Endocannabinoid Tone and Oxylipins in Rheumatoid Arthritis and Osteoarthritis—A Novel Target for the Treatment of Pain and Inflammation?
Abstract
1. Introduction
2. Results
2.1. Study Results
2.1.1. Demographics and Drug Use
2.1.2. Cytokine Analysis
2.1.3. Endocannabinoid Analysis
2.1.4. Bioactive Lipids/Oxylipins
3. Discussion
Limitations
4. Materials and Methods
4.1. Patient/Volunteer Enrollment and Blood Draw
4.2. Cytokine Multiplex Analysis
4.3. Endocannabinoid Analysis
4.4. Bioactive Lipid/Oxylipin Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, L.; Cranney, A.; Holroyd-Leduc, J.M. Acute monoarthritis: What is the cause of my patient’s painful swollen joint? CMAJ 2009, 180, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Tsou, H.K.; Kao, S.L.; Gau, S.Y.; Bai, Y.C.; Lin, M.C.; Wei, J.C. Patients with Rheumatoid Arthritis Increased Risk of Developing Osteoarthritis: A Nationwide Population-Based Cohort Study in Taiwan. Front. Med. 2020, 7, 392. [Google Scholar] [CrossRef]
- Bryk, M.; Starowicz, K. Cannabinoid-based therapy as a future for joint degeneration. Focus on the role of CB(2) receptor in the arthritis progression and pain: An updated review. Pharmacol. Rep. 2021, 73, 681–699. [Google Scholar] [CrossRef] [PubMed]
- Fallon, E.A.; Boring, M.A.; Foster, A.L.; Stowe, E.W.; Lites, T.D.; Odom, E.L.; Seth, P. Prevalence of Diagnosed Arthritis—United States, 2019–2021. Morb. Mortal. Wkly. Rep. 2023, 72, 1101–1107. [Google Scholar] [CrossRef]
- Yelin, E.; Weinstein, S.; King, T. The burden of musculoskeletal diseases in the United States. Semin. Arthritis Rheum. 2016, 46, 259–260. [Google Scholar] [CrossRef]
- Schepman, P.B.; Thakkar, S.; Robinson, R.L.; Beck, C.G.; Malhotra, D.; Emir, B.; Hansen, R.N. A Retrospective Claims-Based Study Evaluating Clinical and Economic Burden Among Patients with Moderate to Severe Osteoarthritis Pain in the United States. J. Health Econ. Outcomes Res. 2022, 9, 58–67. [Google Scholar] [CrossRef]
- Hazes, J.M.; Luime, J.J. The epidemiology of early inflammatory arthritis. Nat. Rev. Rheumatol. 2011, 7, 381–390. [Google Scholar] [CrossRef]
- Kloppenburg, M.; Berenbaum, F. Osteoarthritis year in review 2019: Epidemiology and therapy. Osteoarthr. Cartil. 2020, 28, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef]
- Primorac, D.; Molnar, V.; Rod, E.; Jelec, Z.; Cukelj, F.; Matisic, V.; Vrdoljak, T.; Hudetz, D.; Hajsok, H.; Boric, I. Knee Osteoarthritis: A Review of Pathogenesis and State-of-the-Art Non-Operative Therapeutic Considerations. Genes 2020, 11, 854. [Google Scholar] [CrossRef]
- Sharma, L. Osteoarthritis of the Knee. N. Engl. J. Med. 2021, 384, 51–59. [Google Scholar] [CrossRef]
- Cui, A.; Li, H.; Wang, D.; Zhong, J.; Chen, Y.; Lu, H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine 2020, 29, 100587. [Google Scholar] [CrossRef] [PubMed]
- Toivanen, A.T.; Heliovaara, M.; Impivaara, O.; Arokoski, J.P.; Knekt, P.; Lauren, H.; Kroger, H. Obesity, physically demanding work and traumatic knee injury are major risk factors for knee osteoarthritis—A population-based study with a follow-up of 22 years. Rheumatology 2010, 49, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Lo, G.H.; Richard, M.J.; McAlindon, T.E.; Park, C.; Strayhorn, M.T.; Harkey, M.S.; Price, L.L.; Eaton, C.B.; Driban, J.B. Increased risk of incident knee osteoarthritis in those with greater work-related physical activity. Occup. Environ. Med. 2022, 79, 543–549. [Google Scholar] [CrossRef]
- Duong, V.; Abdel Shaheed, C.; Ferreira, M.L.; Narayan, S.W.; Venkatesha, V.; Hunter, D.J.; Zhu, J.; Atukorala, I.; Kobayashi, S.; Goh, S.L.; et al. Risk factors for the development of knee osteoarthritis across the lifespan: A systematic review and meta-analysis. Osteoarthr. Cartil. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Peng, G.; Jiang, Y.; Qu, J.; Wu, F. Association between visceral adiposity index and osteoarthritis in U.S. adults aged 50 and older: A cross-sectional study. Front. Nutr. 2025, 12, 1542937. [Google Scholar] [CrossRef]
- Reginato, A.M.; Olsen, B.R. The role of structural genes in the pathogenesis of osteoarthritic disorders. Arthritis Res. 2002, 4, 337–345. [Google Scholar] [CrossRef]
- Siva, C.; Velazquez, C.; Mody, A.; Brasington, R. Diagnosing acute monoarthritis in adults: A practical approach for the family physician. Am. Fam. Physician 2003, 68, 83–90. [Google Scholar]
- Crowson, C.S.; Matteson, E.L.; Myasoedova, E.; Michet, C.J.; Ernste, F.C.; Warrington, K.J.; Davis, J.M., 3rd; Hunder, G.G.; Therneau, T.M.; Gabriel, S.E. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum. 2011, 63, 633–639. [Google Scholar] [CrossRef]
- Sohn, D.H.; Sokolove, J.; Sharpe, O.; Erhart, J.C.; Chandra, P.E.; Lahey, L.J.; Lindstrom, T.M.; Hwang, I.; Boyer, K.A.; Andriacchi, T.P.; et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res. Ther. 2012, 14, R7. [Google Scholar] [CrossRef]
- Kelly, E.; Heron, N. Pain management of hip osteoarthritis with corticosteroids vs injection therapies: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2025, 26, 473. [Google Scholar] [CrossRef] [PubMed]
- Schnitzer, T.J.; Robinson, R.L.; Viktrup, L.; Cappelleri, J.C.; Bushmakin, A.G.; Tive, L.; Berry, M.; Walker, C.; Jackson, J. Opioid Prescribing for Osteoarthritis: Cross-Sectional Survey among Primary Care Physicians, Rheumatologists, and Orthopaedic Surgeons. J. Clin. Med. 2023, 12, 589. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Silverman, S.M.; Hansen, H.; Patel, V.B.; Manchikanti, L. A comprehensive review of opioid-induced hyperalgesia. Pain Physician 2011, 14, 145–161. [Google Scholar] [CrossRef]
- Law, S.T.; Taylor, P.C. Role of biological agents in treatment of rheumatoid arthritis. Pharmacol. Res. 2019, 150, 104497. [Google Scholar] [CrossRef]
- Kaur, I.; Behl, T.; Bungau, S.; Zengin, G.; Kumar, A.; El-Esawi, M.A.; Khullar, G.; Venkatachalam, T.; Arora, S. The endocannabinoid signaling pathway as an emerging target in pharmacotherapy, earmarking mitigation of destructive events in rheumatoid arthritis. Life Sci. 2020, 257, 118109. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Kamali, K.; Lafreniere, J.D.; Lehmann, C. Real-Time Imaging of Immune Modulation by Cannabinoids Using Intravital Fluorescence Microscopy. Cannabis Cannabinoid Res. 2021, 6, 221–232. [Google Scholar] [CrossRef]
- Devane, W.A.; Dysarz, F.A., 3rd; Johnson, M.R.; Melvin, L.S.; Howlett, A.C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 1988, 34, 605–613. [Google Scholar] [CrossRef]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef]
- Mbvundula, E.C.; Bunning, R.A.; Rainsford, K.D. Arthritis and cannabinoids: HU-210 and Win-55,212-2 prevent IL-1alpha-induced matrix degradation in bovine articular chondrocytes in-vitro. J. Pharm. Pharmacol. 2006, 58, 351–358. [Google Scholar] [CrossRef]
- Richardson, D.; Pearson, R.G.; Kurian, N.; Latif, M.L.; Garle, M.J.; Barrett, D.A.; Kendall, D.A.; Scammell, B.E.; Reeve, A.J.; Chapman, V. Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis Res. Ther. 2008, 10, R43. [Google Scholar] [CrossRef]
- Dunn, S.L.; Wilkinson, J.M.; Crawford, A.; Bunning, R.A.D.; Le Maitre, C.L. Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies. Cannabis Cannabinoid Res. 2016, 1, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Selvi, E.; Lorenzini, S.; Garcia-Gonzalez, E.; Maggio, R.; Lazzerini, P.E.; Capecchi, P.L.; Balistreri, E.; Spreafico, A.; Niccolini, S.; Pompella, G.; et al. Inhibitory effect of synthetic cannabinoids on cytokine production in rheumatoid fibroblast-like synoviocytes. Clin. Exp. Rheumatol. 2008, 26, 574–581. [Google Scholar]
- Ross, R.A. The enigmatic pharmacology of GPR55. Trends Pharmacol. Sci. 2009, 30, 156–163. [Google Scholar] [CrossRef]
- Di Marzo, V.; De Petrocellis, L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: A further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr. Med. Chem. 2010, 17, 1430–1449. [Google Scholar] [CrossRef] [PubMed]
- Pistis, M.; Melis, M. From surface to nuclear receptors: The endocannabinoid family extends its assets. Curr. Med. Chem. 2010, 17, 1450–1467. [Google Scholar] [CrossRef]
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef]
- Lubberts, E.; van den Berg, W.B. Cytokines in the pathogenesis of rheumatoid arthritis and collagen-induced arthritis. Adv. Exp. Med. Biol. 2003, 520, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Kuroda, T.; Kobayashi, D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 10922. [Google Scholar] [CrossRef]
- Wei, S.T.; Sun, Y.H.; Zong, S.H.; Xiang, Y.B. Serum Levels of IL-6 and TNF-alpha May Correlate with Activity and Severity of Rheumatoid Arthritis. Med. Sci. Monit. 2015, 21, 4030–4038. [Google Scholar] [CrossRef]
- Hashizume, M.; Mihara, M. The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis 2011, 2011, 765624. [Google Scholar] [CrossRef]
- Foster, W.; Carruthers, D.; Lip, G.Y.; Blann, A.D. Inflammatory cytokines, endothelial markers and adhesion molecules in rheumatoid arthritis: Effect of intensive anti-inflammatory treatment. J. Thromb. Thrombolysis 2010, 29, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Sempio, C.; Klawitter, J.; Jackson, M.; Freni, F.; Shillingburg, R.; Hutchison, K.; Bidwell, L.C.; Christians, U.; Klawitter, J. Analysis of 14 endocannabinoids and endocannabinoid congeners in human plasma using column switching high-performance atmospheric pressure chemical ionization liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 2021, 413, 3381–3392. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S. The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 2008, 87, 1997S–2002S. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S. Recent studies confirm the utility of the omega-3 index. Curr. Opin. Clin. Nutr. Metab. Care 2024, 28, 91–95. [Google Scholar] [CrossRef]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef]
- Masuoka, S.; Nishio, J.; Yamada, S.; Saito, K.; Kaneko, K.; Kaburaki, M.; Tanaka, N.; Sato, H.; Muraoka, S.; Kawazoe, M.; et al. Relationship Between the Lipidome Profile and Disease Activity in Patients with Rheumatoid Arthritis. Inflammation 2024, 47, 1444–1458. [Google Scholar] [CrossRef]
- Altawil, R.; Saevarsdottir, S.; Wedren, S.; Alfredsson, L.; Klareskog, L.; Lampa, J. Remaining Pain in Early Rheumatoid Arthritis Patients Treated with Methotrexate. Arthritis Care Res. 2016, 68, 1061–1068. [Google Scholar] [CrossRef]
- Zhang, A.; Lee, Y.C. Mechanisms for Joint Pain in Rheumatoid Arthritis (RA): From Cytokines to Central Sensitization. Curr. Osteoporos. Rep. 2018, 16, 603–610. [Google Scholar] [CrossRef]
- Lim, D.H. A Challenging Target: Persistent Pain During the Remission State in Rheumatoid Arthritis Patients. J. Rheum. Dis. 2023, 30, 1–2. [Google Scholar] [CrossRef]
- Molnar, V.; Matisic, V.; Kodvanj, I.; Bjelica, R.; Jelec, Z.; Hudetz, D.; Rod, E.; Cukelj, F.; Vrdoljak, T.; Vidovic, D.; et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9208. [Google Scholar] [CrossRef]
- Belluzzi, E.; Stocco, E.; Pozzuoli, A.; Granzotto, M.; Porzionato, A.; Vettor, R.; De Caro, R.; Ruggieri, P.; Ramonda, R.; Rossato, M.; et al. Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain. Biomed. Res. Int. 2019, 2019, 6390182. [Google Scholar] [CrossRef] [PubMed]
- Roseti, L.; Borciani, G.; Amore, E.; Grigolo, B. Cannabinoids in the Inflamed Synovium Can Be a Target for the Treatment of Rheumatic Diseases. Int. J. Mol. Sci. 2024, 25, 9356. [Google Scholar] [CrossRef]
- Philpott, H.T.; McDougall, J.J. Combatting joint pain and inflammation by dual inhibition of monoacylglycerol lipase and cyclooxygenase-2 in a rat model of osteoarthritis. Arthritis Res. Ther. 2020, 22, 9. [Google Scholar] [CrossRef] [PubMed]
- Schuelert, N.; Johnson, M.P.; Oskins, J.L.; Jassal, K.; Chambers, M.G.; McDougall, J.J. Local application of the endocannabinoid hydrolysis inhibitor URB597 reduces nociception in spontaneous and chemically induced models of osteoarthritis. Pain 2011, 152, 975–981. [Google Scholar] [CrossRef]
- Mlost, J.; Kac, P.; Kedziora, M.; Starowicz, K. Antinociceptive and chondroprotective effects of prolonged beta-caryophyllene treatment in the animal model of osteoarthritis: Focus on tolerance development. Neuropharmacology 2022, 204, 108908. [Google Scholar] [CrossRef]
- Yu, M.; Gordon, C.; Studholme, K.; Hassan, M.; Sadar, F.; Khan, A.; Nicholson, J.; Komatsu, D.E.; Kaczocha, M. Monoacylglycerol Lipase and Cyclooxygenase-2 Expression in Osteoarthritic Human Knees. Cannabis Cannabinoid Res. 2024, 9, 1370–1376. [Google Scholar] [CrossRef]
- Irrera, N.; D’Ascola, A.; Pallio, G.; Bitto, A.; Mazzon, E.; Mannino, F.; Squadrito, V.; Arcoraci, V.; Minutoli, L.; Campo, G.M.; et al. beta-Caryophyllene Mitigates Collagen Antibody Induced Arthritis (CAIA) in Mice Through a Cross-Talk between CB2 and PPAR-gamma Receptors. Biomolecules 2019, 9, 326. [Google Scholar] [CrossRef] [PubMed]
- Nishina, N.; Kaneko, Y.; Kameda, H.; Kuwana, M.; Takeuchi, T. Reduction of plasma IL-6 but not TNF-alpha by methotrexate in patients with early rheumatoid arthritis: A potential biomarker for radiographic progression. Clin. Rheumatol. 2013, 32, 1661–1666. [Google Scholar] [CrossRef]
- Seitz, M.; Zwicker, M.; Villiger, P.M. Pretreatment cytokine profiles of peripheral blood mononuclear cells and serum from patients with rheumatoid arthritis in different american college of rheumatology response groups to methotrexate. J. Rheumatol. 2003, 30, 28–35. [Google Scholar]
- Chen, J.S.; Alfajaro, M.M.; Chow, R.D.; Wei, J.; Filler, R.B.; Eisenbarth, S.C.; Wilen, C.B. Non-steroidal anti-inflammatory drugs dampen the cytokine and antibody response to SARS-CoV-2 infection. J. Virol. 2021, 95, 10-1128. [Google Scholar] [CrossRef]
- Iwata, A.; Shirai, R.; Ishii, H.; Kushima, H.; Otani, S.; Hashinaga, K.; Umeki, K.; Kishi, K.; Tokimatsu, I.; Hiramatsu, K.; et al. Inhibitory effect of statins on inflammatory cytokine production from human bronchial epithelial cells. Clin. Exp. Immunol. 2012, 168, 234–240. [Google Scholar] [CrossRef]
- Brattsand, R.; Linden, M. Cytokine modulation by glucocorticoids: Mechanisms and actions in cellular studies. Aliment. Pharmacol. Ther. 1996, 10 (Suppl. 2), 81–90; discussion 91–82. [Google Scholar] [CrossRef]
- Patel, S.; Keating, B.A.; Dale, R.C. Anti-inflammatory properties of commonly used psychiatric drugs. Front. Neurosci. 2022, 16, 1039379. [Google Scholar] [CrossRef] [PubMed]
- Nomura, D.K.; Hudak, C.S.; Ward, A.M.; Burston, J.J.; Issa, R.S.; Fisher, K.J.; Abood, M.E.; Wiley, J.L.; Lichtman, A.H.; Casida, J.E. Monoacylglycerol lipase regulates 2-arachidonoylglycerol action and arachidonic acid levels. Bioorg. Med. Chem. Lett. 2008, 18, 5875–5878. [Google Scholar] [CrossRef] [PubMed]
- Reisenberg, M.; Singh, P.K.; Williams, G.; Doherty, P. The diacylglycerol lipases: Structure, regulation and roles in and beyond endocannabinoid signalling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 3264–3275. [Google Scholar] [CrossRef]
- Klawitter, J.; Weissenborn, W.; Gvon, I.; Walz, M.; Klawitter, J.; Jackson, M.; Sempio, C.; Joksimovic, S.L.; Shokati, T.; Just, I.; et al. β-Caryophyllene Inhibits Monoacylglycerol Lipase Activity and Increases 2-Arachidonoyl Glycerol Levels In Vivo: A New Mechanism of Endocannabinoid-Mediated Analgesia? Mol. Pharmacol. 2024, 105, 75–83. [Google Scholar] [CrossRef]
- Jiang, M.; Huizenga, M.C.W.; Wirt, J.L.; Paloczi, J.; Amedi, A.; van den Berg, R.; Benz, J.; Collin, L.; Deng, H.; Di, X.; et al. A monoacylglycerol lipase inhibitor showing therapeutic efficacy in mice without central side effects or dependence. Nat. Commun. 2023, 14, 8039. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, K.; Uyama, T.; Okamoto, Y.; Ueda, N. Endocannabinoids and related N-acylethanolamines: Biological activities and metabolism. Inflamm. Regen. 2018, 38, 28. [Google Scholar] [CrossRef]
- McWilliams, D.F.; Dawson, O.; Young, A.; Kiely, P.D.W.; Ferguson, E.; Walsh, D.A. Discrete Trajectories of Resolving and Persistent Pain in People with Rheumatoid Arthritis Despite Undergoing Treatment for Inflammation: Results From Three UK Cohorts. J. Pain 2019, 20, 716–727. [Google Scholar] [CrossRef]
- Keefe, F.J.; Somers, T.J.; Martire, L.M. Psychologic interventions and lifestyle modifications for arthritis pain management. Rheum. Dis. Clin. N. Am. 2008, 34, 351–368. [Google Scholar] [CrossRef]
- Spicarova, D.; Nerandzic, V.; Muzik, D.; Pontearso, M.; Bhattacharyya, A.; Nagy, I.; Palecek, J. Inhibition of synaptic transmission by anandamide precursor 20:4-NAPE is mediated by TRPV1 receptors under inflammatory conditions. Front. Mol. Neurosci. 2023, 16, 1188503. [Google Scholar] [CrossRef]
- Ross, R.A. Anandamide and vanilloid TRPV1 receptors. Br. J. Pharmacol. 2003, 140, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Zamith Cunha, R.; Zannoni, A.; Salamanca, G.; De Silva, M.; Rinnovati, R.; Gramenzi, A.; Forni, M.; Chiocchetti, R. Expression of cannabinoid (CB1 and CB2) and cannabinoid-related receptors (TRPV1, GPR55, and PPARalpha) in the synovial membrane of the horse metacarpophalangeal joint. Front. Vet. Sci. 2023, 10, 1045030. [Google Scholar] [CrossRef] [PubMed]
- Miagkoff, L.; Girard, C.A.; St-Jean, G.; Richard, H.; Beauchamp, G.; Laverty, S. Cannabinoid receptors are expressed in equine synovium and upregulated with synovitis. Equine Vet. J. 2023, 55, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Schuelert, N.; Zhang, C.; Mogg, A.J.; Broad, L.M.; Hepburn, D.L.; Nisenbaum, E.S.; Johnson, M.P.; McDougall, J.J. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain. Osteoarthr. Cartil. 2010, 18, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, S.G.; Naidu, P.S.; Cravatt, B.F.; Dudley, D.T.; Lichtman, A.H. Fatty acid amide hydrolase blockade attenuates the development of collagen-induced arthritis and related thermal hyperalgesia in mice. Pharmacol. Biochem. Behav. 2011, 99, 718–725. [Google Scholar] [CrossRef]
- Qu, Y.; Fu, Y.; Liu, Y.; Liu, C.; Xu, B.; Zhang, Q.; Jiang, P. The role of TRPV1 in RA pathogenesis: Worthy of attention. Front. Immunol. 2023, 14, 1232013. [Google Scholar] [CrossRef]
- Lowin, T.; Straub, R.H. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res. Ther. 2015, 17, 226. [Google Scholar] [CrossRef]
- Hajeyah, A.A.; Griffiths, W.J.; Wang, Y.; Finch, A.J.; O’Donnell, V.B. The Biosynthesis of Enzymatically Oxidized Lipids. Front. Endocrinol. 2020, 11, 591819. [Google Scholar] [CrossRef]
- Baggelaar, M.P.; Maccarrone, M.; van der Stelt, M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog. Lipid Res. 2018, 71, 1–17. [Google Scholar] [CrossRef]
- Witkamp, R. Fatty acids, endocannabinoids and inflammation. Eur. J. Pharmacol. 2016, 785, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Sala-Climent, M.; Lal, E.; Cedola, F.; Alharthi, M.; Fernandez-Bustamante, M.; Agustin-Perez, M.; Singh, A.; Choi, S.I.; Rivera, T.; Nguyen, K.; et al. Oxylipin serum profile changes in response to an open-label anti-inflammatory dietary intervention. Clin. Nutr. ESPEN 2025, 68, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Hoxha, M.; Zappacosta, B. CYP-derived eicosanoids: Implications for rheumatoid arthritis. Prostaglandins Other Lipid Mediat. 2020, 146, 106405. [Google Scholar] [CrossRef]
- Fischer, R.; Konkel, A.; Mehling, H.; Blossey, K.; Gapelyuk, A.; Wessel, N.; von Schacky, C.; Dechend, R.; Muller, D.N.; Rothe, M.; et al. Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway. J. Lipid Res. 2014, 55, 1150–1164. [Google Scholar] [CrossRef] [PubMed]
- Andres Contreras, G.; De Koster, J.; de Souza, J.; Laguna, J.; Mavangira, V.; Nelli, R.K.; Gandy, J.; Lock, A.L.; Sordillo, L.M. Lipolysis modulates the biosynthesis of inflammatory lipid mediators derived from linoleic acid in adipose tissue of periparturient dairy cows. J. Dairy. Sci. 2020, 103, 1944–1955. [Google Scholar] [CrossRef]
- Thomson, S.J.; Askari, A.; Bishop-Bailey, D. Anti-inflammatory effects of epoxyeicosatrienoic acids. Int. J. Vasc. Med. 2012, 2012, 605101. [Google Scholar] [CrossRef]
- Manavathongchai, S.; Bian, A.; Rho, Y.H.; Oeser, A.; Solus, J.F.; Gebretsadik, T.; Shintani, A.; Stein, C.M. Inflammation and hypertension in rheumatoid arthritis. J. Rheumatol. 2013, 40, 1806–1811. [Google Scholar] [CrossRef]
- Barry, S.; Sheng, E.; Baker, J.F. Metabolic Consequences of Rheumatoid Arthritis. Arthritis Care Res. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Rocic, P.; Schwartzman, M.L. 20-HETE in the regulation of vascular and cardiac function. Pharmacol. Ther. 2018, 192, 74–87. [Google Scholar] [CrossRef]
- Morici, L.; Allemann, E.; Jordan, O.; Nikolic, I. Promising LOX proteins for cartilage-targeting osteoarthritis therapy. Pharmacol. Res. 2025, 212, 107627. [Google Scholar] [CrossRef]
- Kuhn, H.; Banthiya, S.; van Leyen, K. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta 2015, 1851, 308–330. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, J.; Xu, H.; Sun, W.; Wu, W.; Dong, C.; Zhou, P.; Xue, C.; Nan, Y.; Ni, Y.; et al. ALOX5 drives the pyroptosis of CD4(+) T cells and tissue inflammation in rheumatoid arthritis. Sci. Signal 2024, 17, eadh1178. [Google Scholar] [CrossRef] [PubMed]
- Kostoglou-Athanassiou, I.; Athanassiou, L.; Athanassiou, P. The Effect of Omega-3 Fatty Acids on Rheumatoid Arthritis. Mediterr. J. Rheumatol. 2020, 31, 190–194. [Google Scholar] [CrossRef]
- Lee, A.L.; Park, Y. The association between n-3 polyunsaturated fatty acid levels in erythrocytes and the risk of rheumatoid arthritis in Korean women. Ann. Nutr. Metab. 2013, 63, 88–95. [Google Scholar] [CrossRef]
- Jannas-Vela, S.; Candia, A.A.; Penailillo, L.; Barrios-Troncoso, P.; Zapata-Urzua, J.; Rey-Puente, J.; Aukema, H.M.; Mutch, D.M.; Valenzuela, R.; Valladares-Ide, D. Role of specialized pro-resolving mediators on inflammation, cardiometabolic health, disease progression, and quality of life after omega-3 PUFA supplementation and aerobic exercise training in individuals with rheumatoid arthritis: A randomized 16-week, placebo-controlled interventional trial. F1000Res 2023, 12, 942. [Google Scholar] [CrossRef]
- Sigaux, J.; Mathieu, S.; Nguyen, Y.; Sanchez, P.; Letarouilly, J.G.; Soubrier, M.; Czernichow, S.; Flipo, R.M.; Sellam, J.; Daien, C. Impact of type and dose of oral polyunsaturated fatty acid supplementation on disease activity in inflammatory rheumatic diseases: A systematic literature review and meta-analysis. Arthritis Res. Ther. 2022, 24, 100. [Google Scholar] [CrossRef]
- Lourdudoss, C.; Di Giuseppe, D.; Wolk, A.; Westerlind, H.; Klareskog, L.; Alfredsson, L.; van Vollenhoven, R.F.; Lampa, J. Dietary Intake of Polyunsaturated Fatty Acids and Pain in Spite of Inflammatory Control Among Methotrexate-Treated Early Rheumatoid Arthritis Patients. Arthritis Care Res. 2018, 70, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Miyata, J.; Arita, M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 2015, 64, 27–34. [Google Scholar] [CrossRef]
- Altman, R.; Asch, E.; Bloch, D.; Bole, G.; Borenstein, D.; Brandt, K.; Christy, W.; Cooke, T.D.; Greenwald, R.; Hochberg, M.; et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986, 29, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Arnett, F.C.; Edworthy, S.M.; Bloch, D.A.; McShane, D.J.; Fries, J.F.; Cooper, N.S.; Healey, L.A.; Kaplan, S.R.; Liang, M.H.; Luthra, H.S.; et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988, 31, 315–324. [Google Scholar] [CrossRef]
- Klawitter, J.; Sempio, C.; Jackson, M.J.; Smith, P.H.; Hopp, K.; Chonchol, M.; Gitomer, B.Y.; Christians, U.; Klawitter, J. Endocannabinoid System in Polycystic Kidney Disease. Am. J. Nephrol. 2022, 53, 264–272. [Google Scholar] [CrossRef]
- Masoodi, M.; Mir, A.A.; Petasis, N.A.; Serhan, C.N.; Nicolaou, A. Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2008, 22, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Klawitter, J.; Klawitter, J.; McFann, K.; Pennington, A.T.; Abebe, K.Z.; Brosnahan, G.; Cadnapaphornchai, M.A.; Chonchol, M.; Gitomer, B.; Christians, U.; et al. Bioactive lipid mediators in polycystic kidney disease. J. Lipid Res. 2013, 55, 1139–1149. [Google Scholar] [CrossRef]
- Klawitter, J.; McFann, K.; Pennington, A.T.; Wang, W.; Klawitter, J.; Christians, U.; Schrier, R.W.; Gitomer, B.; Cadnapaphornchai, M.A. Pravastatin Therapy and Biomarker Changes in Children and Young Adults with Autosomal Dominant Polycystic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2015, 10, 1534–1541. [Google Scholar] [CrossRef]
- Klawitter, J.; Reed-Gitomer, B.Y.; McFann, K.; Pennington, A.T.; Abebe, K.Z.; Klepacki, J.; Cadnapaphornchai, M.A.; Brosnahan, G.; Chonchol, M.B.; Christians, U.; et al. Endothelial dysfunction and oxidative stress in polycystic kidney disease. Am. J. Physiol. Renal Physiol. 2014, 307, F1198–F1206. [Google Scholar] [CrossRef] [PubMed]
- Checkley, W.; Deza, M.P.; Klawitter, J.; Romero, K.M.; Klawitter, J.; Pollard, S.L.; Wise, R.A.; Christians, U.; Hansel, N.N. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir. Med. 2016, 121, 59–66. [Google Scholar] [CrossRef]
- Repine, J.E.; Wilson, P.; Elkins, N.; Klawitter, J.; Christians, U.; Peters, B.; Smith, D.M. Inhalation of two putative Gulf War toxins by mice. J. Environ. Sci. Health B 2016, 51, 366–373. [Google Scholar] [CrossRef]
- Lai, Y. A statistical method for the conservative adjustment of false discovery rate (q-value). BMC Bioinform. 2017, 18, 69. [Google Scholar] [CrossRef]
- Storey, J.D.; Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 2003, 100, 9440–9445. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.Y.; Huang, Y.; Wu, H.; Ghasemzadeh, N.; Uppal, K.; Quyyumi, A.A.; Jones, D.P.; Yu, T. Local false discovery rate estimation using feature reliability in LC/MS metabolomics data. Sci. Rep. 2015, 5, 17221. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.E.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
Overall (n = 80) | Healthy Participants (n = 37) | Osteoarthritis (n = 18) | Rheumatoid Arthritis (n = 25) | ||
---|---|---|---|---|---|
Race | W/B/A/O | 54/5/6/15 (68%/6%/8%/19%) | 26/1/4/6 (70%/3%/11%/16%) | 12/3/0/3 (67%/18%/0%/18%) | 16/1/2/6 (64%/4%/8%/24%) |
Ethnicity | non-Hispanic/Hispanic/unknown | 64/7/9 (80%/9%/11%) | 29/1/7 (78%/3%/19%) | 17/0/1 (94%/0%/6%) | 18/6/1 (72%/24%/4%) |
Sex | female/male | 53/27 (66%/34%) | 22/15 (59%/41%) | 15/3 (83%/17%) | 16/9 (64%/36%) |
Age | [years] | 56 ± 11 | 57 ± 8 | 62 ± 7 | 52 ± 12 |
BMI | [kg/m2] | 28 ± 9 | 30 ± 14 | 30 ± 7 | 25 ± 4 |
Healthy Participants (n = 37) | Osteoarthritis (n = 18) | Rheumatoid Arthritis (n = 25) | |
---|---|---|---|
DMARDs | 0 | 1 | 25 |
NSAIDs | 1 | 9 | 14 |
Corticosteroids | 0 | 0 | 6 |
Antihistamines | 3 | 0 | 1 |
Statins and cholesterol-lowering medications | 0 | 8 | 8 |
Other pain medications including opioids | 0 | 2 | 3 |
Antidepressants, anti-anxiety, and anticonvulsant | 3 | 6 | 9 |
Diabetes medications | 0 | 4 | 4 |
Hypertension medications | 3 | 8 | 11 |
Hypothyroidism medications | 6 | 1 | 7 |
Other medications * | 2 | 6 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klawitter, J.; Clauw, A.D.; Seifert, J.A.; Klawitter, J.; Tompson, B.; Sempio, C.; Ingram, S.L.; Christians, U.; Moreland, L.W. Endocannabinoid Tone and Oxylipins in Rheumatoid Arthritis and Osteoarthritis—A Novel Target for the Treatment of Pain and Inflammation? Int. J. Mol. Sci. 2025, 26, 5707. https://doi.org/10.3390/ijms26125707
Klawitter J, Clauw AD, Seifert JA, Klawitter J, Tompson B, Sempio C, Ingram SL, Christians U, Moreland LW. Endocannabinoid Tone and Oxylipins in Rheumatoid Arthritis and Osteoarthritis—A Novel Target for the Treatment of Pain and Inflammation? International Journal of Molecular Sciences. 2025; 26(12):5707. https://doi.org/10.3390/ijms26125707
Chicago/Turabian StyleKlawitter, Jost, Andrew D. Clauw, Jennifer A. Seifert, Jelena Klawitter, Bridget Tompson, Cristina Sempio, Susan L. Ingram, Uwe Christians, and Larry W. Moreland. 2025. "Endocannabinoid Tone and Oxylipins in Rheumatoid Arthritis and Osteoarthritis—A Novel Target for the Treatment of Pain and Inflammation?" International Journal of Molecular Sciences 26, no. 12: 5707. https://doi.org/10.3390/ijms26125707
APA StyleKlawitter, J., Clauw, A. D., Seifert, J. A., Klawitter, J., Tompson, B., Sempio, C., Ingram, S. L., Christians, U., & Moreland, L. W. (2025). Endocannabinoid Tone and Oxylipins in Rheumatoid Arthritis and Osteoarthritis—A Novel Target for the Treatment of Pain and Inflammation? International Journal of Molecular Sciences, 26(12), 5707. https://doi.org/10.3390/ijms26125707