HIV drugs: Clinical implications. Curr. Pharm. Des. 2011, 17, 4076–4086. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.T.; McCarthy, M.J.; Vawter, M.P. Psychiatric drugs impact mitochondrial function in brain and other tissues. Schizophr. Res. 2019, 217, 136–147. [Google Scholar] [CrossRef]
- Ľupták, M.; Fišar, Z.; Hroudová, J. Different effects of SSRIs, bupropion, and trazodone on mitochondrial functions and monoamine oxidase isoform activity. Antioxidants 2023, 12, 1208. [Google Scholar] [CrossRef]
- Mantle, D.; Preedy, V.R. Free radicals as mediators of alcohol toxicity. Advers. Drug React. Toxicol. Rev. 1999, 18, 235–253. [Google Scholar]
- Yoladi, F.B.; Palabiyik-Yucelik, S.S.; Zirh, E.B.; Halici, Z.; Baydar, T. Effects of idebenone and coenzyme Q10 on NLRP3/caspase-1/IL-1β pathway regulation on ethanol-induced hepatotoxicity in rats. Drug Chem. Toxicol. 2024, 47, 1205–1217. [Google Scholar] [CrossRef]
- Kandhare, A.D.; Ghosh, P.; Ghule, A.E.; Bodhankar, S.L. Elucidation of molecular mechanism involved in neuroprotective effect ofCoenzymeQ10 in alcohol-induced neuropathic pain. Fundam. Clin. Pharmacol. 2012, 27, 603–622. [Google Scholar] [CrossRef]
- Chen, C.-C.; Liou, S.-W.; Chen, W.-C.; Hu, F.-R.; Wang, I.-J.; Lin, S.-J.; Uversky, V.N. Coenzyme Q10 reduces ethanol-induced apoptosis in corneal fibroblasts. PLoS ONE 2011, 6, e19111. [Google Scholar] [CrossRef]
- Cormier, A.; Morin, C.; Zini, R.; Tillement, J.-P.; Lagrue, G. In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation. Brain Res. 2001, 900, 72–79. [Google Scholar] [CrossRef]
- Pryor, W.A.; Arbour, N.C.; Upham, B.; Church, D.F. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles. Free. Radic. Biol. Med. 1992, 12, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Barra, R.H.D.; Piovezan, B.R.; Matheus, H.R.; Vitória, O.A.P.; Furquim, E.M.d.A.; Fiorin, L.G.; Santos, E.O.; de Almeida, J.M.; El Basuini, M.F. Effect of coenzyme Q10 on tibial fracture resistance in nicotine-exposed rats. PLoS ONE 2025, 20, e0315462. [Google Scholar] [CrossRef] [PubMed]
- Arany, I.; Carter, A.; Hall, S.; Fulop, T.; Dixit, M. Coenzyme Q10 protects renal proximal tubule cells against nicotine-induced apoptosis through induction of p66shc-dependent antioxidant responses. Apoptosis 2016, 22, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Al-Bazi, M.M.; ElShal, M.F.; Khoja, S.M. Reduced coenzyme Q10 in female smokers and its association with lipid profile in a young healthy adult population. Arch. Med. Sci. 2011, 6, 948–954. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Liu, C.-Y.; Chen, P.-W.; Wang, C.-Y.; Chen, H.-C.; Tsao, C.-W. Coenzyme Q10 amends testicular function and spermatogenesis in male mice exposed to cigarette smoke by modulating oxidative stress and inflammation. Am. J. Transl. Res. 2021, 13, 10142–10154. [Google Scholar]
- Song, B.-J.; Moon, K.-H.; Upreti, V.V.; Eddington, N.D.; Lee, I.J. Mechanisms of MDMA (ecstasy)-induced oxidative stress, mitochondrial dysfunction, and organ damage. Curr. Pharm. Biotechnol. 2010, 11, 434–443. [Google Scholar] [CrossRef]
- Graziani, M.; Sarti, P.; Arese, M.; Magnifico, M.C.; Badiani, A.; Saso, L.; Giustarini, D. Cardiovascular mitochondrial dysfunction induced by cocaine: Biomarkers and possible beneficial effects of modu-lators of oxidative stress. Oxidative Med. Cell. Longev. 2017, 2017, 3034245. [Google Scholar] [CrossRef]
- Darvesh, A.S.; Gudelsky, G.A. Evidence for a role of energy dysregulation in the MDMA-induced depletion of brain 5-HT. Brain Res. 2005, 1056, 168–175. [Google Scholar] [CrossRef]
- Klongpanichapak, S.; Govitrapong, P.; Sharma, S.K.; Ebadi, M. Attenuation of cocaine and methamphetamine neurotoxicity by coenzyme Q10. Neurochem. Res. 2006, 31, 303–311. [Google Scholar] [CrossRef]
- Kennedy, C.; Okanya, P.; Nyariki, J.N.; Amwayi, P.; Jillani, N.; Isaac, A.O. Coenzyme Q10 nullified khat-induced hepatotoxicity, nephrotoxicity and inflammation in a mouse model. Heliyon 2020, 6, e04917. [Google Scholar] [CrossRef]
- Nataraj, J.; Manivasagam, T.; Thenmozhi, A.J.; Essa, M.M. Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress. Nutr. Neurosci. 2015, 19, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Langston, J.W. The MPTP Story. J. Park. Dis. 2017, 7 (Suppl. S1), S11–S19. [Google Scholar] [CrossRef] [PubMed]
- Beal, M.; Matthews, R.T.; Tieleman, A.; Shults, C.W. Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. 1998, 783, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Muroyama, A.; Matsushima, H.; Yoshimura, I.; Mitsumoto, Y. Oral administration of coenzyme Q10 reduces MPTP-induced loss of dopaminergic nerve terminals in the striatum in mice. Neurol. Sci. 2011, 33, 195–199. [Google Scholar] [CrossRef]
- Sikorska, M.; Lanthier, P.; Miller, H.; Beyers, M.; Sodja, C.; Zurakowski, B.; Gangaraju, S.; Pandey, S.; Sandhu, J.K. Nanomicellar formulation of coenzyme Q10 (Ubisol-Q10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model: Potential use as an adjuvant treatment in Parkinson’s disease. Neurobiol. Aging 2014, 35, 2329–2346. [Google Scholar] [CrossRef]
- Yamamura, T.; Otani, H.; Nakao, Y.; Hattori, R.; Osako, M.; Imamura, H.; Das, D.K. Dual involvement of coenzyme Q10 in redox signaling and inhibition of death signaling in the rat heart mitochon-dria. Antioxid. Redox Signal. 2001, 3, 103–112. [Google Scholar] [CrossRef]
- Hernández-Camacho, J.D.; García-Corzo, L.; Fernández-Ayala, D.J.M.; Navas, P.; López-Lluch, G. Coenzyme Q at the Hinge of Health and Metabolic Diseases. Antioxidants 2021, 10, 1785. [Google Scholar] [CrossRef]
- Robb, E.L.; Hall, A.R.; Prime, T.A.; Eaton, S.; Szibor, M.; Viscomi, C.; James, A.M.; Murphy, M.P. Control of mitochondrial superoxide production by reverse electron transport at complex I. J. Biol. Chem. 2018, 293, 9869–9879. [Google Scholar] [CrossRef]
- Onukwufor, J.O.; Berry, B.J.; Wojtovich, A.P. Physiologic Implications of Reactive Oxygen Species Production by Mitochondrial Complex I Reverse Electron Transport. Antioxidants 2019, 8, 285. [Google Scholar] [CrossRef]
- Eriksson, E.K.; Hernández, V.A.; Edwards, K. Effect of ubiquinone-10 on the stability of biomimetic membranes of relevance for the inner mitochondrial membrane. Biochim. Biophys. Acta Biomembr. 2018, 1860, 1205–1215. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; Yubero-Serrano, E.M.; Villalba, J.M.; Lopez-Miranda, J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit. Rev. Food Sci. Nutr. 2018, 59, 2240–2257. [Google Scholar] [CrossRef] [PubMed]
- Noh, Y.H.; Kim, K.-Y.; Shim, M.S.; Choi, S.-H.; Choi, S.; Ellisman, M.H.; Weinreb, R.N.; Perkins, G.A.; Ju, W.-K. Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death Dis. 2013, 4, e820. [Google Scholar] [CrossRef] [PubMed]
- Villena, J.A. New insights into PGC-1 coactivators: Redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 2015, 282, 647–672. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-F.; Ku, H.-C.; Lin, H. PGC-1α as a Pivotal Factor in Lipid and Metabolic Regulation. Int. J. Mol. Sci. 2018, 19, 3447. [Google Scholar] [CrossRef]
- Papucci, L.; Schiavone, N.; Witort, E.; Donnini, M.; Lapucci, A.; Tempestini, A.; Formigli, L.; Zecchi-Orlandini, S.; Orlandini, G.; Carella, G.; et al. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J. Biol. Chem. 2003, 278, 28220–28228. [Google Scholar] [CrossRef]
- Li, G.; Zou, L.; Cao, C.; Yang, E.S. Coenzyme Q10 protects SHSY5Y neuronal cells from beta amyloid toxicity and oxygen-glucose deprivation by inhibiting the opening of the mitochondrial permeability transition pore. BioFactors 2005, 25, 97–107. [Google Scholar] [CrossRef]
- Heaton, R.A.; Heales, S.; Rahman, K.; Sexton, D.W.; Hargreaves, I. The Effect of Cellular Coenzyme Q10 Deficiency on Lysosomal Acidification. J. Clin. Med. 2020, 9, 1923. [Google Scholar] [CrossRef]
- Manzar, H.; Abdulhussein, D.; Yap, T.E.; Cordeiro, M.F. Cellular Consequences of Coenzyme Q10 Deficiency in Neurodegeneration of the Retina and Brain. Int. J. Mol. Sci. 2020, 21, 9299. [Google Scholar] [CrossRef]
- Golomb, B.A.; Allison, M.; Koperski, S.; Koslik, H.J.; Devaraj, S.; Ritchie, J.B. Coenzyme Q10 benefits symptoms in Gulf War veterans: Results of a randomized double-blind study. Neural Comput. 2014, 26, 2594–2651. [Google Scholar] [CrossRef]
- Golomb, B.A.; Baez, R.S.; Schilling, J.M.; Dhanani, M.; Fannon, M.J.; Berg, B.K.; Miller, B.J.; Taub, P.R.; Patel, H.H. Mitochondrial impairment but not peripheral inflammation predicts greater Gulf War illness severity. Sci. Rep. 2023, 13, 10739. [Google Scholar] [CrossRef]
- Golomb, B.A.; Han, J.H.; Fung, A.; Berg, B.K.; Miller, B.J.; Hamilton, G. Bioenergetic impairment in Gulf War illness assessed via 31P-MRS. Sci. Rep. 2024, 14, 7418. [Google Scholar] [CrossRef]
- Golomb, B.A.; Han, J.H. Adverse effect propensity: A new feature of Gulf War illness predicted by environmental exposures. iScience 2023, 26, 107363. [Google Scholar] [CrossRef]
Pesticide | Species | CoQ10 Dose | Outcome | Reference |
---|---|---|---|---|
Carbofuran | Rat | 100 mg/kg for 21 days, oral (co-administration) | Liver and kidney tissues protected from oxidative stress and inflammation | Hossain et al. (2023) [7] |
Copper sulphate | Rat | 10 mg/kg/day, oral, for 7 days (co-administration) | Reduced oxidative stress, reduced inflammation, and reduced cardiotoxicity | Alghibiwi et al. (2025) [8] |
Diazinon | Rat | 10 mg/kg for 30 days, i.p. (co-administration) | Reduced oxidative stress and neonatal brain damage | Chali et al. (2023) [9] |
Dichlorvos | Rat | 4.5 mg/kg, i.p., for 12 weeks (pre-administration) | Reduced oxidative stress, reduced neurodegeneration, and improved cognitive function | Binukumar et al. (2012) [10] |
Diquat | Mice | 20 mg/kg/day, gavage, for 1 week (pre-administration) | Reduced oxidative stress, improved mitochondrial function, and improved renal function | Wu et al. (2024) [11] |
Mevinphos | Rat | 4 mcg, brain injection (co-administration) | Improved mitochondrial function, improved medullary function, and cardiovascular protection | Yen et al. (2005) [12] |
Paraquat | Mice | 200 mg/kg for 3 weeks (pre-administration) | Reduced brain protein carbonyl levels and improved behaviour | Attia & Maklad (2018) [13] |
Paraquat | Rat | 6 mg/kg for 4 weeks, oral (post-administration) | Neurodegeneration halted and motor skills improved | Muthukumaran et al. (2014) [14] |
Paraquat | Rat | 50 mcg/mL, drinking water (pre-administration) | Oxidative stress reduced and neurodegeneration prevented | Somayajulu-Nitu et al. (2009) [15] |
Phosphine (as aluminium phosphide) | Rat | 100 mg/kg, i.p. (co-administration) | Reduced oxidative stress, improved mitochondrial function, and improved hepatic function | Hooshangi-Shayesteh et al. (2024) [16] |
Rotenone | Rat | 100 mg/kg for 7 days (pre-administration) | Reduced oxidative stress and improved brain function | Akinmoladun et al. (2022) [17] |
Rotenone | Rat | Dose not stated (pre-administration) | Improved mitochondrial function and reduced dopaminergic neuronal death | Moon et al. (2005) [18] |
Metal Type | Species | CoQ10 Dose | Outcome | Reference |
---|---|---|---|---|
Arsenic (as sodium arsenite; 10 mg/kg/day, oral, for 2 days) | Rat | 10 mg/kg/day for 5 days, i.p. (pre-administration) | Reduced oxidative stress, reduced inflammation, and reduced testicular tissue injury | Fouad et al. (2011) [22] |
Arsenic (as sodium arsenite; 15 mg/kg for 30 days, oral) | Mouse | 200 mg/kg for 30 days, oral (co-administration) | Improved haematological parameters and improved hepatic and renal function | Mwaeni et al. (2021) [23] |
Cadmium (0.4 mg/kg, i.p., single dose) | Rat | 20 mg/kg, i.m., single dose (pre-administration) | Reduced oxidative stress and reduced haematotoxicity | Paunovic et al. (2017) [24] |
Cadmium (25 mg/kg/day, oral, for 15 days) | Rat | 10 mg/kg/day for 15 days, oral (co-administration) | Improved semen quality and reduced testicular oxidative stress | Saha et al. (2019) [25] |
Cadmium (0.4 mg/kg/day for 3 days, oral) | 20 mg/kg/day for 30 days, oral (post-administration) | Reduced oxidative stress and improved semen parameters | Iftikhar et al. (2022) [26] | |
Cadmium (6.5 mg/kg, i.p., single dose) | Mouse | 100 mg/kg day for 14 days, oral (post-administration) | Reduced oxidative stress, reduced inflammation, and reduced cardiotoxicity | Antar et al. (2024) [27] |
Lead (as lead acetate, 10 mg/mL/day for 28 days, oral) | Rat | 10 mg/kg/day for 28 days, oral (co-administration) | Improved serum lipid profile | Mazandaran et al. (2021) [28] |
Mercury (as mercuric chloride, 5 mg/kg for 1 week, oral) | Rat | 10 mg/kg for 30 days, oral (post-administration) | Reduced nephrotoxicity | Kadry & Megeed (2022) [29] |
Titanium (as titanium dioxide, 50 mg/kg + Cadmium 5 mg/kg for 60 days, oral) | Rat | 10 mg/kg for 60 days, oral (co-administration) | Reduced oxidative stress, reduced inflammation, and improved hepatic function | Abd-Elhakim et al. (2023) [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantle, D.; Golomb, B.A. Coenzyme Q10 and Xenobiotic Metabolism: An Overview. Int. J. Mol. Sci. 2025, 26, 5788. https://doi.org/10.3390/ijms26125788
Mantle D, Golomb BA. Coenzyme Q10 and Xenobiotic Metabolism: An Overview. International Journal of Molecular Sciences. 2025; 26(12):5788. https://doi.org/10.3390/ijms26125788
Chicago/Turabian StyleMantle, David, and Beatrice A. Golomb. 2025. "Coenzyme Q10 and Xenobiotic Metabolism: An Overview" International Journal of Molecular Sciences 26, no. 12: 5788. https://doi.org/10.3390/ijms26125788
APA StyleMantle, D., & Golomb, B. A. (2025). Coenzyme Q10 and Xenobiotic Metabolism: An Overview. International Journal of Molecular Sciences, 26(12), 5788. https://doi.org/10.3390/ijms26125788