Red Blood Cell, White Blood Cell, and Platelet Counts as Differentiating Factors in Cardiovascular Patients with and Without Current Myocardial Infarction
Abstract
1. Introduction
2. Results
2.1. Dataset Characteristics
2.2. Interdependence Analysis and Variable Selection for Logistic Regression Modeling Based on Correlations Between Peripheral Blood Parameters in Cardiovascular Patients
2.3. Differences in Leukocyte, Erythrocyte, and Platelet Counts in Cardiovascular Patients with Current and First-Time Myocardial Infarction Compared to Those Without a History of Infarction
2.4. Association Between Red Blood Cell Count (RBC) and Myocardial Infarction—Quartile-Based Analysis
2.5. Association Between White Blood Cell Count (WBC) and Myocardial Infarction—Quartile-Based Analysis
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Sample Collection
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMI | Acute Myocardial Infarction |
ATP | Adenosine Triphosphate |
BMI | Body Mass Index |
CVD | Cardiovascular Disease |
cGMP | Cyclic Guanosine Monophosphate |
HbA1c | Glycated Hemoglobin |
HDL | High-Density Lipoprotein |
Ht | Hematocrit |
hsCRP | High-Sensitivity C-Reactive Protein |
LDL | Low-Density Lipoprotein |
MI | Myocardial Infarction |
MPV | Mean Platelet Volume |
NO | Nitric Oxide |
OR | Odds Ratio |
PCT | Plateletcrit |
PLCR | Platelet–Large Cell Ratio |
PLT | Platelets/Blood Platelets |
Q1 | First Quartile |
Q2 | Second Quartile |
Q3 | Third Quartile |
Q4 | Fourth Quartile |
RBC | Red Blood Cell |
STEMI | ST-Elevation Myocardial Infarction |
WBC | White Blood Cell |
References
- Deaton, C.; Froelicher, E.S.; Wu, L.H.; Ho, C.; Shishani, K.; Jaarsma, T. The global burden of cardiovascular disease. Eur. J. Cardiovasc. Nurs. 2011, 10 (Suppl. S2), S5–S13. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Liu, M.; Sun, R.; Zheng, Y.; Zhang, P. Myocardial Infarction: Symptoms and Treatments. Cell Biochem. Biophys. 2015, 72, 865–867. [Google Scholar] [CrossRef]
- Seo, I.H.; Lee, Y.J. Usefulness of Complete Blood Count (CBC) to Assess Cardiovascular and Metabolic Diseases in Clinical Settings: A Comprehensive Literature Review. Biomedicines 2022, 10, 2697. [Google Scholar] [CrossRef] [PubMed]
- Huilcaman, R.; Venturini, W.; Fuenzalida, L.; Cayo, A.; Segovia, R.; Valenzuela, C.; Brown, N.; Moore-Carrasco, R. Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022, 11, 1014. [Google Scholar] [CrossRef]
- Berger, J.S.; Cornwell, M.G.; Xia, Y.; Muller, M.A.; Smilowitz, N.R.; Newman, J.D.; Schlamp, F.; Rockman, C.B.; Ruggles, K.V.; Voora, D.; et al. A Platelet Reactivity ExpreSsion Score derived from patients with peripheral artery disease predicts cardiovascular risk. Nat. Commun. 2024, 15, 6902. [Google Scholar] [CrossRef]
- Roy, P.; Orecchioni, M.; Ley, K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat. Rev. Immunol. 2022, 22, 251–265. [Google Scholar] [CrossRef]
- Madjid, M.; Awan, I.; Willerson, J.T.; Casscells, S.W. Leukocyte count and coronary heart disease: Implications for risk assessment. J. Am. Coll. Cardiol. 2004, 44, 1945–1956. [Google Scholar] [CrossRef]
- Peters, S.A.; Woodward, M.; Rumley, A.; Tunstall-Pedoe, H.D.; Lowe, G.D. Plasma and blood viscosity in the prediction of cardiovascular disease and mortality in the Scottish Heart Health Extended Cohort Study. Eur. J. Prev. Cardiol. 2017, 24, 161–167. [Google Scholar] [CrossRef]
- Kleinbongard, P.; Schulz, R.; Rassaf, T.; Lauer, T.; Dejam, A.; Jax, T.; Kumara, I.; Gharini, P.; Kabanova, S.; Ozüyaman, B.; et al. Red blood cells express a functional endothelial nitric oxide synthase. Blood 2006, 107, 2943–2951. [Google Scholar] [CrossRef]
- Weisel, J.W.; Litvinov, R.I. Red blood cells: The forgotten player in hemostasis and thrombosis. J. Thromb. Haemost. 2019, 17, 271–282. [Google Scholar] [CrossRef]
- Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.D.; et al. Blood rheology: Key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front. Physiol. 2019, 10, 1329. [Google Scholar] [CrossRef] [PubMed]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Kul, A.N.; Ozdemir, S.; Helvaci, A.; Bulut, C.; Dursun, S. The relationship of acute myocardial infarction with or without ST-segment elevation and viscosity. Clin. Appl. Thromb./Hemost. 2014, 20, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhu, Y.; Zhang, L.; Wu, M.; Huang, H.; Peng, K.; Zhao, W.; Chen, S.; Peng, X.; Li, N.; et al. Red blood cell count and risk of adverse outcomes in patients with mildly reduced left ventricular ejection fraction. Clin. Cardiol. 2023, 46, 1276–1284. [Google Scholar] [CrossRef]
- Mahdi, A.; Cortese-Krott, M.M.; Kelm, M.; Li, N.; Pernow, J. Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radic. Biol. Med. 2021, 168, 95–109. [Google Scholar] [CrossRef]
- Pernow, J.; Mahdi, A.; Yang, J.; Zhou, Z. Red blood cell dysfunction: A new player in cardiovascular disease. Cardiovasc. Res. 2019, 115, 1596–1605. [Google Scholar] [CrossRef]
- Pawloski, J.R.; Hess, D.T.; Stamler, J.S. Export by red blood cells of nitric oxide bioactivity. Nature 2001, 409, 622–626. [Google Scholar] [CrossRef]
- Gajecki, D.; Gawryś, J.; Szahidewicz-Krupska, E.; Doroszko, A. Role of Erythrocytes in Nitric Oxide Metabolism and Paracrine Regulation of Endothelial Function. Antioxidants 2022, 11, 943. [Google Scholar] [CrossRef]
- Cortese-Krott, M.M.; Rodriguez-Mateos, A.; Sansone, R.; Kuhnle, G.G.; Thasian-Sivarajah, S.; Krenz, T.; Horn, P.; Krisp, C.; Wolters, D.; Heiß, C.; et al. Human red blood cells at work: Identification and visualization of erythrocytic eNOS activity in health and disease. Blood 2012, 120, 4229–4237. [Google Scholar] [CrossRef]
- Habib, S.; Ali, A. Biochemistry of nitric oxide. Indian J. Clin. Biochem. 2011, 26, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Cortese-Krott, M.M.; Kelm, M. Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function? Redox Biol. 2014, 2, 251–258. [Google Scholar] [CrossRef]
- Jiao, T.; Collado, A.; Mahdi, A.; Jurga, J.; Tengbom, J.; Saleh, N.; Verouhis, D.; Böhm, F.; Zhou, Z.; Yang, J.; et al. Erythrocytes from patients with ST-elevation myocardial infarction induce cardioprotection through the purinergic P2Y13 receptor and nitric oxide signaling. Basic Res. Cardiol. 2022, 117, 46. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sundqvist, M.L.; Zheng, X.; Jiao, T.; Collado, A.; Tratsiakovich, Y.; Mahdi, A.; Tengbom, J.; Mergia, E.; Catrina, S.B.; et al. Hypoxic erythrocytes mediate cardioprotection through activation of soluble guanylate cyclase and release of cyclic GMP. J. Clin. Investig. 2023, 133, e167693. [Google Scholar] [CrossRef] [PubMed]
- Jan, K.M.; Chien, S.; Bigger, J.T., Jr. Observations on blood viscosity changes after acute myocardial infarction. Circulation 1975, 51, 1079–1084. [Google Scholar] [CrossRef]
- Cecchi, E.; Liotta, A.A.; Gori, A.M.; Valente, S.; Giglioli, C.; Lazzeri, C.; Sofi, F.; Gensini, G.F.; Abbate, R.; Mannini, L. Comparison of hemorheological variables in ST-elevation myocardial infarction versus those in non-ST-elevation myocardial infarction or unstable angina pectoris. Am. J. Cardiol. 2008, 102, 125–128. [Google Scholar] [CrossRef]
- Takaoka, N.; Sairenchi, T.; Irie, F.; Matsushita, M.; Nagao, M.; Umesawa, M.; Haruyama, Y.; Watanabe, H.; Yamagishi, K.; Iso, H.; et al. High hematocrit levels are associated with risk of cardiovascular mortality among middle-aged Japanese women: The Ibaraki Prefectural Health Study (IPHS). Tohoku J. Exp. Med. 2019, 249, 65–73. [Google Scholar] [CrossRef]
- Jin, Y.Z.; Zheng, D.H.; Duan, Z.Y.; Lin, Y.Z.; Zhang, X.Y.; Wang, J.R.; Han, S.; Wang, G.F.; Zhang, Y.J. Relationship between hematocrit level and cardiovascular risk factors in a community-based population. J. Clin. Lab. Anal. 2015, 29, 289–293. [Google Scholar] [CrossRef]
- Lassale, C.; Curtis, A.; Abete, I.; van der Schouw, Y.T.; Verschuren, W.M.M.; Lu, Y.; Bueno-de-Mesquita, H.B.A. Elements of the complete blood count associated with cardiovascular disease incidence: Findings from the EPIC-NL cohort study. Sci. Rep. 2018, 8, 3290. [Google Scholar] [CrossRef]
- Goyal, A.; Belur, A.D.; Dey, A.K.; Mehta, N.N. Blood inflammatory biomarkers of cardiovascular disease. In Biomarkers in Cardiovascular Disease; Elsevier: Amsterdam, The Netherlands, 2019; pp. 71–79. [Google Scholar] [CrossRef]
- Park, C.; Yoo, K.; Lee, S.; Kim, H.; Son, E.; Lee, D.; Ko, D.S.; Kim, K.; Kim, Y.H. The prognostic significance of leukocyte count on all-cause and cardiovascular disease mortality: A systematic review and meta-analysis. Am. J. Cardiol. 2023, 203, 226–233. [Google Scholar] [CrossRef]
- Ishihara, M.; Kojima, S.; Sakamoto, T.; Asada, Y.; Kimura, K.; Miyazaki, S.; Yamagishi, M.; Tei, C.; Hiraoka, H.; Sonoda, M.; et al. Usefulness of combined white blood cell count and plasma glucose for predicting in-hospital outcomes after acute myocardial infarction. Am. J. Cardiol. 2006, 97, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, J.P.; Lueneberg, M.E.; da Silva, R.L.; Fattah, T.; Gottschall, C.A.M.; Moreira, D.M. Correlation between leukocyte count and infarct size in ST segment elevation myocardial infarction. Arch. Med. Sci. Atheroscler. Dis. 2016, 1, e44–e48. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, M.; Welch, R.D.; Parsons, L.; Ndumele, C.E.; Chen, E.; Zalenski, R.; Barron, H.V. The association between white blood cell count and acute myocardial infarction in-hospital mortality: Findings from the National Registry of Myocardial Infarction. Acad. Emerg. Med. 2004, 11, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Kruk, M.; Karcz, M.; Przyłuski, J.; Bekta, P.; Kepka, C.; Kalińczuk, Ł.; Rużyłło, W.; Kaczmarska, E.; Demkow, M.; Chmielak, Z.; et al. White blood cell count adds prognostic information to the thrombolysis in myocardial infarction risk index. Int. J. Cardiol. 2007, 116, 376–382. [Google Scholar] [CrossRef]
Variable | Total Population | MI(−) | MI(+) | p Value |
---|---|---|---|---|
Age [years] | 60.41 ± 15.14 | 59.65 ± 15.77 | 64.24 ± 10.69 | 0.02 |
Sex | 0.02 C | |||
Male, n (%) | 427 (57.47) | 340 (54.84) | 87 (70.73) | |
Female, n (%) | 316 (42.53) | 280 (45.16) | 36 (29.27) | |
BMI [kg/m2] | 27.20 ± 4.36 | 27.16 ± 4.37 | 27.36 ± 4.36 | 0.48 |
RBCs [106/µL] | 4.61 ± 0.51 | 4.62 ± 0.51 | 4.53 ± 0.49 | 0.19 |
WBCs [103/µL] | 7.94 ± 2.57 | 7.59 ± 2.31 | 9.7 ± 3.04 | 4.07 × 10−9 |
PLTs [103/µL] | 226.59 ± 60.12 | 225.35 ± 59.77 | 232.80 ± 61.77 | 0.31 |
PCT [%] | 0.11 ± 0.06 | 0.24 ± 0.05 | 0.24 ± 0.06 | 0.28 |
PLCR [%] | 29.16 ± 6.39 | 29.13 ± 6.4 | 29.3 ± 6.34 | 0.49 |
MPV [fL] | 10.57 ± 0.92 | 10.57 ± 0.93 | 10.59 ± 0.92 | 0.49 |
Ht [%] | 41.25 ± 4.20 | 41.31 ± 4.18 | 40.94 ± 4.26 | 0.39 |
Total cholesterol [mg/dL] | 191.58 ± 48.06 | 191.64 ± 48.26 | 191.28 ± 47.26 | 0.51 |
LDL cholesterol [mg/dL] | 114.83 ± 40.00 | 114.37 ± 39.92 | 117.15 ± 40.47 | 0.44 |
HDL cholesterol [mg/dL] | 48.67 ± 15.04 | 49.55 ± 15.29 | 44.29 ± 12.92 | 0.01 |
Triglycerides [mg/dL] | 143.48 ± 77.66 | 141 ± 72.14 | 155.94 ± 100.38 | 0.18 |
Glucose [mg/dL] | 127.26 ± 44.44 | 123.39 ± 40.01 | 147.43 ± 58.87 | 5.82 × 10−4 |
HbA1c [%] | 5.90 ± 0.88 | 5.88 ± 0.84 | 5.99 ± 1.01 | 0.39 |
hsCRP [mg/L] | 17.49 ± 40.40 | 13.77 ± 36.36 | 35.89 ± 52.77 | 6.10 × 10−4 |
Variable | Quartiles | ||||
---|---|---|---|---|---|
Q1 (n = 182) | Q2 (n = 186) | Q3 (n = 185) | Q4 (n = 190) | p Value | |
Age [years] | 66.46 ± 13.52 | 61.88 ± 14.01 | 59.67 ± 14.57 | 53.92 ± 15.66 | 3.932 × 10−8 |
Sex | 2.289 × 10−10 C | ||||
Male, n (%) | 75 (41.21) | 89 (47.85) | 103 (55.68) | 160 (84.21) | |
Female, n (%) | 107 (58.79) | 97 (52.15) | 82 (44.32) | 30 (15.79) | |
RBCs [106/µL] | 3.96 ± 0.30 | 4.45 ± 0.09 | 4.76 ± 0.10 | 5.24 ± 0.24 | 8.339 × 10−253 |
WBCs [103/µL] | 7.54 ± 2.67 | 7.68 ± 2.42 | 7.97 ± 2.46 | 8.54 ± 2.61 | 0.013 |
PLTs [103/µL] | 213.47 ± 61.83 | 225.67 ± 56.47 | 227.30 ± 56.82 | 239.34 ± 62.74 | 0.011 |
Myocardial infarction, n (%) | 0.232 C | ||||
Yes | 35 (19.23) | 30 (16.13) | 34 (18.38) | 24 (12.63) | |
No | 147 (80.77) | 156 (83.87) | 151 (81.62) | 166 (87.37) |
Variable | Quartiles | ||||
---|---|---|---|---|---|
Q1 (n = 183) | Q2 (n = 187) | Q3 (n = 187) | Q4 (n = 186) | p Value | |
Age [years] | 60.66 ± 16.53 | 61.80 ± 13.63 | 60.57 ± 14.18 | 58.62 ± 15.99 | 0.199 |
Sex | 0.004 C | ||||
Male, n (%) | 87 (47.54) | 96 (51.34) | 118 (63.10) | 126 (67.74) | |
Female, n (%) | 96 (52.46) | 91 (48.66) | 69 (36.90) | 60 (32.26) | |
RBCs [106/µL] | 4.50 ± 0.50 | 4.61 ± 0.48 | 4.62 ± 0.52 | 4.70 ± 0.52 | 0.019 |
WBCs [103/µL] | 5.29 ± 0.71 | 6.73 ± 0.34 | 8.24 ± 0.57 | 11.45 ± 2.14 | 4.079 × 10−225 |
PLTs [103/µL] | 203.66 ± 51.15 | 217.69 ± 50.52 | 231.64 ± 57.76 | 253.00 ± 68.39 | 3.636 × 10−9 |
Myocardial infarction, n (%) | 4.130 × 10−7 C | ||||
Yes | 10 (5.46) | 22 (11.76) | 26 (13.90) | 65 (34.95) | |
No | 173 (94.54) | 165 (88.24) | 161 (86.10) | 121 (65.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostanek, J.; Karolczak, K.; Kuliczkowski, W.; Watala, C. Red Blood Cell, White Blood Cell, and Platelet Counts as Differentiating Factors in Cardiovascular Patients with and Without Current Myocardial Infarction. Int. J. Mol. Sci. 2025, 26, 5736. https://doi.org/10.3390/ijms26125736
Kostanek J, Karolczak K, Kuliczkowski W, Watala C. Red Blood Cell, White Blood Cell, and Platelet Counts as Differentiating Factors in Cardiovascular Patients with and Without Current Myocardial Infarction. International Journal of Molecular Sciences. 2025; 26(12):5736. https://doi.org/10.3390/ijms26125736
Chicago/Turabian StyleKostanek, Joanna, Kamil Karolczak, Wiktor Kuliczkowski, and Cezary Watala. 2025. "Red Blood Cell, White Blood Cell, and Platelet Counts as Differentiating Factors in Cardiovascular Patients with and Without Current Myocardial Infarction" International Journal of Molecular Sciences 26, no. 12: 5736. https://doi.org/10.3390/ijms26125736
APA StyleKostanek, J., Karolczak, K., Kuliczkowski, W., & Watala, C. (2025). Red Blood Cell, White Blood Cell, and Platelet Counts as Differentiating Factors in Cardiovascular Patients with and Without Current Myocardial Infarction. International Journal of Molecular Sciences, 26(12), 5736. https://doi.org/10.3390/ijms26125736