Tumor Microenvironment, Inflammation, and Inflammatory Prognostic Indices in Diffuse Large B-Cell Lymphomas: A Narrative Review
Abstract
1. Introduction
2. Lipids and Lipid-Derived Inflammatory Markers in DLBCL
2.1. Cholesterol
2.2. Plasma Phospolipids
2.3. FA
3. Protein-Derived Inflammatory Parameters
3.1. CRP
3.2. Fibrinogen
3.3. Albumin
3.4. IL-6
3.5. β2M
4. Cells of Innate and Adaptive Immune Responses in the TME of DLBCL
4.1. Cells of the Innate Immune Response in DLBCL
4.1.1. Monocytes and TAMs
4.1.2. Neutrophils and Tumor Associated Neutrophils (TANs)
4.1.3. NK Cells
4.1.4. DCs
4.2. Cells of Adaptive Immune Response in DLBCL
5. Role of Platelets and Anemia in Inflammation and DLBCL Prognostication
6. Inflammatory Indices Evaluated in DLBCL
6.1. Prognostic Indices That Include Inflammatory Biomarkers
6.2. Prognostic Indices That Include Peripheral Blood Cells
7. Conclusions and Further Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S. Epidemiology and etiology of diffuse large B-cell lymphoma. Semin. Hematol. 2023, 60, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Kurz, K.S.; Ott, M.; Kalmbach, S.; Steinlein, S.; Kalla, C.; Horn, H.; Ott, G.; Staiger, A.M. Large B-Cell Lymphomas in the 5th Edition of the WHO-Classification of Haematolymphoid Neoplasms—Updated Classification and New Concepts. Cancers 2023, 15, 2285. [Google Scholar] [CrossRef] [PubMed]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S.; et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef]
- Melchardt, T.; Egle, A.; Greil, R. How I treat diffuse large B-cell lymphoma. ESMO Open 2023, 8, 100750. [Google Scholar] [CrossRef]
- Masnikosa, R.; Cvetković, Z.; Pirić, D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 11384. [Google Scholar] [CrossRef]
- National Cancer Institute Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Non-Hodgkin Lymphoma—Diffuse Large B-Cell Lymphoma (DLBCL). Available online: https://seer.cancer.gov/statfacts/html/dlbcl.html (accessed on 20 February 2025).
- International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N. Engl. J. Med. 1993, 329, 987–994. [Google Scholar] [CrossRef]
- Ziepert, M.; Hasenclever, D.; Kuhnt, E.; Glass, B.; Schmitz, N.; Pfreundschuh, M.; Loeffler, M. Standard International Prognostic Index remains a valid predictor of outcome for patients with aggressive CD20+ B-cell lymphoma in the rituximab era. J. Clin. Oncol. 2010, 28, 2373–2380. [Google Scholar] [CrossRef]
- Sehn, L.H.; Berry, B.; Chhanabhai, M.; Fitzgerald, C.; Gill, K.; Hoskins, P.; Klasa, R.; Savage, K.J.; Shenkier, T.; Sutherland, J.; et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood 2007, 109, 1857–1861. [Google Scholar] [CrossRef]
- Hamlin, P.A.; Zelenetz, A.D.; Kewalramani, T.; Qin, J.; Satagopan, J.M.; Verbel, D.; Noy, A.; Portlock, C.S.; Straus, D.J.; Yahalom, J.; et al. Age-adjusted International Prognostic Index predicts autologous stem cell transplantation outcome for patients with relapsed or primary refractory diffuse large B-cell lymphoma. Blood 2003, 102, 1989–1996. [Google Scholar] [CrossRef]
- Zhou, Z.; Sehn, L.H.; Rademaker, A.W.; Gordon, L.I.; Lacasce, A.S.; Crosby-Thompson, A.; Vanderplas, A.; Zelenetz, A.D.; Abel, G.A.; Rodriguez, M.A.; et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood 2014, 123, 837–842. [Google Scholar] [CrossRef]
- Ruppert, A.S.; Dixon, J.G.; Salles, G.; Wall, A.; Cunningham, D.; Poeschel, V.; Haioun, C.; Tilly, H.; Ghesquieres, H.; Ziepert, M.; et al. International prognostic indices in diffuse large B-cell lymphoma: A comparison of IPI, R-IPI, and NCCN-IPI. Blood 2020, 135, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Saluja, S.; Bansal, I.; Bhardwaj, R.; Beg, M.S.; Palanichamy, J.K. Inflammation as a driver of hematological malignancies. Front. Oncol. 2024, 14, 1347402. [Google Scholar] [CrossRef]
- Davoodi-Moghaddam, Z.; Jafari-Raddani, F.; Noori, M.; Bashash, D. A systematic review and meta-analysis of immune checkpoint therapy in relapsed or refractory non-Hodgkin lymphoma; a friend or foe? Transl. Oncol. 2023, 30, 101636. [Google Scholar] [CrossRef] [PubMed]
- Tamma, R.; Ranieri, G.; Ingravallo, G.; Annese, T.; Oranger, A.; Gaudio, F.; Musto, P.; Specchia, G.; Ribatti, D. Inflammatory Cells in Diffuse Large B Cell Lymphoma. J. Clin. Med. 2020, 9, 2418. [Google Scholar] [CrossRef] [PubMed]
- Cerchietti, L. Genetic mechanisms underlying tumor microenvironment composition and function in diffuse large B-cell lymphoma. Blood 2024, 143, 1101–1111. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, C.; Yang, S.; Lu, W.; Shi, J. A novel lipid metabolism-based risk model associated with immunosuppressive mechanisms in diffuse large B-cell lymphoma. Lipids Health Dis. 2024, 23, 20. [Google Scholar] [CrossRef]
- Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Li, J.; Xu, H.; Zhao, Y.; Yu, X.; Shi, S. Functional significance of cholesterol metabolism in cancer: From threat to treatment. Exp. Mol. Med. 2023, 55, 1982–1995. [Google Scholar] [CrossRef]
- Guerrero-Rodríguez, S.L.; Mata-Cruz, C.; Pérez-Tapia, S.M.; Velasco-Velázquez, M.A. Role of CD36 in cancer progression, stemness, and targeting. Front. Cell Dev. Biol. 2022, 10, 1079076. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Sun, J.; Zhang, W.; Guo, Z.; Ma, Q. Arachidonic acid metabolism in health and disease. MedComm 2023, 4, e363. [Google Scholar] [CrossRef]
- Loosen, S.H.; Kostev, K.; Luedde, M.; Luedde, T.; Roderburg, C. Low blood levels of high-density lipoprotein (HDL) cholesterol are positively associated with cancer. J. Cancer Res. Clin. Oncol. 2022, 148, 3039–3046. [Google Scholar] [CrossRef] [PubMed]
- Lim, U.; Gayles, T.; Katki, H.A.; Stolzenberg-Solomon, R.; Weinstein, S.J.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanes, D. Serum high-density lipoprotein cholesterol and risk of non-Hodgkin lymphoma. Cancer Res. 2007, 67, 5569–5574. [Google Scholar] [CrossRef]
- Alford, S.H.; Divine, G.; Chao, C.; Habel, L.A.; Janakiraman, N.; Wang, Y.; Feigelson, H.S.; Scholes, D.; Roblin, D.; Epstein, M.M.; et al. Serum cholesterol trajectories in the 10 years prior to lymphoma diagnosis. Cancer Causes Control 2018, 29, 143–156. [Google Scholar] [CrossRef]
- Jeong, S.M.; Choi, T.; Kim, D.; Han, K.; Kim, S.J.; Rhee, S.Y.; Giovannucci, E.L.; Shin, D.W. Association between high-density lipoprotein cholesterol level and risk of hematologic malignancy. Leukemia 2021, 35, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Cvetković, Z.; Cvetković, B.; Petrović, M.; Ranić, M.; Debeljak-Martarčić, J.; Vučić, V.; Glibetić, M. Lipid profile as a prognostic factor in cancer patients. J. BUON 2009, 14, 501–506. [Google Scholar]
- Kuliszkiewicz-Janus, M.; Małecki, R.; Mohamed, A.S. Lipid changes occurring in the course of hematological cancers. Cell Mol. Biol. Lett. 2008, 13, 465–474. [Google Scholar] [CrossRef]
- Yu, T.; Luo, D.; Luo, C.; Xu-Monette, Z.Y.; Yu, L. Prognostic and therapeutic value of serum lipids and a new IPI score system based on apolipoprotein A-I in diffuse large B-cell lymphoma. Am. J. Cancer Res. 2023, 13, 475–484. [Google Scholar] [PubMed]
- Wang, F.; Lu, L.; Chen, H.; Yue, Y.; Sun, Y.; Yan, F.; He, B.; Lin, R.; Gu, W. Altered serum lipid levels are associated with prognosis of diffuse large B cell lymphoma and influenced by utility of rituximab. Ann. Hematol. 2023, 102, 393–402. [Google Scholar] [CrossRef]
- Gao, R.; Liang, J.H.; Wang, L.; Zhu, H.Y.; Wu, W.; Cao, L.; Fan, L.; Li, J.Y.; Yang, T.; Xu, W. Low serum cholesterol levels predict inferior prognosis and improve NCCN-IPI scoring in diffuse large B cell lymphoma. Int. J. Cancer 2018, 143, 1884–1895. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Huang, Z.; Chen, X.; Lin, Q.; Huang, H.; Fan, L. Low serum apolipoprotein A1 level predicts poor prognosis of patients with diffuse large B-cell lymphoma in the real world: A retrospective study. BMC Cancer 2024, 24, 62. [Google Scholar] [CrossRef]
- Bielecka-Dąbrowa, A.; Hannam, S.; Rysz, J.; Banach, M. Malignancy-associated dyslipidemia. Open Cardiovasc. Med. J. 2011, 5, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, Y.; Si, C.; Cao, Y.; Shao, P.; Zhang, P.; Wang, N.; Su, G.; Qian, J.; Yang, L. Cholesterol: The driving force behind the remodeling of tumor microenvironment in colorectal cancer. Heliyon 2024, 10, e39425. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Murdaca, G.; Mirabile, G.; Gangemi, S. Protective Effects of High-Density Lipoprotein on Cancer Risk: Focus on Multiple Myeloma. Biomedicines 2024, 12, 514. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013, 14, 1014–1022. [Google Scholar] [CrossRef]
- Cockerill, G.W.; Huehns, T.Y.; Weerasinghe, A.; Stocker, C.; Lerch, P.G.; Miller, N.E.; Haskard, D.O. Elevation of plasma high-density lipoprotein concentration reduces interleukin-1-induced expression of E-selectin in an in vivo model of acute inflammation. Circulation 2001, 103, 108–112. [Google Scholar] [CrossRef]
- Ou, W.; Jiang, T.; Zhang, N.; Lu, K.; Weng, Y.; Zhou, X.; Wang, D.; Dong, Q.; Tang, X. Role of HDL cholesterol in anthracycline-induced subclinical cardiotoxicity: A prospective observational study in patients with diffuse large B-cell lymphoma treated with R-CHOP. BMJ Open 2024, 14, e074541. [Google Scholar] [CrossRef]
- Cvetković, Z.; Milošević, M.; Cvetković, B.; Masnikosa, R.; Arsić, A.; Petrović, S.; Vučić, V. Plasma phospholipid changes are associated with response to chemotherapy in non-Hodgkin lymphoma patients. Leuk. Res. 2017, 54, 39–46. [Google Scholar] [CrossRef]
- Cvetković, Z.; Vučić, V.; Cvetković, B.; Petrović, M.; Ristić-Medić, D.; Tepsić, J.; Glibetić, M. Abnormal fatty acid distribution of the serum phospholipids of patients with non-Hodgkin lymphoma. Ann. Hematol. 2010, 89, 775–782. [Google Scholar] [CrossRef]
- Cvetković, Z.; Vučić, V.; Cvetković, B.; Karadžić, I.; Ranić, M.; Glibetić, M. Distribution of plasma fatty acids is associated with response to chemotherapy in non-Hodgkin’s lymphoma patients. Med. Oncol. 2013, 30, 741. [Google Scholar] [CrossRef]
- Masnikosa, R.; Pirić, D.; Post, J.M.; Cvetković, Z.; Petrović, S.; Paunović, M.; Vučić, V.; Bindila, L. Disturbed Plasma Lipidomic Profiles in Females with Diffuse Large B-Cell Lymphoma: A Pilot Study. Cancers 2023, 15, 3653. [Google Scholar] [CrossRef]
- Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 2020, 122, 4–22. [Google Scholar] [CrossRef]
- Montagne, A.; Kotta, K.; Kielbassa-Elkadi, K.; Martins, I.; Martinez-Climent, J.Á.; Kroemer, G.; Thieblemont, C.; Baud, V. Fatty Acid Metabolism Provides an Essential Survival Signal in OxPhos and BCR DLBCL Cells. Biomedicines 2025, 13, 707. [Google Scholar] [CrossRef]
- Pang, Y.; Lu, T.; Xu-Monette, Z.Y.; Young, K.H. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma. Int. J. Mol. Sci. 2023, 24, 5493. [Google Scholar] [CrossRef]
- Wu, J.; Meng, F.; Ran, D.; Song, Y.; Dang, Y.; Lai, F.; Yang, L.; Deng, M.; Song, Y.; Zhu, J. The Metabolism and Immune Environment in Diffuse Large B-Cell Lymphoma. Metabolites 2023, 13, 734. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, X.; Zhang, S.; Li, Q.; Li, X.; Huang, D.; Xia, J.; Ma, N.; Duan, Y.; Zhang, X.; et al. Targeting ZDHHC21/FASN axis for the treatment of diffuse large B-cell lymphoma. Leukemia 2024, 38, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Peeters, R.; Cuenca-Escalona, J.; Zaal, E.A.; Hoekstra, A.T.; Balvert, A.C.G.; Vidal-Manrique, M.; Blomberg, N.; van Deventer, S.J.; Stienstra, R.; Jellusova, J.; et al. Fatty acid metabolism in aggressive B-cell lymphoma is inhibited by tetraspanin CD37. Nat. Commun. 2022, 13, 5371. [Google Scholar] [CrossRef]
- Zheng, S.; Song, Q.; Zhang, P. Metabolic Modifications, Inflammation, and Cancer Immunotherapy. Front. Oncol. 2021, 11, 703681. [Google Scholar] [CrossRef] [PubMed]
- Bobrowicz, M.; Kusowska, A.; Krawczyk, M.; Zhylko, A.; Forcados, C.; Slusarczyk, A.; Barankiewicz, J.; Domagala, J.; Kubacz, M.; Šmída, M.; et al. CD20 expression regulates CD37 levels in B-cell lymphoma—Implications for immunotherapies. Oncoimmunology 2024, 13, 2362454. [Google Scholar] [CrossRef] [PubMed]
- Xu-Monette, Z.Y.; Li, L.; Byrd, J.C.; Jabbar, K.J.; Manyam, G.C.; Maria de Winde, C.; van den Brand, M.; Tzankov, A.; Visco, C.; Wang, J.; et al. Assessment of CD37 B-cell antigen and cell of origin significantly improves risk prediction in diffuse large B-cell lymphoma. Blood 2016, 128, 3083–3100. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Cui, W.; Silverstein, R.L. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J. Exp. Med. 2022, 219, e20211314. [Google Scholar] [CrossRef]
- Zhou, X.; Su, M.; Lu, J.; Li, D.; Niu, X.; Wang, Y. CD36: The Bridge between Lipids and Tumors. Molecules 2024, 29, 531. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.K.; Cheng, L.L.; Yi, H.M.; He, Y.; Li, X.; Fu, D.; Dai, Y.T.; Fang, H.; Cheng, S.; Xu, P.P.; et al. Enhanced lipid metabolism confers the immunosuppressive tumor microenvironment in CD5-positive non-MYC/BCL2 double expressor lymphoma. Front. Oncol. 2022, 12, 885011. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zhou, L.; Luo, Q.; Luo, Y.; Yu, L. The Molecular Mechanism of CD36 in Regulating Cholesterol Metabolism Reprogramming to Drive the Pathogenesis of Diffuse Large B-Cell Lymphoma Cells. Blood 2024, 144 (Suppl. S1), 5769. [Google Scholar] [CrossRef]
- Golubovskaya, V.; Zhou, H.; Li, F.; Valentine, M.; Sun, J.; Berahovich, R.; Xu, S.; Quintanilla, M.; Ma, M.C.; Sienkiewicz, J.; et al. Novel CD37, Humanized CD37 and Bi-Specific Humanized CD37-CD19 CAR-T Cells Specifically Target Lymphoma. Cancers 2021, 13, 981. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Zhou, X.; Wang, X. Antibody-drug conjugates for the treatment of lymphoma: Clinical advances and latest progress. J. Hematol. Oncol. 2021, 14, 88. [Google Scholar] [CrossRef]
- Mougiakakos, D. Anti-CD37 CAR T cells: Another arrow in the quiver. Blood 2024, 144, 1133–1134. [Google Scholar] [CrossRef]
- Fernandes Messias, M.C.; Mecatti, G.C.; Figueiredo Angolini, C.F.; Eberlin, M.N.; Credidio, L.; Real Martinez, C.A.; Rodrigues Coy, C.S.; de Oliveira Carvalho, P. Plasma Lipidomic Signature of Rectal Adenocarcinoma Reveals Potential Biomarkers. Front. Oncol. 2018, 7, 325. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef]
- Tredicine, M.; Mucci, M.; Recchiuti, A.; Mattoscio, D. Immunoregulatory mechanisms of the arachidonic acid pathway in cancer. FEBS Lett. 2025, 599, 927–951. [Google Scholar] [CrossRef]
- Pannunzio, A.; Coluccia, M. Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals 2018, 11, 101. [Google Scholar] [CrossRef]
- Zhang, Y.; Tighe, S.; Zhu, Y.T. COX-2 Signaling in the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1277, 87–104. [Google Scholar] [CrossRef]
- Wun, T.; McKnight, H.; Tuscano, J.M. Increased cyclooxygenase-2 (COX-2): A potential role in the pathogenesis of lymphoma. Leuk. Res. 2004, 28, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Pan, X.; Chen, X.; Liu, P.; Chen, M.; Zhang, Q.; Hang, X.; Tang, M.; Wen, D.; Dai, L.; et al. COX-2/PGE2 upregulation contributes to the chromosome 17p-deleted lymphoma. Oncogenesis 2023, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Zaky, A.H.; Elsers, D.; Bakry, R.; Abdelwanis, M.; Nabih, O.; Hafez, R.; Rezk, M. Prognostic Value of Accumulative Expression of COX-2 and p53 in Small and Diffuse Large B Cell Lymphoma. Pathol. Oncol. Res. 2020, 26, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Hashemi Goradel, N.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell Physiol. 2019, 234, 5683–5699. [Google Scholar] [CrossRef]
- Pu, D.; Yin, L.; Huang, L.; Qin, C.; Zhou, Y.; Wu, Q.; Li, Y.; Zhou, Q.; Li, L. Cyclooxygenase-2 Inhibitor: A Potential Combination Strategy With Immunotherapy in Cancer. Front. Oncol. 2021, 11, 637504. [Google Scholar] [CrossRef]
- Jin, K.; Qian, C.; Lin, J.; Liu, B. Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. Front. Oncol. 2023, 13, 1099811. [Google Scholar] [CrossRef]
- Bruno, A.; Tacconelli, S.; Contursi, A.; Ballerini, P.; Patrignani, P. Cyclooxygenases and platelet functions. Adv. Pharmacol. 2023, 97, 133–165. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, J.; Jiao, Y.; Chen, Q.; Li, M.; Wang, Z.; Yu, Z.; Huang, X.; Yao, A.; Gao, Q.; et al. Aspirin Inhibits Natural Killer/T-Cell Lymphoma by Modulation of VEGF Expression and Mitochondrial Function. Front. Oncol. 2019, 8, 679. [Google Scholar] [CrossRef]
- Elwood, P.; Morgan, G.; Watkins, J.; Protty, M.; Mason, M.; Adams, R.; Dolwani, S.; Pickering, J.; Delon, C.; Longley, M. Aspirin and cancer treatment: Systematic reviews and meta-analyses of evidence: For and against. Br. J. Cancer 2024, 130, 3–8. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, Y.; Liu, X.; Ma, J.; Li, Y.; Wang, T.; Li, X. Beyond a chemopreventive reagent, aspirin is a master regulator of the hallmarks of cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 1387–1403. [Google Scholar] [CrossRef]
- Sun, M.; Yu, J.; Wan, J.; Dou, X.; Chen, X.; Ye, F. Role of aspirin in cancer prevention. Cancer Treat. Res. Commun. 2025, 43, 100884. [Google Scholar] [CrossRef] [PubMed]
- Liebow, M.; Larson, M.C.; Thompson, C.A.; Nowakowski, G.S.; Call, T.G.; Macon, W.R.; Kay, N.E.; Habermann, T.M.; Slager, S.L.; Cerhan, J.R. Aspirin and other nonsteroidal anti-inflammatory drugs, statins and risk of non-Hodgkin lymphoma. Int. J. Cancer 2021, 149, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Bernard, M.P.; Bancos, S.; Sime, P.J.; Phipps, R.P. Targeting cyclooxygenase-2 in hematological malignancies: Rationale and promise. Curr. Pharm. Des. 2008, 14, 2051–2060. [Google Scholar] [CrossRef]
- Li, S.; Jiang, M.; Wang, L.; Yu, S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomed. Pharmacother. 2020, 129, 110389. [Google Scholar] [CrossRef]
- Karai, E.; Szebényi, K.; Windt, T.; Fehér, S.; Szendi, E.; Dékay, V.; Vajdovich, P.; Szakács, G.; Füredi, A. Celecoxib Prevents Doxorubicin-Induced Multidrug Resistance in Canine and Mouse Lymphoma Cell Lines. Cancers 2020, 12, 1117. [Google Scholar] [CrossRef] [PubMed]
- Torres-Collado, A.X.; Jazirehi, A.R. Overcoming Resistance of Human Non-Hodgkin’s Lymphoma to CD19-CAR CTL Therapy by Celecoxib and Histone Deacetylase Inhibitors. Cancers 2018, 10, 200. [Google Scholar] [CrossRef]
- Khvorost, D.; Kendall, B.; Jazirehi, A.R. Immunotherapy of Hematological Malignancies of Human B-Cell Origin with CD19 CAR T Lymphocytes. Cells 2024, 13, 662. [Google Scholar] [CrossRef]
- Ardisson Korat, A.V.; Chiu, Y.H.; Bertrand, K.A.; Zhang, S.; Epstein, M.M.; Rosner, B.A.; Chiuve, S.; Campos, H.; Giovannucci, E.L.; Chavarro, J.E.; et al. A prospective analysis of red blood cell membrane polyunsaturated fatty acid levels and risk of non-Hodgkin lymphoma. Leuk. Lymphoma 2022, 63, 3351–3361. [Google Scholar] [CrossRef]
- Thanarajasingam, G.; Maurer, M.J.; Habermann, T.M.; Nowakowski, G.S.; Bennani, N.N.; Thompson, C.A.; Cerhan, J.R.; Witzig, T.E. Low Plasma Omega-3 Fatty Acid Levels May Predict Inferior Prognosis in Untreated Diffuse Large B-Cell Lymphoma: A New Modifiable Dietary Biomarker? Nutr. Cancer 2018, 70, 1088–1090. [Google Scholar] [CrossRef]
- Azrad, M.; Turgeon, C.; Demark-Wahnefried, W. Current evidence linking polyunsaturated Fatty acids with cancer risk and progression. Front. Oncol. 2013, 3, 224. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Shan, K.; Chen, H.; Chen, Y.Q. n-3 Polyunsaturated Fatty Acids and their Role in Cancer Chemoprevention. Curr. Pharmacol. Rep. 2015, 1, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.N.; Watt, A.E.; Isenring, E.A.; de van der Schueren, M.A.E.; van der Meij, B.S. The effect of oral omega-3 polyunsaturated fatty acid supplementation on muscle maintenance and quality of life in patients with cancer: A systematic review and meta-analysis. Clin. Nutr. 2021, 40, 3815–3826. [Google Scholar] [CrossRef]
- Guo, Y.; Ma, B.; Li, X.; Hui, H.; Zhou, Y.; Li, N.; Xie, X. n-3 PUFA can reduce IL-6 and TNF levels in patients with cancer. Br. J. Nutr. 2023, 129, 54–65. [Google Scholar] [CrossRef]
- Jamali, M.; Zarezadeh, M.; Jamilian, P.; Ghoreishi, Z. The effect of n-3 polyunsaturated fatty acids on inflammation status in cancer patients: Updated systematic review and dose- and time-response meta-analysis. PharmaNutrition 2024, 27, 100372. [Google Scholar] [CrossRef]
- Moloudizargari, M.; Mortaz, E.; Asghari, M.H.; Adcock, I.M.; Redegeld, F.A.; Garssen, J. Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: A systematic review. Oncotarget 2018, 9, 11858–11875. [Google Scholar] [CrossRef]
- Ceccarelli, V.; Nocentini, G.; Billi, M.; Racanicchi, S.; Riccardi, C.; Roberti, R.; Grignani, F.; Binaglia, L.; Vecchini, A. Eicosapentaenoic acid activates RAS/ERK/C/EBPβ pathway through H-ras intron 1 CpG island demethylation in U937 leukemia cells. PLoS ONE 2014, 9, e85025. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, B.; Nanaji, N.M.; Bhalla, K.; Bhandary, B.; Lapidus, R.; Beheshti, A.; Evens, A.M.; Gartenhaus, R.B. Fatty Acid Synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL. Nat. Commun. 2018, 9, 829. [Google Scholar] [CrossRef]
- Bakhshi, T.J.; Way, T.; Muncy, B.; Georgel, P.T. Effects of the omega-3 fatty acid DHA on histone and p53 acetylation in diffuse large B cell lymphoma. Biochem. Cell Biol. 2023, 101, 172–191. [Google Scholar] [CrossRef]
- Nishida, A.; Andoh, A. The Role of Inflammation in Cancer: Mechanisms of Tumor Initiation, Progression, and Metastasis. Cells 2025, 14, 488. [Google Scholar] [CrossRef]
- Hart, P.C.; Rajab, I.M.; Alebraheem, M.; Potempa, L.A. C-Reactive Protein and Cancer-Diagnostic and Therapeutic Insights. Front. Immunol. 2020, 11, 595835. [Google Scholar] [CrossRef]
- Negreiros, E.A.D.S.; da Silveira, T.M.B.; Fortier, S.C.; Chiattone, C.S. Evaluation of C-reactive protein and its prognostic relationship in patients with Hodgkin’s Lymphoma. Hematol. Transfus. Cell Ther. 2024, 46, S53–S58. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Shi, Y.X.; Chen, J.O.; Tan, Y.T.; Cai, Y.C.; Luo, H.Y.; Qiu, M.Z.; Cai, X.Y.; Jin, Y.; Sun, Y.L.; et al. Serum C-reactive protein as an important prognostic variable in patients with diffuse large B cell lymphoma. Tumour Biol. 2012, 33, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.J.; de Klerk, J.M.; Fijnheer, R.; Heggelman, B.G.; Dubois, S.V.; Nievelstein, R.A.; Kwee, T.C. Prognostic Value of Anemia and C-Reactive Protein Levels in Diffuse Large B-Cell Lymphoma. Clin. Lymphoma Myeloma Leuk. 2015, 15, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, M.; Wang, X.; Xu, J.; Chen, B.; Ouyang, J. Pretreatment C-reactive protein was an independent prognostic factor for patients with diffuse large B-cell lymphoma treated with RCHOP. Clin. Chim. Acta 2016, 459, 150–154. [Google Scholar] [CrossRef]
- Qin, W.; Yuan, Q.; Wu, J.; Yu, H.; Wang, Y.; Chen, Q. Prognostic value of pre-therapy C-reactive protein level in diffuse large B-cell lymphoma: A meta-analysis. Leuk. Lymphoma 2019, 60, 358–366. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, K.; Huang, S.; Lu, Q. Prognostic value of baseline C-reactive protein in diffuse large B-cell lymphoma: A systematic review and meta-analysis. Transl. Cancer Res. 2023, 12, 2169–2180. [Google Scholar] [CrossRef]
- Troppan, K.T.; Schlick, K.; Deutsch, A.; Melchardt, T.; Egle, A.; Stojakovic, T.; Beham-Schmid, C.; Weiss, L.; Neureiter, D.; Wenzl, K.; et al. C-reactive protein level is a prognostic indicator for survival and improves the predictive ability of the R-IPI score in diffuse large B-cell lymphoma patients. Br. J. Cancer 2014, 111, 55–60. [Google Scholar] [CrossRef]
- Gradel, K.O.; Larsen, T.S.; Frederiksen, H.; Vinholt, P.J.; Iachina, M.; Póvoa, P.; Zampieri, F.G.; Nielsen, S.L.; Dessau, R.B.; Møller, J.K.; et al. Impact of C-reactive protein and albumin levels on short, medium, and long term mortality in patients with diffuse large B-cell lymphoma. Ann. Med. 2022, 54, 713–722. [Google Scholar] [CrossRef]
- Dix, C.; Zeller, J.; Stevens, H.; Eisenhardt, S.U.; Shing, K.S.C.T.; Nero, T.L.; Morton, C.J.; Parker, M.W.; Peter, K.; McFadyen, J.D. C-reactive protein, immunothrombosis and venous thromboembolism. Front. Immunol. 2022, 13, 1002652. [Google Scholar] [CrossRef]
- Otasevic, V.; Mihaljevic, B.; Milic, N.; Stanisavljevic, D.; Vukovic, V.; Tomic, K.; Fareed, J.; Antic, D. Immune activation and inflammatory biomarkers as predictors of venous thromboembolism in lymphoma patients. Thromb. J. 2022, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Detroit, M.; Collier, M.; Beeker, N.; Willems, L.; Decroocq, J.; Deau-Fischer, B.; Vignon, M.; Birsen, R.; Moufle, F.; Leclaire, C.; et al. Predictive Factors of Response to Immunotherapy in Lymphomas: A Multicentre Clinical Data Warehouse Study (PRONOSTIM). Cancers 2023, 15, 4028. [Google Scholar] [CrossRef] [PubMed]
- Nierengarten, M.B. Simple blood test predicts patients most likely to have poor CAR T-cell outcomes. Cancer 2024, 130, 2084. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yu, X.; Chen, C.; Chen, C.; Wang, Y.; Su, D.; Zhu, L. Fibrinogen and tumors. Front. Oncol. 2024, 14, 1393599. [Google Scholar] [CrossRef]
- Shehata, A.M.F.; Aldesoky, A.I.; Gohar, S.F. Plasma fibrinogen level as possible prognostic biomarker in diffuse large B-cell lymphoma. Hematology 2019, 24, 103–107. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, L.; Ji, J.M.; Wu, Y.; Shen, Q. Prognostic Value of Plasma Fibrinogen Levels in Patients with Diffuse Large B-Cell Lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2025, 33, 114–120. [Google Scholar] [CrossRef]
- Troppan, K.T.; Melchardt, T.; Wenzl, K.; Schlick, K.; Deutsch, A.; Bullock, M.D.; Reitz, D.; Beham-Schmid, C.; Weiss, L.; Neureiter, D.; et al. The clinical significance of fibrinogen plasma levels in patients with diffuse large B cell lymphoma. J. Clin. Pathol. 2016, 69, 326–330. [Google Scholar] [CrossRef]
- Çiftçiler, R.; Ciftciler, A.E.; Selim, C. Evaluation of the association between serum danger molecules at diagnosis and survival outcomes in patients with diffuse large B cell lymphoma. Med. Int. 2025, 5, 25. [Google Scholar] [CrossRef]
- Ogura, S.; Nakazato, T. The Prognostic Significance of Pretransplant Plasma Fibrinogen Levels in Autologous Hematopoietic Stem Cell Transplantation. Transpl. Proc. 2021, 53, 405–407. [Google Scholar] [CrossRef]
- Guven, D.C.; Sahin, T.K.; Erul, E.; Rizzo, A.; Ricci, A.D.; Aksoy, S.; Yalcin, S. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front. Mol. Biosci. 2022, 9, 1039121. [Google Scholar] [CrossRef]
- Tang, Q.; Li, X.; Sun, C.R. Predictive value of serum albumin levels on cancer survival: A prospective cohort study. Front. Oncol. 2024, 14, 1323192. [Google Scholar] [CrossRef] [PubMed]
- Bairey, O.; Shacham-Abulafia, A.; Shpilberg, O.; Gurion, R. Serum albumin level at diagnosis of diffuse large B-cell lymphoma: An important simple prognostic factor. Hematol. Oncol. 2016, 34, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Pan, L.; Liu, T. Prognostic value of serum albumin level in patients with diffuse large B cell lymphoma. Acta Biochim. Pol. 2023, 70, 767–776. [Google Scholar] [CrossRef]
- Hu, X.; Feng, X.; Wang, H.; Miao, Y.; Lian, X.; Gao, Q.; Gao, Y.; Zhai, X.; Zhang, D.; Niu, B.; et al. Association between serum albumin levels and survival in elderly patients with diffuse large B-cell lymphoma: A single-center retrospective study. Transl. Cancer Res. 2023, 12, 1577–1587. [Google Scholar] [CrossRef]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef]
- Zhou, Q.; Wei, Y.; Huang, F.; Wei, X.; Wei, Q.; Hao, X.; Zhang, Y.; Feng, R. Low prognostic nutritional index predicts poor outcome in diffuse large B-cell lymphoma treated with R-CHOP. Int. J. Hematol. 2016, 104, 485–490. [Google Scholar] [CrossRef]
- Yan, D.; Shen, Z.; Zhang, S.; Hu, L.; Sun, Q.; Xu, K.; Jin, Y.; Sang, W. Prognostic values of geriatric nutritional risk index (GNRI) and prognostic nutritional index (PNI) in elderly patients with Diffuse Large B-Cell Lymphoma. J. Cancer 2021, 12, 7010–7017. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Tian, M.; Pi, G.; Jia, Y.; Jin, X. Geriatric nutritional risk index as a predictor of prognosis in hematologic malignancies: A systematic review and meta-analysis. Front. Nutr. 2023, 10, 1274592. [Google Scholar] [CrossRef]
- Pénichoux, J.; Lanic, H.; Thill, C.; Ménard, A.L.; Camus, V.; Stamatoullas, A.; Lemasle, E.; Leprêtre, S.; Lenain, P.; Contentin, N.; et al. Prognostic relevance of sarcopenia, geriatric, and nutritional assessments in older patients with diffuse large B-cell lymphoma: Results of a multicentric prospective cohort study. Ann. Hematol. 2023, 102, 1811–1823. [Google Scholar] [CrossRef]
- Soler, M.F.; Abaurrea, A.; Azcoaga, P.; Araujo, A.M.; Caffarel, M.M. New perspectives in cancer immunotherapy: Targeting IL-6 cytokine family. J. Immunother. Cancer 2023, 11, e007530. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Huang, B.; Lang, X.; Li, X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front. Oncol. 2022, 12, 1023177. [Google Scholar] [CrossRef]
- Thuya, W.L.; Cao, Y.; Ho, P.C.; Wong, A.L.; Wang, L.; Zhou, J.; Nicot, C.; Goh, B.C. Insights into IL-6/JAK/STAT3 signaling in the tumor microenvironment: Implications for cancer therapy. Cytokine Growth Factor Rev. 2025; in press. [Google Scholar] [CrossRef]
- Gholiha, A.R.; Hollander, P.; Glimelius, I.; Hedstrom, G.; Molin, D.; Hjalgrim, H.; Smedby, K.E.; Hashemi, J.; Amini, R.M.; Enblad, G. Revisiting IL-6 expression in the tumor microenvironment of classical Hodgkin lymphoma. Blood Adv. 2021, 5, 1671–1681. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Bao, C.; Gu, J.; Huang, X.; You, L.; Zhou, Z.; Jin, J. Cytokine profiles in patients with newly diagnosed diffuse large B-cell lymphoma: IL-6 and IL-10 levels are associated with adverse clinical features and poor outcomes. Cytokine 2023, 169, 156289. [Google Scholar] [CrossRef]
- Burger, R. Impact of interleukin-6 in hematological malignancies. Transfus. Med. Hemother. 2013, 40, 336–343. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, W.S.; Park, C. Interleukin-6 mediates resistance to PI3K-pathway-targeted therapy in lymphoma. BMC Cancer 2019, 19, 936. [Google Scholar] [CrossRef]
- Guney, N.; Soydinc, H.O.; Basaran, M.; Bavbek, S.; Derin, D.; Camlica, H.; Yasasever, V.; Topuz, E. Serum levels of interleukin-6 and interleukin-10 in Turkish patients with aggressive non-Hodgkin’s lymphoma. Asian Pac. J. Cancer Prev. 2009, 10, 669–674. [Google Scholar]
- Hashwah, H.; Bertram, K.; Stirm, K.; Stelling, A.; Wu, C.T.; Kasser, S.; Manz, M.G.; Theocharides, A.P.; Tzankov, A.; Müller, A. The IL-6 signaling complex is a critical driver, negative prognostic factor, and therapeutic target in diffuse large B-cell lymphoma. EMBO Mol. Med. 2019, 11, e10576. [Google Scholar] [CrossRef]
- Santomasso, B.D.; Nastoupil, L.J.; Adkins, S.; Lacchetti, C.; Schneider, B.J.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Chimeric Antigen Receptor T-Cell Therapy: ASCO Guideline. J. Clin. Oncol. 2021, 39, 3978–3992. [Google Scholar] [CrossRef]
- Crombie, J.L.; Graff, T.; Falchi, L.; Karimi, Y.H.; Bannerji, R.; Nastoupil, L.; Thieblemont, C.; Ursu, R.; Bartlett, N.; Nachar, V.; et al. Consensus recommendations on the management of toxicity associated with CD3×CD20 bispecific antibody therapy. Blood 2024, 143, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Arribas, A.J.; Napoli, S.; Gaudio, E.; Herbaux, C.; Cannas, E.; Tarantelli, C.; Bordone-Pittau, R.; Cascione, L.; Munz, N.; Aresu, L.; et al. PI3Kδ activation, IL-6 overexpression, and CD37 loss cause resistance to naratuximab emtansine in lymphomas. Blood Adv. 2024, 8, 6268–6281. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Zhang, X.; Wang, X. Causal relationship between beta-2 microglobulin and B-cell malignancies: Genome-wide meta-analysis and a bidirectional two-sample Mendelian randomization study. Front. Immunol. 2024, 15, 1448476. [Google Scholar] [CrossRef] [PubMed]
- Jelicic, J.; Juul-Jensen, K.; Bukumiric, Z.; Runason Simonsen, M.; Roost Clausen, M.; Ludvigsen Al-Mashhadi, A.; Schou Pedersen, R.; Bjørn Poulsen, C.; Ortved Gang, A.; Brown, P.; et al. Revisiting beta-2 microglobulin as a prognostic marker in diffuse large B-cell lymphoma. Cancer Med. 2024, 13, e7239. [Google Scholar] [CrossRef]
- Takahara, T.; Nakamura, S.; Tsuzuki, T.; Satou, A. The Immunology of DLBCL. Cancers 2023, 15, 835. [Google Scholar] [CrossRef]
- Xiong, X.; Xie, X.; Wang, Z.; Zhang, Y.; Wang, L. Tumor-associated macrophages in lymphoma: From mechanisms to therapy. Int. Immunopharmacol. 2022, 112, 109235. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhu, P.; Ge, J.; Li, Q.; Li, H.; Zhe, N.; Liu, Z.; Chen, D. Gene regulatory mechanisms of T cell exhaustion in diffuse large B cell lymphoma based on single-cell transcriptome data. Leuk. Res. 2024, 146, 107588. [Google Scholar] [CrossRef]
- Jia, H.; Yang, H.; Xiong, H.; Luo, K.Q. NK cell exhaustion in the tumor microenvironment. Front. Immunol. 2023, 14, 1303605. [Google Scholar] [CrossRef]
- Zhang, A.; Fan, T.; Liu, Y.; Yu, G.; Li, C.; Jiang, Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol. Cancer 2024, 23, 251. [Google Scholar] [CrossRef]
- Dong, W.; Wu, X.; Ma, S.; Wang, Y.; Nalin, A.P.; Zhu, Z.; Zhang, J.; Benson, D.M.; He, K.; Caliguri, M.A.; et al. The Mechanism of Anti-PD-L1 Antibody Efficacy against PD-L1-Negative Tumors Identifies NK Cells Expressing PD-L1 as a Cytolytic Effector. Cancer Discov. 2019, 9, 1422–1437. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Wang, X. Targeting the tumor microenvironment in B-cell lymphoma: Challenges and opportunities. J. Hematol. Oncol. 2021, 14, 125. [Google Scholar] [CrossRef] [PubMed]
- Sica, A.; Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Investig. 2007, 117, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, C.; Zou, W. Metabolism and macrophages in the tumor microenvironment. Curr. Opin. Immunol. 2024, 91, 102491. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Chen, Z.; Luo, J.; Guo, W.; Sun, L.; Lin, L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis. Oncol. 2024, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Li, H.; Shi, Y.; Wang, D.; Gong, J.; Xun, J.; Zhou, S.; Xiang, R.; Tan, X. M2 tumour-associated macrophages contribute to tumour progression via legumain remodelling the extracellular matrix in diffuse large B cell lymphoma. Sci. Rep. 2016, 6, 30347. [Google Scholar] [CrossRef]
- Nam, S.J.; Go, H.; Paik, J.H.; Kim, T.M.; Heo, D.S.; Kim, C.W.; Jeon, Y.K. An increase of M2 macrophages predicts poor prognosis in patients with diffuse large B-cell lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone. Leuk. Lymphoma 2014, 55, 2466–2476. [Google Scholar] [CrossRef]
- Marchesi, F.; Cirillo, M.; Bianchi, A.; Gately, M.; Olimpieri, O.M.; Cerchiara, E.; Renzi, D.; Micera, A.; Balzamino, B.O.; Bonini, S.; et al. High density of CD68+/CD163+ tumour-associated macrophages (M2-TAM) at diagnosis is significantly correlated to unfavorable prognostic factors and to poor clinical outcomes in patients with diffuse large B-cell lymphoma. Hematol. Oncol. 2015, 33, 110–112. [Google Scholar] [CrossRef]
- Ribatti, D.; Tamma, R.; Annese, T.; Ingravallo, G.; Specchia, G. Macrophages and angiogenesis in human lymphomas. Clin. Exp. Med. 2024, 24, 26. [Google Scholar] [CrossRef]
- Wang, J.; Gao, K.; Lei, W.; Dong, L.; Xuan, Q.; Feng, M.; Wang, J.; Ye, X.; Jin, T.; Zhanh, Z.; et al. Lymphocyte-to-monocyte ratio is associated with prognosis of diffuse large B-cell lymphoma: Correlation with CD163 positive M2 type tumor-associated macrophages, not PD-1 positive tumor-infiltrating lymphocytes. Oncotarget 2017, 8, 5414–5425. [Google Scholar] [CrossRef]
- Guo, B.; Duan, Y.; Cen, H. Prognostic model based on M2 macrophage-related signatures for predicting outcomes, enhancing risk stratification, and providing therapeutic insights in diffuse large B-cell lymphoma. Heliyon 2024, 10, e41007. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, H.; Dai, J.; Lin, J.; Zhao, K.; Hu, H.; Zhong, C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J. Adv. Res. 2025; in press. [Google Scholar] [CrossRef]
- Wilcox, R.A.; Ristow, K.; Habermann, T.M.; Inwards, D.J.; Micallef, I.N.; Johnston, P.B.; Colgan, J.P.; Nowakowski, G.S.; Ansell, S.M.; Witzig, T.E.; et al. The absolute monocyte and lymphocyte prognostic score predicts survival and identifies high-risk patients in diffuse large-B-cell lymphoma. Leukemia 2011, 25, 1502–1509. [Google Scholar] [CrossRef] [PubMed]
- Tadmor, T.; Bari, A.; Sacchi, S.; Marcheselli, L.; Liardo, E.V.; Avivi, I.; Benyamini, N.; Attias, D.; Pozzi, S.; Cox, M.C.; et al. Monocyte count at diagnosis is a prognostic parameter in diffuse large B-cell lymphoma: Results from a large multicenter study involving 1191 patients in the pre- and post-rituximab era. Haematologica 2014, 99, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Marcheselli, R.; Franceschetto, A.; Sacchi, S.; Bari, A.; Levy, I.; Pizzichini, P.; Prosper, D.; D’Apollo, R.; Massi, L.; Casolo, A.; et al. The prognostic role of end of treatment FDG-PET-CT in patients with diffuse large B cell lymphoma can be improved by considering it with absolute monocyte count at diagnosis. Leuk. Lymphoma 2019, 60, 1958–1964. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, 2004433. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, X.; Song, L. Unraveling the complex role of neutrophils in lymphoma: From pathogenesis to therapeutic approaches (Review). Mol. Clin. Oncol. 2024, 21, 85. [Google Scholar] [CrossRef]
- Nie, M.; Yang, L.; Bi, X.; Wang, Y.; Sun, P.; Yang, H.; Liu, P.; Li, Z.; Xia, Y.; Jiang, Z. Neutrophil Extracellular Traps Induced by IL8 Promote Diffuse Large B-cell Lymphoma Progression via the TLR9 Signaling. Clin. Cancer Res. 2019, 25, 1867–1879. [Google Scholar] [CrossRef]
- Hu, W.; Lee, S.M.L.; Bazhin, A.V.; Guba, M.; Werner, J.; Nieß, H. Neutrophil extracellular traps facilitate cancer metastasis: Cellular mechanisms and therapeutic strategies. J. Cancer Res. Clin. Oncol. 2023, 149, 2191–2210. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, W. Clinical significance of circulating neutrophils and lymphocyte subsets in newly diagnosed patients with diffuse large B-cell lymphoma. Clin. Exp. Med. 2023, 23, 815–822. [Google Scholar] [CrossRef]
- Freud, A.G.; Mundy-Bosse, B.L.; Yu, J.; Caligiuri, M.A. The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity 2017, 47, 820–833. [Google Scholar] [CrossRef]
- Phan, M.T.; Chun, S.; Kim, S.H.; Ali, A.K.; Lee, S.H.; Kim, S.; Kim, S.H.; Cho, D. Natural killer cell subsets and receptor expression in peripheral blood mononuclear cells of a healthy Korean population: Reference range, influence of age and sex, and correlation between NK cell receptors and cytotoxicity. Hum. Immunol. 2017, 78, 103–112. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Kulkarni, A.; Anderson, J.L.; Upadhyay, P.; Onyekachi, O.V.; Arantes, L.M.R.B.; Banerjee, H.; Kane, L.P.; Zhang, X.; et al. Differential impact of TIM-3 ligands on NK cell function. J. Immunother. Cancer 2025, 13, e010618. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Kang, T.; Chen, S. The role of tumor-associated macrophages in tumor immune evasion. J. Cancer Res. Clin. Oncol. 2024, 150, 238. [Google Scholar] [CrossRef]
- Hontecillas-Prieto, L.; García-Domínguez, D.J.; Palazón-Carrión, N.; Martín García-Sancho, A.; Nogales-Fernández, E.; Jimenez-Cortegana, C.; Sanchez-Leon, M.L.; Silva-Romeiro, S.; Flores-Campos, R.; Carnicero-Gonzalez, F.; et al. CD8+ NKs as a potential biomarker of complete response and survival with lenalidomide plus R-GDP in the R2-GDP-GOTEL trial in recurrent/refractory diffuse large B cell lymphoma. Front. Immunol. 2024, 15, 1293931. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Chung, J.S.; Shin, H.J.; Song, M.K.; Yi, J.W.; Shin, D.H.; Lee, D.S.; Baek, S.M. Influence of NK cell count on the survival of patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood Res. 2014, 49, 162–169. [Google Scholar] [CrossRef]
- Patente, T.A.; Pinho, M.P.; Oliveira, A.A.; Evangelista, G.C.M.; Bergami-Santos, P.C.; Barbuto, J.A.M. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front. Immunol. 2019, 9, 3176. [Google Scholar] [CrossRef]
- Yuan, C.T.; Chuang, S.S.; Cheng, P.Y.; Chang, K.; Wang, H.; Tsai, J.H.; Liau, J.Y.; Chou, W.C. Decreased CD11c-positive dendritic cells in the tumor microenvironment predict double-hit/triple-hit genotype and survival in diffuse large B-cell lymphoma. J. Pathol. Clin. Res. 2022, 8, 436–447. [Google Scholar] [CrossRef]
- Koumpis, E.; Papoudou-Bai, A.; Papathanasiou, K.; Kolettas, E.; Kanavaros, P.; Hatzimichael, E. Unraveling the Immune Microenvironment in Diffuse Large B-Cell Lymphoma: Prognostic and Potential Therapeutic Implications. Curr. Issues Mol. Biol. 2024, 46, 7048–7064. [Google Scholar] [CrossRef]
- Ciavarella, S.; Vegliante, M.C.; Fabbri, M.; De Summa, S.; Melle, F.; Motta, G.; De Iuliis, V.; Opinto, G.; Enjuanes, A.; Rega, S.; et al. Dissection of DLBCL microenvironment provides a gene expression-based predictor of survival applicable to formalin-fixed paraffin-embedded tissue. Ann. Oncol. 2018, 29, 2363–2370. [Google Scholar] [CrossRef]
- Elhelbawy, N.G.; Nassar, A.A.H.; Eltorgoman, A.E.A.; Saber, S.M.; Badr, E.A. Immunological microenvironment gene expression in patients with diffuse large B cell non Hodgkin lymphoma. Biochem. Biophys. Rep. 2020, 21, 100731. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D.H.; Oh, S.Y.; Kim, S.Y.; Koh, M.S.; Lee, J.H.; Lee, S.; Kim, S.H.; Kwak, J.Y.; Pak, M.G.; et al. Clinicopathologic significance of tumor microenvironment CD11c, and FOXP3 expression in diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, anthracycline, vincristine, and prednisone (R-CHOP) combination chemotherapy. Korean J. Intern. Med. 2017, 32, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.; Wright, G.W.; Huang, D.W.; Johnson, C.A.; Phelan, J.D.; Wang, J.Q.; Roulland, S.; Kasbekar, M.; Young, R.M.; Shaffer, A.L.; et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018, 378, 1396–1407. [Google Scholar] [CrossRef] [PubMed]
- Fangazio, M.; Ladewig, E.; Gomez, K.; Garcia-Ibanez, L.; Kumar, R.; Teruya-Feldstein, J.; Rossi, D.; Filip, I.; Pan-Hammarström, Q.; Inghirami, G.; et al. Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA 2021, 118, e2104504118. [Google Scholar] [CrossRef]
- Ansell, S.M.; Stenson, M.; Habermann, T.M.; Jelinek, D.F.; Witzig, T.E. Cd4+ T-1cell immune response to large B-cell non-Hodgkin’s lymphoma predicts patient outcome. J. Clin. Oncol. 2001, 19, 720–726. [Google Scholar] [CrossRef]
- Duell, J.; Westin, J. The future of immunotherapy for diffuse large B-cell lymphoma. Int. J. Cancer 2025, 156, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, Y.; Yu, J.; Meng, S.; Bi, C.; Guan, Q.; Li, L.; Qiu, L.; Qian, Z.; Zhou, S.; et al. OX40 shapes an inflamed tumor immune microenvironment and predicts response to immunochemotherapy in diffuse large B-cell lymphoma. Clin. Immunol. 2023, 251, 109637. [Google Scholar] [CrossRef]
- Thapa, B.; Kato, S.; Nishizaki, D.; Miyashita, H.; Lee, S.; Nesline, M.K.; Previs, R.A.; Conroy, J.M.; DePietro, P.; Pabla, S.; et al. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev. 2024, 43, 1001–1013. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, Y.; Liu, X.; Zhao, M.; He, J.; Liu, X.; Li, L.; Qiu, L.; Qian, Z.; Zhou, S.; et al. Comprehensive analysis of TP53 mutation characteristics and identification of patients with inferior prognosis and enhanced immune escape in diffuse large B-cell lymphoma. Am. J. Hematol. 2022, 97, E14–E17. [Google Scholar] [CrossRef]
- Hou, H.; Luo, Y.; Tang, G.; Zhang, B.; Ouyang, R.; Wang, T.; Huang, M.; Wu, S.; Li, D.; Wang, F. Dynamic changes in peripheral blood lymphocyte subset counts and functions in patients with diffuse large B cell lymphoma during chemotherapy. Cancer Cell Int. 2021, 21, 282. [Google Scholar] [CrossRef]
- Ray-Coquard, I.; Cropet, C.; Van Glabbeke, M.; Sebban, C.; Le Cesne, A.; Judson, I.; Tredan, O.; Verweij, J.; Biron, P.; Labidi, I.; et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009, 69, 5383–5391. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Z.; Guo, X.; Chen, Y.; Cheng, Y.; Tang, Y. Prognostic significance of absolute lymphocyte count at diagnosis of diffuse large B-cell lymphoma: A meta-analysis. Int. J. Hematol. 2012, 95, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Partanen, A.; Turunen, A.; Kuittinen, O.; Kuitunen, H.; Mäntymaa, P.; Varmavuo, V.; Jantunen, E. Predictive Factors for Early Immune Recovery in NHL Patients after Autologous Transplantation: A Multicenter Prospective Study. Cancers 2024, 16, 2550. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhu, H.; Liu, Y.; Wang, Y.; Sun, Y.; Cheng, H.; Yan, Z.; Cao, J.; Sang, W.; Zhu, F.; et al. Prognostic value of prelymphodepletion absolute lymphocyte counts in relapsed/refractory diffuse large B-cell lymphoma patients treated with chimeric antigen receptor T cells. Front. Immunol. 2023, 14, 1155216. [Google Scholar] [CrossRef] [PubMed]
- Sonmez, O.; Sonmez, M. Role of platelets in immune system and inflammation. Porto Biomed. J. 2017, 2, 311–314. [Google Scholar] [CrossRef]
- Contursi, A.; Tacconelli, S.; Di Berardino, S.; De Michele, A.; Patrignani, P. Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: Unveiling new strategies for cancer prevention. Front. Pharmacol. 2024, 15, 1520488. [Google Scholar] [CrossRef]
- Chen, H.; Qin, Y.; Yang, J.; Liu, P.; He, X.; Zhou, S.; Zhang, C.; Gui, L.; Yang, S.; Shi, Y. The pretreatment platelet count predicts survival outcomes of diffuse large B-cell lymphoma: An analysis of 1007 patients in the rituximab era. Leuk. Res. 2021, 110, 106715. [Google Scholar] [CrossRef]
- Knight, K.; Wade, S.; Balducci, L. Prevalence and outcomes of anemia in cancer: A systematic review of the literature. Am. J. Med. 2004, 116, 11–26. [Google Scholar] [CrossRef]
- Solal-Céligny, P.; Roy, P.; Colombat, P.; White, J.; Armitage, J.O.; Arranz-Saez, R.; Au, W.Y.; Bellei, M.; Brice, P.; Caballero, D.; et al. Follicular lymphoma international prognostic index. Blood 2004, 104, 1258–1265. [Google Scholar] [CrossRef]
- Federico, M.; Bellei, M.; Marcheselli, L.; Luminari, S.; Lopez-Guillermo, A.; Vitolo, U.; Pro, B.; Pileri, S.; Pulsoni, A.; Soubeyran, P.; et al. Follicular lymphoma international prognostic index 2: A new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J. Clin. Oncol. 2009, 27, 4555–4562. [Google Scholar] [CrossRef]
- Hong, J.; Woo, H.S.; Kim, H.; Ahn, H.K.; Sym, S.J.; Park, J.; Ahn, J.Y.; Cho, E.K.; Shin, D.B.; Lee, J.H. Anemia as a useful biomarker in patients with diffuse large B-cell lymphoma treated with R-CHOP immunochemotherapy. Cancer Sci. 2014, 105, 1569–1575. [Google Scholar] [CrossRef]
- Matsumoto, K.; Fujisawa, S.; Ando, T.; Koyama, M.; Koyama, S.; Ishii, Y.; Numata, A.; Yamamoto, W.; Motohashi, K.; Hagihara, M.; et al. Anemia associated with worse outcome in diffuse large B-cell lymphoma patients: A single-center retrospective study. Turk. J. Haematol. 2018, 35, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Wight, J.C.; Chong, G.; Grigg, A.P.; Hawkes, E.A. Prognostication of diffuse large B-cell lymphoma in the molecular era: Moving beyond the IPI. Blood Rev. 2018, 32, 400–415. [Google Scholar] [CrossRef] [PubMed]
- Mu, S.; Shi, D.; Ai, L.; Fan, F.; Peng, F.; Sun, C.; Hu, Y. International Prognostic Index-Based Immune Prognostic Model for Diffuse Large B-Cell Lymphoma. Front. Immunol. 2021, 12, 732006. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Liu, B.; Gao, L.; He, M.; Wang, J.; Zhang, W.; Chen, L.; Hu, X.; Xu, L.; Yang, J. The pretreatment albumin to globulin ratio as a significant predictor in patients with diffuse large B cell lymphoma. Clin. Chim. Acta 2018, 485, 316–322. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Zhao, W.; Liu, Z.; Shen, Y.; Li, J.; Shen, Z. The Glasgow Prognostic Score as a significant predictor of diffuse large B cell lymphoma treated with R-CHOP in China. Ann. Hematol. 2015, 94, 57–63. [Google Scholar] [CrossRef]
- Jung, J.; Lee, H.; Heo, J.Y.; Chang, M.H.; Lee, E.; Park, W.S.; Park, J.H.; Eom, H.S. High level of pre-treatment C-reactive protein to albumin ratio predicts inferior prognosis in diffuse large B-cell lymphoma. Sci. Rep. 2021, 11, 2674. [Google Scholar] [CrossRef]
- Shi, X.; Wu, C.; Deng, W.; Wu, J. Prognostic value of lactate dehydrogenase to absolute lymphocyte count ratio and albumin to fibrinogen ratio in diffuse large B-cell lymphoma. Medicine 2024, 103, e39097. [Google Scholar] [CrossRef]
- Melchardt, T.; Troppan, K.; Weiss, L.; Hufnagl, C.; Neureiter, D.; Tränkenschuh, W.; Hopfinger, G.; Magnes, T.; Deutsch, A.; Neumeister, P.; et al. A modified scoring of the NCCN-IPI is more accurate in the elderly and is improved by albumin and β2-microglobulin. Br. J. Haematol. 2015, 168, 239–245. [Google Scholar] [CrossRef]
- Gang, A.O.; Pedersen, M.; d’Amore, F.; Pedersen, L.M.; Jensen, B.A.; Jensen, P.; Møller, M.B.; Mourits-Andersen, H.T.; Pedersen, R.S.; Klausen, T.W.; et al. A clinically based prognostic index for diffuse large B-cell lymphoma with a cut-off at 70 years of age significantly improves prognostic stratification: Population-based analysis from the Danish Lymphoma Registry. Leuk. Lymphoma 2015, 56, 2556–2562. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kuroda, J.; Yokota, I.; Tanba, K.; Fujino, T.; Kuwahara, S.; Isa, R.; Yamaguchi, J.; Kawata, E.; Akaogi, T.; et al. The Kyoto Prognostic Index for patients with diffuse large B-cell lymphoma in the rituximab era. Blood Cancer J. 2016, 6, e383. [Google Scholar] [CrossRef]
- Atas, U.; Sozel, H.; Iltar, U.; Yucel, O.K.; Salim, O.; Undar, L. The Prognostic Impact of Pretreatment Geriatric Nutritional Risk Index in Patients with Diffuse Large B-Cell Lymphoma. Nutr. Cancer 2023, 75, 591–598. [Google Scholar] [CrossRef]
- Ochi, Y.; Kazuma, Y.; Hiramoto, N.; Ono, Y.; Yoshioka, S.; Yonetani, N.; Matsushita, A.; Imai, Y.; Hashimoto, H.; Ishikawa, T. Utility of a simple prognostic stratification based on platelet counts and serum albumin levels in elderly patients with diffuse large B cell lymphoma. Ann. Hematol. 2017, 96, 1–8. [Google Scholar] [CrossRef]
- Nakayama, S.; Matsuda, M.; Adachi, T.; Sueda, S.; Ohashi, Y.; Awaji, S.; Hashimoto, S.; Matsumura, I. Novel prognostic index based on hemoglobin level and platelet count for diffuse large B-cell lymphoma, not otherwise specified in the R-CHOP era. Platelets 2019, 30, 637–645. [Google Scholar] [CrossRef]
- Chen, H.; Zhong, Q.; Zhou, Y.; Qin, Y.; Yang, J.; Liu, P.; He, X.; Zhou, S.; Zhang, C.; Gui, L.; et al. Enhancement of the International prognostic index with β2-microglobulin, platelet count and red blood cell distribution width: A new prognostic model for diffuse large B-cell lymphoma in the rituximab era. BMC Cancer 2022, 22, 583. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Neelapu, S.; Feng, L.; Bi, W.; Yang, T.H.; Wang, M.; Fanale, M.A.; Westin, J.R.; Hagemeister, F.B.; Fayad, L.E.; et al. Prognostic significance of baseline peripheral absolute neutrophil, monocyte and serum β2-microglobulin level in patients with diffuse large B-cell lymphoma: A new prognostic model. Br. J. Haematol. 2016, 175, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Jelicic, J.; Juul-Jensen, K.; Bukumiric, Z.; Runason Simonsen, M.; Kragh Jørgensen, R.R.; Roost Clausen, M.; Ludvigsen Al-Mashhadi, A.; Schou Pedersen, R.; Bjørn Poulsen, C.; Ortved Gang, A.; et al. Validation of prognostic models in elderly patients with diffuse large B-cell lymphoma in a real-world nationwide population-based study—Development of a clinical nomogram. Ann. Hematol. 2025, 104, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Fu, Y.; Tong, W.; Li, F. Prognostic significance of lymphocyte to monocyte ratio in colorectal cancer: A meta-analysis. Int. J. Surg. 2018, 55, 128–138. [Google Scholar] [CrossRef]
- Cvetković, M.; Arsenović, I.; Smiljanić, M.; Sobas, M.; Bogdanović, A.; Leković, D. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio as novel prognostic biomarkers in BCR-ABL negative myeloproliferative neoplasms. Ann. Hematol. 2024, 103, 4545–4556. [Google Scholar] [CrossRef]
- Markovic, O.; Popovic, L.; Marisavljevic, D.; Jovanovic, D.; Filipovic, B.; Stanisavljevic, D.; Matovina-Brko, G.; Hajder, J.; Matkovic, T.; Živkovic, R.; et al. Comparison of prognostic impact of absolute lymphocyte count, absolute monocyte count, absolute lymphocyte count/absolute monocyte count prognostic score and ratio in patients with diffuse large B cell lymphoma. Eur. J. Intern. Med. 2014, 25, 296–302. [Google Scholar] [CrossRef]
- Zhao, P.; Zang, L.; Zhang, X.; Chen, Y.; Yue, Z.; Yang, H.; Zhao, H.; Yu, Y.; Wang, Y.; Zhao, Z.; et al. Novel prognostic scoring system for diffuse large B-cell lymphoma. Oncol. Lett. 2018, 15, 5325–5332. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, M.; Xu, J.Y.; Yang, Y.G.; Zhang, Q.G.; Zhou, R.F.; Chen, B.; Ouyang, J. Prognostic role of pretreatment neutrophil-lymphocyte ratio in patients with diffuse large B-cell lymphoma treated with RCHOP. Medicine 2016, 95, e4893. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Liu, Y.; Jiang, Y.; Ge, X.; Yuan, D.; Ding, M.; Qu, H.; Liu, F.; Zhou, X.; Wang, X. Prognosis and complications of patients with primary gastrointestinal diffuse large B-cell lymphoma: Development and validation of the systemic inflammation response index-covered score. Cancer Med. 2023, 12, 9570–9582. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, J.; Luo, S.; Zhao, X. Prognostic Significance of Systemic Immune-Inflammation Index in Patients With Diffuse Large B-Cell Lymphoma. Front. Oncol. 2021, 11, 655259. [Google Scholar] [CrossRef] [PubMed]
- Luan, C.; Wang, F.; Wei, N.; Chen, B. Prognostic nutritional index and the prognosis of diffuse large B-cell lymphoma: A meta-analysis. Cancer Cell Int. 2020, 20, 455. [Google Scholar] [CrossRef]
- Yan, C.; Xie, Y.; Hua, Y.; Li, S.; Fu, H.; Cheng, Z.; Wu, J. Prognostic value of geriatric nutritional risk index in patients with diffuse large B-cell lymphoma: A meta-analysis. Clin. Transl. Oncol. 2024, 26, 515–523. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, Z. Prognostic and clinicopathological role of geriatric nutritional risk index in patients with diffuse large B-cell lymphoma: A meta-analysis. Front. Oncol. 2023, 13, 1169749. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Fang, Q.; Jian, H. Prognostic impact of platelet-to-lymphocyte ratio on diffuse large B-cell lymphoma: A meta-analysis. Cancer Cell Int. 2019, 19, 245. [Google Scholar] [CrossRef]
- Sun, H.L.; Pan, Y.Q.; He, B.S.; Nie, Z.L.; Lin, K.; Peng, H.X.; Cho, W.C.; Wang, S.K. Prognostic performance of lymphocyte-to-monocyte ratio in diffuse large B-cell lymphoma: An updated meta-analysis of eleven reports. Onco Targets Ther. 2016, 9, 3017–3023. [Google Scholar] [CrossRef]
- Kim, D.Y.; Song, M.K.; Chung, J.S.; Shin, H.J.; Yang, D.H.; Lim, S.N.; Oh, S.Y. Clinical impacts of inflammatory markers and clinical factors in patients with relapsed or refractory diffuse large B-cell lymphoma. Blood Res. 2019, 54, 244–252. [Google Scholar] [CrossRef]
- Ide, D.; Fujino, T.; Kobayashi, T.; Egashira, A.; Miyashita, A.; Mizuhara, K.; Isa, R.; Tsukamoto, T.; Mizutani, S.; Uchiyama, H.; et al. Prognostic model for relapsed/refractory transplant-ineligible diffuse large B-cell lymphoma utilizing the lymphocyte-to-monocyte ratio. Int. J. Hematol. 2024, 119, 697–706. [Google Scholar] [CrossRef]
- Jelicic, J.; Juul-Jensen, K.; Bukumiric, Z.; Roost Clausen, M.; Ludvigsen Al-Mashhadi, A.; Pedersen, R.S.; Poulsen, C.B.; Brown, P.; El-Galaly, T.C.; Stauffer Larsen, T. Prognostic indices in diffuse large B-cell lymphoma: A population-based comparison and validation study of multiple models. Blood Cancer J. 2023, 13, 157. [Google Scholar] [CrossRef] [PubMed]
Index Author, Year | Parameters Included | N | Cut Off/Prognostic Groups | Key Findings |
---|---|---|---|---|
Matsumoto Model Matsumoto et al., 2018 [194] | CS ≥ III Hb < 100 g/L | 185 | Scores 0, 1, 2 | 3-year PFS—score 0: 89.1%, score 1: 73.9%, score 2: 35.5%, (p < 0.001) 3-year OS—score 0: 94.6%, score 1: 82.0%, score 2: 61.4%, (p < 0.001) |
Lipo-PI Gao et al., 2018 [30] | Concurrently: HDL-C <1.03 mmol/L LDL-C <2.60 mmol/L and NCCN IPI variables * | 550 (T: 367, V: 183) | L: score 0–2 LI: score 3–4 HI: score 5–6 H: ≥7 | 5-year PFS—L: 88.6%, LI: 65%, HI: 29.5%, H: 10% 5-year OS—L: 96.9%, LI: 79.6%, HI: 45%, H: 22.5% Lipo-PI widened the definition of high-risk patients for 5-year OS and improved. the risk stratification of NCCN-IPI. HDL-C or LDL-C elevations after treatment correlated with better survival |
IPI-A Yu et al., 2023 [28] | ApoA-I < 0.81 g/L and IPI variables **: | 105 | Comparison of IPI-A with IPI using a ROC curve | PFS (1 year: AUC = 0.745, 3 years: AUC = 0.827, 5 years: AUC = 0.763) A significant increase in TG, LDL-C, HDL-C, ApoA-I, and ApoB levels after Chemotherapy |
AGR Yue et al., 2018 [197] | Albumin-to-globulin | 335 | 1.3 | Low AGR is an independent adverse predictor for OS (HR = 0.613; 95% CI = 0.412–0.910, p = 0.015) AGR distinguished patients with different prognosis in stage III–IV and the ABC DLBCL groups |
GPS (Glasgow Prognostic score) Li et al., 2015 [198] | CRP > 10 mg/L Albumin < 35 g/L | 160 | GPS-0 GPS-1 GPS-2 | Lower GPS predict better outcome, including PFS (p < 0.001) and OS (p < 0.001) |
CAR Jung et al., 2021 [199] | CRP-to-albumin ratio | 186 | 0.158 | Low CAR is an independent adverse predictor for CRR (64.4% vs. 92.6%), 3-year PFS (53.5% vs. 88.0%). 3-year OS (68.3% vs. 96.2%) |
AFR Shi et al., 2024 [200] | Albumin-to-fibrinogen | 74 | 12.64 | 2-year PFS: high AFR-85.7%, low AFR-22.2% AFR can be used as good supplements for IPI to predict the prognosis of DLBCL |
Modified NCCN-IPI Melchardt et al., 2015 [201] | Albumin < 35 g/L β2M > 3.0 mg/L NCCN-IPI variables * | 499 | L: score 0–2 LI: score 3 HI: score 4–7 H: score 8–10 | 3-year OS—L: 97.8%, LI: 82.7%, HI: 65.9%, H: 4.2% 5-year OS—L:93%, LI:78%, HI: 55.7%, H: 36.8% |
DLBCL-PI (Modified DLBCL prognostic index) aaDLBCL-PI (for age ≤70 years) Gang et al., 2015 [202] | Albumin < 35 g/L and IPI variables ** (except EN) Albumin <35 g/L and IPI variables ** (except CS) | 1990 | L: score0–1 LI: score 2 HI: score 3 H: score 4–5 | 5-year OS in four risk groups—IPI: 83%, 64%, 57%, and 38% DLBCL-PI: 87%, 69%, 53%, and 37% aaDLBCL-PI: 92%, 84%, 74%, and 47%. |
KPI (Kyoto Prognostic Index) Kobayashi et al., 2016 [203] | LDH ratio >1–3/>3, ECOG-PS ≥ 2, Albumin < 35 g/L EN (BM, bone, skin and/or lung/pleura) | 323 | L: score 0, LI: score 1–2, HI: score 3, H: score 4–5 | 3-year OS—L: 96.4%, LI: 84.7%, HI: 63.8%, H: 33.3% 3-year PFS—L: 84.4%, LI: 70.2%, HI: 53.4%, H: 24.1% |
GNRI (Geriatric nutritional index) Atas et al., 2023 [204] | Lorentz formula *** | 206 | L and H groups according to the ROC curve (cut off 104.238) | Low GNRI is an independent adverse predictor DFS and OS |
Index Author, Year | Parameters Included | N | Cut Off/Prognostic Groups | Key Findings |
---|---|---|---|---|
LAR Shi et al., 2024 [200] | LDH to ALC ratio | 74 | 244.95 | 2-year PFS—low LAR: 78.6%, high LAR:13.8% LAR can be used as good supplements for IPI to predict the prognosis of DLBCL. |
PNI (Prognostic nutritional index) Zhou et al., 2016) [117] | albumin (g/L) + 5 × ALC × 109/L | 253 | L and H groups according to the ROC curve | Low PNI was an independent adverse predictor EFS and OS |
PA (Platelet–albumin) Ochi et al., 2017 [205] | platelet count <100 × 109/L, albumin ≥ 35 g/L | 391 | L/I/H | 5-year OS—L: 77.6%, I: 47.9%, H: 19.0% |
HP (Hb–platelet) Nakayama et al., 2019 [206] | Hb < 120 g/L platelet counts <135 × 109/L | 89 | L: score 0 I: score 1 H: score 2 | Higher HP index was associated with worse OS and predicted OS rate independently of the IPI |
Chen et al., 2022 [207] | β2M UNL platelets <157 × 109/L RDW ≥ 14.5% | 998 (T:701, V: 297) | L: score 0 LI: score 1 HI: score 2–3 H: score 4 VH: score ≥ 5 | The AUC of the new model for OS prediction at specific time points (6 months to 10 years) was consistently higher than that of conventional prognostic models in both T and V |
Chen et al., 2016 [208] | ANC AMC ECOG PS β2M EN | 817 | L1: score 0 L2: score 1 I: score 2 H1: score 3–5 H2: score 6–7 | Better stratifies patients into various risk categories than the IPI for newly diagnosed DLBCL. |
E-IPI (Elderly-IPI) Jelicic et al., 2025 [209] | NCCN-IPI variables * (excluding EN), albumin platelet | 2835 | L/LI/HI/H groups | 3-year OS—L: 88.6%, H: 45% 5-year OS—L: 80.6%, H: 38.3% Δ c-index OS: 3–0.024 (0.021; 0.026) |
LMR Markovic et al., 2014. [212] | Lymphocyte-to-monocyte ratio ≤ 2.8 | 222 | L/H | L group had significantly shorter EFS and OS |
PLR Zhao et al., 2018 [213] | Platelet-to-lymphocyte ratio ≥ 170 | 309 | L/H | PLR was a significant prognostic factor for OS (p < 0.001) and PFS (p = 0.003) |
NLR Wang et al., 2016 [214] | Neutrophil-to-lymphocyte ratio | 156 | 3.0 L and H groups according to the ROC curve | 5-year OS—L: −82.5%, H: 57.5% 5-year PFS—L: 64.5%, H: 30.0% |
SIRI-PI (Systemic inflammation response index) Chu et al., 2023 [215] | Neutrophil × monocyte/ lymphocyte | 153 PGl-DLBCL (T: 102, V: 51) | 1.34 (L/H) | more precise high-risk assessment compared to NCCN-IPI with a higher AUC (0.916 vs. 0.835) and C-index (0.912 vs. 0.836) for OS |
SII (Systemic immune–inflammation index) Wang et al., 2021 [216] | Neutrophil, Platelet, and lymphocyte counts | 224 | 1046.1 L and H groups according to the ROC curve | 3-year OS—L: 88.3%, H: 58.6% 3-year PFS—L: 74.4%, H: 3.7% SII superior to NLR and PLR |
Zhao et al., 2018 [213] | PLR < 170 vs. ≥170 IPI < 2 vs. ≥2 or aaIPI 0 vs. ≥1 β2M normal vs. UNL | 309 | L/I/H | 5-year OS—L: 86.4%, I: 54.1% H: 21.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cvetković, Z.; Marković, O.; Marinković, G.; Pejić, S.; Vučić, V. Tumor Microenvironment, Inflammation, and Inflammatory Prognostic Indices in Diffuse Large B-Cell Lymphomas: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 5670. https://doi.org/10.3390/ijms26125670
Cvetković Z, Marković O, Marinković G, Pejić S, Vučić V. Tumor Microenvironment, Inflammation, and Inflammatory Prognostic Indices in Diffuse Large B-Cell Lymphomas: A Narrative Review. International Journal of Molecular Sciences. 2025; 26(12):5670. https://doi.org/10.3390/ijms26125670
Chicago/Turabian StyleCvetković, Zorica, Olivera Marković, Gligorije Marinković, Snežana Pejić, and Vesna Vučić. 2025. "Tumor Microenvironment, Inflammation, and Inflammatory Prognostic Indices in Diffuse Large B-Cell Lymphomas: A Narrative Review" International Journal of Molecular Sciences 26, no. 12: 5670. https://doi.org/10.3390/ijms26125670
APA StyleCvetković, Z., Marković, O., Marinković, G., Pejić, S., & Vučić, V. (2025). Tumor Microenvironment, Inflammation, and Inflammatory Prognostic Indices in Diffuse Large B-Cell Lymphomas: A Narrative Review. International Journal of Molecular Sciences, 26(12), 5670. https://doi.org/10.3390/ijms26125670