Identifying Targets and Drugs for Rheumatoid Arthritis Stratified Therapy Using Mendelian Randomization and a Pretraining Model
Abstract
1. Introduction
2. Results
2.1. Total Effects of Lifestyles on RA and Its Subtypes
2.2. Cytokines as Potential Targets
2.3. Candidate Drugs Prediction
3. Discussion
4. Materials and Methods
4.1. MR Data Sources
4.2. Two-Sample MR Analysis and Sensitivity Analysis
4.3. Candidate Drug Prediction Using Deep Learning Models
4.3.1. Principle of DrugBAN
4.3.2. Datasets and Model Training
4.3.3. Model Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUROC | Area under the receiver operating characteristic |
BMI | Body mass index |
GWAS | Genome-wide association study |
IL6 | Interleukin-6 |
IVW | Inverse variance weight |
MD | Molecular dynamics |
MIP1b | Macrophage inflammatory protein-1b |
MR | Mendelian randomization |
MR PRESSO | MR pleiotropy residual sum and outlier |
OR | Odds ratio |
RA | Rheumatoid arthritis |
RANKL | Receptor activator of nuclear factor κB ligand |
SCGFb | Stem cell growth factor-beta |
SNPs | Single nucleotide polymorphisms |
TNF | Tumor necrosis factor |
TRAIL | TNF-related apoptosis inducing ligand |
WM | Weighted-median |
References
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef] [PubMed]
- Derksen, V.; Huizinga, T.W.J.; van der Woude, D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin. Immunopathol. 2017, 39, 437–446. [Google Scholar] [CrossRef] [PubMed]
- van der Helm-van Mil, A.H.; Verpoort, K.N.; Breedveld, F.C.; Toes, R.E.; Huizinga, T.W. Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis. Arthritis Res. Ther. 2005, 7, R949–R958. [Google Scholar] [CrossRef]
- De Stefano, L.; D’Onofrio, B.; Manzo, A.; Montecucco, C.; Bugatti, S. The Genetic, Environmental, and Immunopathological Complexity of Autoantibody-Negative Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 12386. [Google Scholar] [CrossRef] [PubMed]
- Padyukov, L.; Seielstad, M.; Ong, R.T.; Ding, B.; Ronnelid, J.; Seddighzadeh, M.; Alfredsson, L.; Klareskog, L.; Epidemiological Investigation of Rheumatoid Arthritis Study Group. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann. Rheum. Dis. 2011, 70, 259–265. [Google Scholar] [CrossRef]
- Verpoort, K.N.; van Gaalen, F.A.; van der Helm-van Mil, A.H.; Schreuder, G.M.; Breedveld, F.C.; Huizinga, T.W.; de Vries, R.R.; Toes, R.E. Association of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative rheumatoid arthritis. Arthritis Rheum. 2005, 52, 3058–3062. [Google Scholar] [CrossRef]
- Frisell, T.; Holmqvist, M.; Kallberg, H.; Klareskog, L.; Alfredsson, L.; Askling, J. Familial risks and heritability of rheumatoid arthritis: Role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age. Arthritis Rheum. 2013, 65, 2773–2782. [Google Scholar] [CrossRef]
- Chen, Z.; Bozec, A.; Ramming, A.; Schett, G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 2019, 15, 9–17. [Google Scholar] [CrossRef]
- Moelants, E.A.; Mortier, A.; Van Damme, J.; Proost, P. Regulation of TNF-alpha with a focus on rheumatoid arthritis. Immunol. Cell Biol. 2013, 91, 393–401. [Google Scholar] [CrossRef]
- Takeuchi, T.; Yoshida, H.; Tanaka, S. Role of interleukin-6 in bone destruction and bone repair in rheumatoid arthritis. Autoimmun. Rev. 2021, 20, 102884. [Google Scholar] [CrossRef]
- Perera, J.; Delrosso, C.A.; Nerviani, A.; Pitzalis, C. Clinical Phenotypes, Serological Biomarkers, and Synovial Features Defining Seropositive and Seronegative Rheumatoid Arthritis: A Literature Review. Cells 2024, 13, 743. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.; Verma, S.; Surbhi; Ganguly, N.K.; Chaturvedi, V.; Mittal, S.A. Rheumatoid arthritis: Advances in treatment strategies. Mol. Cell. Biochem. 2023, 478, 69–88. [Google Scholar] [CrossRef]
- Nordberg, L.B.; Lillegraven, S.; Aga, A.B.; Sexton, J.; Olsen, I.C.; Lie, E.; Berner Hammer, H.; Uhlig, T.; van der Heijde, D.; Kvien, T.K.; et al. Comparing the disease course of patients with seronegative and seropositive rheumatoid arthritis fulfilling the 2010 ACR/EULAR classification criteria in a treat-to-target setting: 2-year data from the ARCTIC trial. RMD Open 2018, 4, e000752. [Google Scholar] [CrossRef]
- Alemao, E.; Postema, R.; Elbez, Y.; Mamane, C.; Finckh, A. Presence of anti-cyclic citrullinated peptide antibodies is associated with better treatment response to abatacept but not to TNF inhibitors in patients with rheumatoid arthritis: A meta-analysis. Clin. Exp. Rheumatol. 2020, 38, 455–466. [Google Scholar]
- Ospelt, C.; Camici, G.G.; Engler, A.; Kolling, C.; Vogetseder, A.; Gay, R.E.; Michel, B.A.; Gay, S. Smoking induces transcription of the heat shock protein system in the joints. Ann. Rheum. Dis. 2014, 73, 1423–1426. [Google Scholar] [CrossRef]
- Benito-Garcia, E.; Feskanich, D.; Hu, F.B.; Mandl, L.A.; Karlson, E.W. Protein, iron, and meat consumption and risk for rheumatoid arthritis: A prospective cohort study. Arthritis Res. Ther. 2007, 9, R16. [Google Scholar] [CrossRef]
- Westerlind, H.; Dukuzimana, J.; Lu, X.; Alfredsson, L.; Klareskog, L.; Di Giuseppe, D. Investigation of the association between coffee and risk of RA-results from the Swedish EIRA study. Arthritis Res. Ther. 2022, 24, 178. [Google Scholar] [CrossRef]
- Alfredsson, L.; Klareskog, L.; Hedström, A.K. Disease Activity and Health-Related Quality of Life Among Patients With Rheumatoid Arthritis With Different Alcohol Consumption Habits. Arthritis Rheumatol. 2023, 75, 872–878. [Google Scholar] [CrossRef]
- Nikiphorou, E.; Fragoulis, G.E. Inflammation, obesity and rheumatic disease: Common mechanistic links. A narrative review. Ther. Adv. Musculoskelet. Dis. 2018, 10, 157–167. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Peng, L.; Wang, J.; Xu, K.; Xu, P. The Causal Association between Alcohol, Smoking, Coffee Consumption, and the Risk of Arthritis: A Meta-Analysis of Mendelian Randomization Studies. Nutrients 2023, 15, 5009. [Google Scholar] [CrossRef]
- Philippou, E.; Nikiphorou, E. Are we really what we eat? Nutrition and its role in the onset of rheumatoid arthritis. Autoimmun. Rev. 2018, 17, 1074–1077. [Google Scholar] [CrossRef] [PubMed]
- Paiva, C.; Beserra, B.; Reis, C.; Dorea, J.G.; Da Costa, T.; Amato, A.A. Consumption of coffee or caffeine and serum concentration of inflammatory markers: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Achur, R.N.; Freeman, W.M.; Vrana, K.E. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J. Neuroimmune Pharmacol. 2010, 5, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Arnson, Y.; Shoenfeld, Y.; Amital, H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J. Autoimmun. 2010, 34, J258–J265. [Google Scholar] [CrossRef]
- Kalaoja, M.; Corbin, L.J.; Tan, V.Y.; Ahola-Olli, A.V.; Havulinna, A.S.; Santalahti, K.; Pitkanen, N.; Lehtimaki, T.; Lyytikainen, L.P.; Raitoharju, E.; et al. The Role of Inflammatory Cytokines as Intermediates in the Pathway from Increased Adiposity to Disease. Obesity 2021, 29, 428–437. [Google Scholar] [CrossRef]
- Bowden, J.; Holmes, M.V. Meta-analysis and Mendelian randomization: A review. Res. Synth. Methods 2019, 10, 486–496. [Google Scholar] [CrossRef]
- Bai, P.Z.; Miljkovic, F.; John, B.; Lu, H.P. Interpretable bilinear attention network with domain adaptation improves drug-target prediction. Nat. Mach. Intell. 2023, 5, 126–136. [Google Scholar] [CrossRef]
- Meddens, S.F.W.; de Vlaming, R.; Bowers, P.; Burik, C.A.P.; Linner, R.K.; Lee, C.; Okbay, A.; Turley, P.; Rietveld, C.A.; Fontana, M.A.; et al. Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Mol. Psychiatry 2021, 26, 2056–2069. [Google Scholar] [CrossRef]
- Zhong, V.W.; Kuang, A.; Danning, R.D.; Kraft, P.; van Dam, R.M.; Chasman, D.I.; Cornelis, M.C. A genome-wide association study of bitter and sweet beverage consumption. Hum. Mol. Genet. 2019, 28, 2449–2457. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher, P.M.; et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef] [PubMed]
- Saevarsdottir, S.; Stefansdottir, L.; Sulem, P.; Thorleifsson, G.; Ferkingstad, E.; Rutsdottir, G.; Glintborg, B.; Westerlind, H.; Grondal, G.; Loft, I.C.; et al. Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset. Ann. Rheum. Dis. 2022, 81, 1085–1095. [Google Scholar] [CrossRef]
- Ahola-Olli, A.V.; Wurtz, P.; Havulinna, A.S.; Aalto, K.; Pitkanen, N.; Lehtimaki, T.; Kahonen, M.; Lyytikainen, L.P.; Raitoharju, E.; Seppala, I.; et al. Genome-wide Association Study Identifies 27 Loci Influencing Concentrations of Circulating Cytokines and Growth Factors. Am. J. Hum. Genet. 2017, 100, 40–50. [Google Scholar] [CrossRef]
- Kallberg, H.; Ding, B.; Padyukov, L.; Bengtsson, C.; Ronnelid, J.; Klareskog, L.; Alfredsson, L.; Epidemiological Investigation of Rheumatoid Arthritis Study Group. Smoking is a major preventable risk factor for rheumatoid arthritis: Estimations of risks after various exposures to cigarette smoke. Ann. Rheum. Dis. 2011, 70, 508–511. [Google Scholar] [CrossRef]
- Linauskas, A.; Overvad, K.; Symmons, D.; Johansen, M.B.; Stengaard-Pedersen, K.; de Thurah, A. Body Fat Percentage, Waist Circumference, and Obesity As Risk Factors for Rheumatoid Arthritis: A Danish Cohort Study. Arthritis Care Res. 2019, 71, 777–786. [Google Scholar] [CrossRef]
- Croft, M.; Siegel, R.M. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 2017, 13, 217–233. [Google Scholar] [CrossRef]
- Huang, J.; Su, B.; Karhunen, V.; Gill, D.; Zuber, V.; Ahola-Olli, A.; Palaniswamy, S.; Auvinen, J.; Herzig, K.H.; Keinanen-Kiukaanniemi, S.; et al. Inflammatory Diseases, Inflammatory Biomarkers, and Alzheimer Disease: An Observational Analysis and Mendelian Randomization. Neurology 2023, 100, e568–e581. [Google Scholar] [CrossRef]
- Qian, Y.; He, Z.; Zhao, S.S.; Liu, B.; Chen, Y.; Sun, X.; Ye, D.; Jiang, X.; Zheng, H.; Wen, C.; et al. Genetically Determined Circulating Levels of Cytokines and the Risk of Rheumatoid Arthritis. Front. Genet. 2022, 13, 802464. [Google Scholar] [CrossRef]
- Elemam, N.M.; Hannawi, S.; Maghazachi, A.A. Role of Chemokines and Chemokine Receptors in Rheumatoid Arthritis. Immunotargets Ther. 2020, 9, 43–56. [Google Scholar] [CrossRef]
- Bajusz, D.; Racz, A.; Heberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 2015, 7, 20. [Google Scholar] [CrossRef]
- Kazantseva, M.G. Smoking, Genes and Inflammation. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2012. [Google Scholar]
- Pundt, N.; Peters, M.A.; Wunrau, C.; Strietholt, S.; Fehrmann, C.; Neugebauer, K.; Seyfert, C.; van Valen, F.; Pap, T.; Meinecke, I. Susceptibility of rheumatoid arthritis synovial fibroblasts to FasL- and TRAIL-induced apoptosis is cell cycle-dependent. Arthritis Res. Ther. 2009, 11, R16. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.; Liz, M.; Gomez-Reino, J.J.; Conde, C. Akt activity protects rheumatoid synovial fibroblasts from Fas-induced apoptosis by inhibition of Bid cleavage. Arthritis Res. Ther. 2010, 12, R33. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, A. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway signaling. J. Thorac. Oncol. 2007, 2, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Puerta, J.A.; Celis, R.; Hernandez, M.V.; Ruiz-Esquide, V.; Ramirez, J.; Haro, I.; Canete, J.D.; Sanmarti, R. Differences in synovial fluid cytokine levels but not in synovial tissue cell infiltrate between anti-citrullinated peptide/protein antibody-positive and -negative rheumatoid arthritis patients. Arthritis Res. Ther. 2013, 15, R182. [Google Scholar] [CrossRef]
- Hiraoka, A.; Sugimura, A.; Seki, T.; Nagasawa, T.; Ohta, N.; Shimonishi, M.; Hagiya, M.; Shimizu, S. Cloning, expression, and characterization of a cDNA encoding a novel human growth factor for primitive hematopoietic progenitor cells. Proc. Natl. Acad. Sci. USA 1997, 94, 7577–7582. [Google Scholar] [CrossRef]
- Song, J. The Role of Stem Cell Growth Factor in Rheumatoid Arthritis. Ph.D. Thesis, Yonsei University, Seoul, Republic of Korea, 2014. [Google Scholar]
- Joyce-Shaikh, B.; Bigler, M.E.; Chao, C.C.; Murphy, E.E.; Blumenschein, W.M.; Adamopoulos, I.E.; Heyworth, P.G.; Antonenko, S.; Bowman, E.P.; McClanahan, T.K.; et al. Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis. J. Exp. Med. 2010, 207, 579–589. [Google Scholar] [CrossRef]
- Benedetti, G.; Miossec, P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur. J. Immunol. 2014, 44, 339–347. [Google Scholar] [CrossRef]
- Mertens, M.; Singh, J.A. Anakinra for rheumatoid arthritis: A systematic review. J. Rheumatol. 2009, 36, 1118–1125. [Google Scholar] [CrossRef]
- Kim, Y.J.; Chae, S.Y.; Jin, C.H.; Sivasubramanian, M.; Son, S.; Choi, K.Y.; Jo, D.G.; Kim, K.; Chan Kwon, I.; Lee, K.C.; et al. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials 2010, 31, 9057–9064. [Google Scholar] [CrossRef]
- Pirmardvand Chegini, S.; Varshosaz, J.; Taymouri, S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artif. Cells Nanomed. Biotechnol. 2018, 46, 502–514. [Google Scholar] [CrossRef]
- Dessein, P.H.; Lopez-Mejias, R.; Ubilla, B.; Genre, F.; Corrales, A.; Hernandez, J.L.; Ferraz-Amaro, I.; Tsang, L.; Pina, T.; Llorca, J.; et al. TNF-related apoptosis-inducing ligand and cardiovascular disease in rheumatoid arthritis. Clin. Exp. Rheumatol. 2015, 33, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Yue, R.; Shen, B.; Morrison, S.J. Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. Elife 2016, 5, e18782. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Gill, D.; Giovannucci, E.L.; Larsson, S.C. Obesity, Type 2 Diabetes, Lifestyle Factors, and Risk of Gallstone Disease: A Mendelian Randomization Investigation. Clin. Gastroenterol. Hepatol. 2022, 20, e529–e537. [Google Scholar] [CrossRef]
- Wei, J.; Zhu, J.; Xu, H.; Zhou, D.; Elder, J.T.; Tsoi, L.C.; Patrick, M.T.; Li, Y. Alcohol consumption and smoking in relation to psoriasis: A Mendelian randomization study. Br. J. Dermatol. 2022, 187, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhang, M.; Dong, S.S.; Wang, J.H.; Zhang, K.; Guo, J.; Guo, Y.; Yang, T.L. Bidirectional two-sample Mendelian randomization analysis identifies causal associations between relative carbohydrate intake and depression. Nat. Hum. Behav. 2022, 6, 1569–1576. [Google Scholar] [CrossRef]
- Palmer, T.M.; Lawlor, D.A.; Harbord, R.M.; Sheehan, N.A.; Tobias, J.H.; Timpson, N.J.; Davey Smith, G.; Sterne, J.A. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 2012, 21, 223–242. [Google Scholar] [CrossRef]
- Davies, N.M.; Hill, W.D.; Anderson, E.L.; Sanderson, E.; Deary, I.J.; Davey Smith, G. Multivariable two-sample Mendelian randomization estimates of the effects of intelligence and education on health. Elife 2019, 8, e43990. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Mediation Analysis: A Practitioner’s Guide. Annu. Rev. Public Health 2016, 37, 17–32. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.; Thompson, J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 2017, 36, 1783–1802. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Gilson, M.K.; et al. AMBER, 18; University of California: San Francisco, CA, USA, 2018. [Google Scholar]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Roe, D.R.; Brooks, B.R. A protocol for preparing explicitly solvated systems for stable molecular dynamics simulations. J. Chem. Phys. 2020, 153, 054123. [Google Scholar] [CrossRef]
- Gotz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. [Google Scholar] [CrossRef]
- van Gunsteren, W.F.; Berendsen, H.J. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 1977, 34, 1311–1327. [Google Scholar] [CrossRef]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef]
- Miller, B.R., 3rd; McGee, T.D., Jr.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 2004, 55, 383–394. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J. Comput. Chem. 2011, 32, 866–877. [Google Scholar] [CrossRef] [PubMed]
Type | Trait | Sample Size (Cases) | Unit | Citation |
---|---|---|---|---|
Exposure | Relative carbohydrate intake | 268,922 | % of total energy intake | [28] |
Relative fat intake | 268,922 | % of total energy intake | [28] | |
Relative protein intake | 268,922 | % of total energy intake | [28] | |
Relative sugar intake | 235,391 | % of total energy intake | [28] | |
Coffee consumption | 375,833 | 50% change | [29] | |
Alcohol consumption | 941,280 | 1-SD increase in log-transformed alcoholic drinks per week | [30] | |
Smoking initiation | 1,232,091 | Ever smoked regularly compared with never smoked | [30] | |
BMI | 681,275 | kg/m2 | [31] | |
Outcome | RA overall | 1,026,690 (31,313) | Odds ratio | [32] |
Seropositive RA | 1,009,623 (18,019) | Odds ratio | [32] | |
Seronegative RA | 1,023,986 (8515) | Odds ratio | [32] | |
Mediator | 28 cytokines | 840–8293 | SD | [33] |
Outcome | Exposure | Mediator | Total Effect | Mediation Effect | Mediated Proportion | |
---|---|---|---|---|---|---|
β (95% CI) | β (95% CI) | p | ||||
RA overall | Relative sugar intake | MIP1b | 0.704 (0.054, 1.355) | −0.086 (−0.144, −0.028) | 0.004 | 12.19% |
RA overall | Smoking initiation | TRAIL | 0.369 (0.306, 0.432) | −0.005 (−0.010, 0.000) | 0.033 | 1.41% |
Seropositive RA | Smoking initiation | Eotaxin | 0.366 (0.284, 0.448) | 0.005 (−0.001, 0.011) | 0.097 | 1.42% |
Seropositive RA | Smoking initiation | TRAIL | 0.366 (0.284, 0.448) | −0.007 (−0.013, −0.001) | 0.033 | 1.80% |
Seronegative RA | Relative sugar intake | MIP1b | 0.989 (0.302, 1.676) | −0.093 (−0.156, −0.029) | 0.004 | 9.36% |
Seronegative RA | Coffee consumption | SCGFb | 0.008 (0.003, 0.012) | −0.001 (−0.001, 0.000) | 0.047 | 7.84% |
Seronegative RA | Smoking initiation | TRAIL | 0.415 (0.308, 0.522) | −0.008 (−0.015, 0.000) | 0.039 | 1.84% |
DrugBank ID | Name | Summary | Binding Probability | Lowest Docking Score (kcal/mol) |
---|---|---|---|---|
DB00461 | Nabumetone | Nabumetone is an NSAID used to treat osteoarthritis and rheumatoid arthritis. | 0.89 | −7.60 |
DB00465 | Ketorolac | Ketorolac is an NSAID used to treat moderate to severe pain, rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, menstrual disorders, and headaches. | 0.81 | −7.70 |
DB00500 | Tolmetin | Tolmetin is an NSAID used to treat acute flares of various painful conditions and is used for the long-term management of osteoarthritis, rheumatoid arthritis, and juvenile arthritis. | 0.75 | −6.40 |
DB00533 | Rofecoxib | Rofecoxib is a COX-2 inhibitor NSAID used to treat osteoarthritis, rheumatoid arthritis, acute pain, primary dysmenorrhea, and migraine attacks. | 0.83 | −8.10 |
DB00586 | Diclofenac | Diclofenac is an NSAID used to treat the signs and symptoms of osteoarthritis and rheumatoid arthritis. | 0.76 | −6.40 |
DB00605 | Sulindac | Sulindac is an NSAID used to treat osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, acute subacromial bursitis or supraspinatus tendinitis, and acute gouty arthritis. | 0.77 | −7.70 |
DB00712 | Flurbiprofen | Flurbiprofen is an NSAID used to treat the signs and symptoms of osteoarthritis and rheumatoid arthritis. | 0.70 | −7.50 |
DB00788 | Naproxen | Naproxen is an NSAID used to treat rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, polyarticular juvenile idiopathic arthritis, tendinitis, bursitis, acute gout, primary dysmenorrhea, and mild to moderate pain. | 0.72 | −8.00 |
Ligand | PubChem CID | Binding Probability | Docking Score (kcal/mol) | Binding Free Energy (kcal/mol) 1 |
---|---|---|---|---|
3-(4-Hydroxy-phenyl)-4-(4-methanesulfonyl-phenyl)-5H-furan-2-one | 10359269 | 0.80 | −7.6 | −11.2 ± 2.5 |
Solaraze | 3032 | 0.85 | −5.9 | −9.8 ± 2.1 |
trans-Sulindac | 1548885 | 0.83 | −7.2 | −11.4 ± 4.8 |
2-[6-Fluoro-3-(4-methanesulfinyl-benzylidene)-2-methyl-3H-inden-1-yl]-N- hydroxy-N-methyl-acetamide | 44305866 | 0.96 | −7.2 | −14.4 ± 2.7 |
Sulindac sulfide | 5352624 | 0.77 | −7.6 | −16.0 ± 3.9 |
sodium;(2R)-2-(6-methoxy-2-naphthyl) propionate | 6926388 | 0.86 | −6.1 | Not stable |
2-(6-Methoxynaphthalen-2-yl)-3-methylbutanoic acid | 116964097 | 0.77 | −6.7 | −8.8 ± 3.5 |
2-(6-Ethoxynaphthalen-2-yl)propanoic acid | 20334995 | 0.72 | −6.2 | Not stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Wu, Y.; Sun, Y.; Wu, T.; Zhu, H.; Xue, F.; Yu, Z.; Liu, S.; Niu, X. Identifying Targets and Drugs for Rheumatoid Arthritis Stratified Therapy Using Mendelian Randomization and a Pretraining Model. Int. J. Mol. Sci. 2025, 26, 5686. https://doi.org/10.3390/ijms26125686
Yan Y, Wu Y, Sun Y, Wu T, Zhu H, Xue F, Yu Z, Liu S, Niu X. Identifying Targets and Drugs for Rheumatoid Arthritis Stratified Therapy Using Mendelian Randomization and a Pretraining Model. International Journal of Molecular Sciences. 2025; 26(12):5686. https://doi.org/10.3390/ijms26125686
Chicago/Turabian StyleYan, Yuqing, You Wu, Yixuan Sun, Tian Wu, Haotian Zhu, Feiyang Xue, Zhanhui Yu, Shichao Liu, and Xiaohui Niu. 2025. "Identifying Targets and Drugs for Rheumatoid Arthritis Stratified Therapy Using Mendelian Randomization and a Pretraining Model" International Journal of Molecular Sciences 26, no. 12: 5686. https://doi.org/10.3390/ijms26125686
APA StyleYan, Y., Wu, Y., Sun, Y., Wu, T., Zhu, H., Xue, F., Yu, Z., Liu, S., & Niu, X. (2025). Identifying Targets and Drugs for Rheumatoid Arthritis Stratified Therapy Using Mendelian Randomization and a Pretraining Model. International Journal of Molecular Sciences, 26(12), 5686. https://doi.org/10.3390/ijms26125686