Hammerhead Ribozymes: Structural Insights, Catalytic Mechanisms, and Cutting-Edge Applications in Synthetic Biology
Abstract
1. Introduction
2. The Structure and Catalytic Mechanism of the Hammerhead Ribozyme
2.1. Structural Characteristics of the Hammerhead Ribozyme
2.2. Catalytic Mechanism of the Hammerhead Ribozyme
3. Applications of Hammerhead Ribozymes in Synthetic Biology
3.1. Gene Regulation Applications
3.1.1. RNA Switches Based on Hammerhead Ribozymes
3.1.2. Engineering and Screening of Hammerhead Ribozyme-Based Gene Regulation Tools
3.2. Applications of Hammerhead Ribozymes in Antiviral Therapy
3.3. Applications of Hammerhead Ribozymes in Biosensing
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fedor, M.J.; Williamson, J.R. The catalytic diversity of RNAs. Nat. Rev. Mol. Cell Biol. 2005, 6, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Lilley, D.M.J.; Huang, L. RNA catalysis moving towards metabolic reactions: Progress with ribozyme catalyzed alkyl transfer. Trends Biochem. Sci. 2025, 50, 417–424. [Google Scholar] [CrossRef]
- Pace, N.R.; Marsh, T.L. RNA catalysis and the origin of life. Orig. Life Evol. Biosph. 1985, 16, 97–116. [Google Scholar] [CrossRef]
- Hoog, T.G.; Pawlak, M.R.; Gaut, N.J.; Baxter, G.C.; Bethel, T.A.; Adamala, K.P.; Engelhart, A.E. Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for molecular evolution on Mars. Nat. Commun. 2024, 15, 3863. [Google Scholar] [CrossRef]
- Papastavrou, N.; Horning, D.P.; Joyce, G.F. RNA-catalyzed evolution of catalytic RNA. Proc. Natl. Acad. Sci. USA 2024, 121, e2321592121. [Google Scholar] [CrossRef]
- Kawamura, K.; Ogawa, M.; Konagaya, N.; Maruoka, Y.; Lambert, J.F.; Ter-Ovanessian, L.M.P.; Vergne, J.; Herve, G.; Maurel, M.C. A High-Pressure, High-Temperature Flow Reactor Simulating the Hadean Earth Environment, with Application to the Pressure Dependence of the Cleavage of Avocado Viroid Hammerhead Ribozyme. Life 2022, 12, 1224. [Google Scholar] [CrossRef]
- Deng, J.; Shi, Y.; Peng, X.; He, Y.; Chen, X.; Li, M.; Lin, X.; Liao, W.; Huang, Y.; Jiang, T.; et al. Ribocentre: A database of ribozymes. Nucleic Acids Res. 2023, 51, D262–D268. [Google Scholar] [CrossRef] [PubMed]
- Maurel, M.C.; Leclerc, F.; Herve, G. Ribozyme Chemistry: To Be or Not To Be under High Pressure. Chem. Rev. 2020, 120, 4898–4918. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Latifi, B.; Muller, S.; Luptak, A.; Chen, I.A. Self-cleaving ribozymes: Substrate specificity and synthetic biology applications. RSC Chem. Biol. 2021, 2, 1370–1383. [Google Scholar] [CrossRef]
- Jimenez, R.M.; Polanco, J.A.; Luptak, A. Chemistry and Biology of Self-Cleaving Ribozymes. Trends Biochem. Sci. 2015, 40, 648–661. [Google Scholar] [CrossRef]
- Park, S.V.; Yang, J.S.; Jo, H.; Kang, B.; Oh, S.S.; Jung, G.Y. Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol. Adv. 2019, 37, 107452. [Google Scholar] [CrossRef]
- Serganov, A.; Patel, D.J. Ribozymes, riboswitches and beyond: Regulation of gene expression without proteins. Nat. Rev. Genet. 2007, 8, 776–790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, M.; Xi, Z.; Liu, X.; Feng, L.; Bai, J.; Zhan, X.; Zhang, C.; Midgley, A.C.; Liu, Y. Pistol Ribozyme-Driven Catalytic Spherical Nucleic Acid Integrates Gene and Chemotherapy for Enhanced Cancer Therapy. J. Am. Chem. Soc. 2025, 147, 9424–9440. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Weissman, B.P.; Giese, T.J.; Li, N.-S.; Hoshika, S.; Rao, S.; Benner, S.A.; Piccirilli, J.A.; York, D.M. Confluence of theory and experiment reveals the catalytic mechanism of the Varkud satellite ribozyme. Nat. Chem. 2020, 12, 193–201. [Google Scholar] [CrossRef]
- Pena, M.; Garcia-Robles, I.; Cervera, A. The Hammerhead Ribozyme: A Long History for a Short RNA. Molecules 2017, 22, 78. [Google Scholar] [CrossRef]
- de la Pena, M.; Garcia-Robles, I. Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA 2010, 16, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Cao, Z.; Xiong, L.; Deng, H.; Ma, K.; Liu, N.; Qin, Y.; Chen, S.B.; Chen, J.H.; Li, Y.; et al. A hammerhead ribozyme selects mechanically stable conformations for catalysis against viral RNA. Commun. Biol. 2025, 8, 165. [Google Scholar] [CrossRef]
- Birikh, K.R.; Heaton, P.A.; Eckstein, F. The structure, function and application of the hammerhead ribozyme. Eur. J. Biochem. 1997, 245, 1–16. [Google Scholar] [CrossRef]
- Prody, G.A.; Bakos, J.T.; Buzayan, J.M.; Schneider, I.R.; Bruening, G. Autolytic processing of dimeric plant virus satellite RNA. Science 1986, 231, 1577–1580. [Google Scholar] [CrossRef]
- Forster, A.C.; Symons, R.H. Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell 1987, 50, 9–16. [Google Scholar] [CrossRef]
- Brill, J.; Nurmi, C.; Li, Y. Elucidating Evolutionary Mechanisms and Variants of the Hammerhead Ribozyme Using In Vitro Selection. Chembiochem 2024, 25, e202400432. [Google Scholar] [CrossRef] [PubMed]
- Perreault, J.; Weinberg, Z.; Roth, A.; Popescu, O.; Chartrand, P.; Ferbeyre, G.; Breaker, R.R. Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput. Biol. 2011, 7, e1002031. [Google Scholar] [CrossRef]
- Seehafer, C.; Kalweit, A.; Steger, G.; Graf, S.; Hammann, C. From alpaca to zebrafish: Hammerhead ribozymes wherever you look. RNA 2011, 17, 21–26. [Google Scholar] [CrossRef]
- Hammann, C.; Luptak, A.; Perreault, J.; de la Pena, M. The ubiquitous hammerhead ribozyme. RNA 2012, 18, 871–885. [Google Scholar] [CrossRef] [PubMed]
- Scott, W.G.; Finch, J.T.; Klug, A. The crystal structure of an all-RNA hammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage. Cell 1995, 81, 991–1002. [Google Scholar] [CrossRef]
- Liu, G.; Huang, X.; Pu, Q.; Zhao, Y.; Du, F.; Dong, J.; Cui, X.; Tang, Z. Re-characterization of hammerhead ribozymes as molecular tools for intermolecular RNA cleavage. Org. Biomol. Chem. 2017, 15, 4681–4685. [Google Scholar] [CrossRef]
- Ruffner, D.E.; Stormo, G.D.; Uhlenbeck, O.C. Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 1990, 29, 10695–10702. [Google Scholar] [CrossRef]
- Citti, L.; Rainaldi, G. Synthetic hammerhead ribozymes as therapeutic tools to control disease genes. Curr. Gene Ther. 2005, 5, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Haseloff, J.; Gerlach, W.L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 1988, 334, 585–591. [Google Scholar] [CrossRef]
- Canny, M.D.; Jucker, F.M.; Kellogg, E.; Khorova, A.; Jayasena, S.D.; Pardi, A. Fast cleavage kinetics of a natural hammerhead ribozyme. J. Am. Chem. Soc. 2004, 126, 10848–10849. [Google Scholar] [CrossRef]
- Khvorova, A.; Lescoute, A.; Westhof, E.; Jayasena, S.D. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat. Struct. Biol. 2003, 10, 708–712. [Google Scholar] [CrossRef]
- Canny, M.D.; Jucker, F.M.; Pardi, A. Efficient ligation of the Schistosoma hammerhead ribozyme. Biochemistry 2007, 46, 3826–3834. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.A.; Uhlenbeck, O.C. Minimal and extended hammerheads utilize a similar dynamic reaction mechanism for catalysis. RNA 2008, 14, 43–54. [Google Scholar] [CrossRef]
- Martick, M.; Scott, W.G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 2006, 126, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Scott, W.G.; Horan, L.H.; Martick, M. The hammerhead ribozyme: Structure, catalysis, and gene regulation. Prog. Mol. Biol. Transl. Sci. 2013, 120, 1–23. [Google Scholar]
- Weinberg, Z.; Kim, P.B.; Chen, T.H.; Li, S.; Harris, K.A.; Lunse, C.E.; Breaker, R.R. New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nat. Chem. Biol. 2015, 11, 606–610. [Google Scholar] [CrossRef]
- Zhan, X.; Wilson, T.J.; Li, Z.; Zhang, J.; Yang, Y.; Lilley, D.M.J.; Liu, Y. The structure and catalytic mechanism of a pseudoknot-containing hammerhead ribozyme. Nat. Commun. 2024, 15, 6628. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.J.; Liu, Y.; Li, N.S.; Dai, Q.; Piccirilli, J.A.; Lilley, D.M.J. Comparison of the Structures and Mechanisms of the Pistol and Hammerhead Ribozymes. J. Am. Chem. Soc. 2019, 141, 7865–7875. [Google Scholar] [CrossRef]
- Lee, T.S.; Wong, K.Y.; Giambasu, G.M.; York, D.M. Bridging the gap between theory and experiment to derive a detailed understanding of hammerhead ribozyme catalysis. Prog. Mol. Biol. Transl. Sci. 2013, 120, 25–91. [Google Scholar]
- Boots, J.L.; Canny, M.D.; Azimi, E.; Pardi, A. Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme. RNA 2008, 14, 2212–2222. [Google Scholar] [CrossRef]
- Mir, A.; Golden, B.L. Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue. Biochemistry 2016, 55, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.M.; Perrin, D.M. Probing General Acid Catalysis in the Hammerhead Ribozyme. J. Am. Chem. Soc. 2009, 131, 1135–1143. [Google Scholar] [CrossRef]
- Ren, A.; Micura, R.; Patel, D.J. Structure-based mechanistic insights into catalysis by small self-cleaving ribozymes. Curr. Opin. Chem. Biol. 2017, 41, 71–83. [Google Scholar] [CrossRef]
- Lott, W.B.; Pontius, B.W.; von Hippel, P.H. A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate. Proc. Natl. Acad. Sci. USA 1998, 95, 542–547. [Google Scholar] [CrossRef]
- Chen, H.; Giese, T.J.; Golden, B.L.; York, D.M. Divalent Metal Ion Activation of a Guanine General Base in the Hammerhead Ribozyme: Insights from Molecular Simulations. Biochemistry 2017, 56, 2985–2994. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.B.; Seyhan, A.A.; Walter, N.G.; Burke, J.M.; Scott, W.G. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 1998, 5, 587–595. [Google Scholar] [CrossRef]
- Penedo, J.C.; Wilson, T.J.; Jayasena, S.D.; Khvorova, A.; Lilley, D.M. Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA 2004, 10, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.S.; Giambasu, G.M.; Sosa, C.P.; Martick, M.; Scott, W.G.; York, D.M. Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active conformation. J. Mol. Biol. 2009, 388, 195–206. [Google Scholar] [CrossRef]
- Frankel, E.A.; Strulson, C.A.; Keating, C.D.; Bevilacqua, P.C. Cooperative Interactions in the Hammerhead Ribozyme Drive pK(a) Shifting of G12 and Its Stacked Base C17. Biochemistry 2017, 56, 2537–2548. [Google Scholar] [CrossRef]
- Hertel, K.J.; Herschlag, D.; Uhlenbeck, O.C. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 1994, 33, 3374–3385. [Google Scholar] [CrossRef]
- Naghdi, M.R.; Boutet, E.; Mucha, C.; Ouellet, J.; Perreault, J. Single Mutation in Hammerhead Ribozyme Favors Cleavage Activity with Manganese over Magnesium. Noncoding RNA 2020, 6, 14. [Google Scholar] [CrossRef]
- Nakano, S.I.; Yamashita, H.; Tanabe, K.; Sugimoto, N. Bulky cations greatly increase the turnover of a native hammerhead ribozyme. RSC Adv. 2019, 9, 35820–35824. [Google Scholar] [CrossRef]
- Nakano, S.I.; Yamashita, H.; Sugimoto, N. Enhancement of the Catalytic Activity of Hammerhead Ribozymes by Organic Cations. Chembiochem 2021, 22, 2721–2728. [Google Scholar] [CrossRef] [PubMed]
- Hammann, C.; Hormes, R.; Sczakiel, G.; Tabler, M. A spermidine-induced conformational change of long-armed hammerhead ribozymes: Ionic requirements for fast cleavage kinetics. Nucleic Acids Res. 1997, 25, 4715–4722. [Google Scholar] [CrossRef]
- Wittmann, A.; Suess, B. Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast. Mol. Biosyst. 2011, 7, 2419–2427. [Google Scholar] [CrossRef] [PubMed]
- Win, M.N.; Smolke, C.D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc. Natl. Acad. Sci. USA 2007, 104, 14283–14288. [Google Scholar] [CrossRef]
- Strobel, B.; Sporing, M.; Klein, H.; Blazevic, D.; Rust, W.; Sayols, S.; Hartig, J.S.; Kreuz, S. High-throughput identification of synthetic riboswitches by barcode-free amplicon-sequencing in human cells. Nat. Commun. 2020, 11, 714. [Google Scholar] [CrossRef]
- Beilstein, K.; Wittmann, A.; Grez, M.; Suess, B. Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes. ACS Synth. Biol. 2015, 4, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Wang, H.; Bailey, C.C.; Gao, G.; Farzan, M. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells. eLife 2016, 5, e18858. [Google Scholar] [CrossRef]
- Auslander, S.; Ketzer, P.; Hartig, J.S. A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol. Biosyst. 2010, 6, 807–814. [Google Scholar] [CrossRef]
- Ketzer, P.; Haas, S.F.; Engelhardt, S.; Hartig, J.S.; Nettelbeck, D.M. Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses. Nucleic Acids Res. 2012, 40, e167. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Wang, H.; He, W.; Li, Y.; Mou, H.; Tickner, Z.J.; Tran, M.H.; Ou, T.; Yin, Y.; Diao, H.; et al. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nat. Biotechnol. 2020, 38, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Jiang, Z.; Wu, Z.; Jiang, J.H. Cell-Specific Control of Mammalian Gene Expression Using DNA Repair Inducible Ribozyme Switches. Angew. Chem. Int. Ed. Engl. 2025, 64, e202422042. [Google Scholar] [CrossRef]
- Wurmthaler, L.A.; Sack, M.; Gense, K.; Hartig, J.S.; Gamerdinger, M. A tetracycline-dependent ribozyme switch allows conditional induction of gene expression in Caenorhabditis elegans. Nat. Commun. 2019, 10, 491. [Google Scholar] [CrossRef]
- Wieland, M.; Hartig, J.S. Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew. Chem. Int. Ed. Engl. 2008, 47, 2604–2607. [Google Scholar] [CrossRef]
- Kumar, D.; An, C.-I.; Yokobayashi, Y. Conditional RNA Interference Mediated by Allosteric Ribozyme. J. Am. Chem. Soc. 2009, 131, 13906–13907. [Google Scholar] [CrossRef] [PubMed]
- Wieland, M.; Auslander, D.; Fussenegger, M. Engineering of ribozyme-based riboswitches for mammalian cells. Methods 2012, 56, 351–357. [Google Scholar] [CrossRef]
- Klauser, B.; Atanasov, J.; Siewert, L.K.; Hartig, J.S. Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae. ACS Synth. Biol. 2015, 4, 516–525. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Jensen, M.C.; Smolke, C.D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc. Natl. Acad. Sci. USA 2010, 107, 8531–8536. [Google Scholar] [CrossRef]
- Michener, J.K.; Smolke, C.D. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab. Eng. 2012, 14, 306–316. [Google Scholar] [CrossRef]
- Tang, W.; Hu, J.H.; Liu, D.R. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat. Commun. 2017, 8, 15939. [Google Scholar] [CrossRef] [PubMed]
- Ketzer, P.; Kaufmann, J.K.; Engelhardt, S.; Bossow, S.; von Kalle, C.; Hartig, J.S.; Ungerechts, G.; Nettelbeck, D.M. Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proc. Natl. Acad. Sci. USA 2014, 111, E554–E562. [Google Scholar] [CrossRef]
- Bell, C.L.; Yu, D.; Smolke, C.D.; Geall, A.J.; Beard, C.W.; Mason, P.W. Control of alphavirus-based gene expression using engineered riboswitches. Virology 2015, 483, 302–311. [Google Scholar] [CrossRef]
- Pu, Q.; Zhou, S.; Huang, X.; Yuan, Y.; Du, F.; Dong, J.; Chen, G.; Cui, X.; Tang, Z. Intracellular Selection of Theophylline-Sensitive Hammerhead Aptazyme. Mol. Ther. Nucleic Acids 2020, 20, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, M.; Yuan, Y.; Xu, Y.; Pu, Q.; Ai, X.; Liu, S.; Du, F.; Huang, X.; Dong, J.; et al. Trans-acting aptazyme for conditional gene knockdown in eukaryotic cells. Mol. Ther. Nucleic Acids 2023, 33, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wang, H.; Yin, Y.; Zhong, G. A peptide conjugate enables systemic injection of the morpholino inducer and more durable induction of T3H38 ribozyme-controlled AAV transgene in mice. Gene Ther. 2025, 32, 163–171. [Google Scholar] [CrossRef]
- Zhan, Y.; Cao, C.; Li, A.; Mei, H.; Liu, Y. Enhanced RNA knockdown efficiency with engineered fusion guide RNAs that function with both CRISPR-CasRx and hammerhead ribozyme. Genome Biol. 2023, 24, 9. [Google Scholar] [CrossRef]
- Ogawa, A.; Fujikawa, M.; Tanimoto, R.; Matsuno, K.; Uehara, R.; Inoue, H.; Takahashi, H. Cell-Free Multistep Gene Regulatory Cascades Using Eukaryotic ON-Riboswitches Responsive to in Situ Expressed Protein Ligands. ACS Synth. Biol. 2025, 14, 909–918. [Google Scholar] [CrossRef]
- Mao, J.; DeSantis, C.; Bong, D. Small Molecule Recognition Triggers Secondary and Tertiary Interactions in DNA Folding and Hammerhead Ribozyme Catalysis. J. Am. Chem. Soc. 2017, 139, 9815–9818. [Google Scholar] [CrossRef]
- Liang, Y.; Mao, J.; Bong, D. Synthetic bPNAs as allosteric triggers of hammerhead ribozyme catalysis. Methods Enzymol. 2019, 623, 151–175. [Google Scholar]
- Dohno, C.; Kimura, M.; Fujiwara, Y.; Nakatani, K. Photoswitchable molecular glue for RNA: Reversible photocontrol of structure and function of the ribozyme. Nucleic Acids Res. 2023, 51, 9533–9541. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Wu, C.Q.; Zhang, Q.L.; Wang, Y.; Liu, Y.; Yang, W.J.; Ye, S.L.; Tian, Y.; Xu, L. Chemically Cross-Linked Hammerhead Ribozyme as an Efficient RNA Interference Tool. J. Am. Chem. Soc. 2024, 146, 6665–6674. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhao, Y.; Pu, Q.; Liu, G.; Peng, Y.; Wang, F.; Chen, G.; Sun, M.; Du, F.; Dong, J.; et al. Intracellular selection of trans-cleaving hammerhead ribozymes. Nucleic Acids Res. 2019, 47, 2514–2522. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, H.; Chen, D.; Murchie, A.I.H. Identification of Hammerhead-variant ribozyme sequences in SARS-CoV-2. Nucleic Acids Res. 2024, 52, 3262–3277. [Google Scholar] [CrossRef]
- Mishra, P.; Furey, C.; Balaraman, V.; Fraser, M.J. Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes. Viruses 2016, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, M.; Passman, M.; Kew, M.; Arbuthnot, P. Hammerhead ribozyme-mediated inhibition of hepatitis B virus X gene expression in cultured cells. J. Hepatol. 2000, 33, 142–151. [Google Scholar] [CrossRef]
- Lieber, A.; He, C.Y.; Polyak, S.J.; Gretch, D.R.; Barr, D.; Kay, M.A. Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J. Virol. 1996, 70, 8782–8791. [Google Scholar] [CrossRef]
- Jackson, W.H., Jr.; Moscoso, H.; Nechtman, J.F.; Galileo, D.S.; Garver, F.A.; Lanclos, K.D. Inhibition of HIV-1 replication by an anti-tat hammerhead ribozyme. Biochem. Biophys. Res. Commun. 1998, 245, 81–84. [Google Scholar] [CrossRef]
- Nawtaisong, P.; Keith, J.; Fraser, T.; Balaraman, V.; Kolokoltsov, A.; Davey, R.A.; Higgs, S.; Mohammed, A.; Rongsriyam, Y.; Komalamisra, N.; et al. Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome. Virol. J. 2009, 6, 73. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, J.; Deng, T.; Zhao, P.; Peng, Z.; Chen, L.; Qian, M.; Guo, Y.; Qiao, H.; Song, Y.; et al. Development of an improved dual-promoter-based reverse genetics system for emerging Senecavirus A. J. Virol. Methods 2020, 286, 113973. [Google Scholar] [CrossRef]
- Gu, H.; Furukawa, K.; Breaker, R.R. Engineered Allosteric Ribozymes That Sense the Bacterial Second Messenger Cyclic Diguanosyl 5′-Monophosphate. Anal. Chem. 2012, 84, 4935–4941. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Zhang, H.S.; Liu, H.; Yang, K.; Ying, Z.M. Allosteric ribozyme-driven crRNA switch for the amplification-free detection of biomolecules. Biosens. Bioelectron. 2025, 280, 117450. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cheng, J.; Dai, G.; Sun, X.; Yin, X.; Zhang, Y. The Establishment of a Tobramycin-Responsive Whole-Cell Micro-Biosensor Based on an Artificial Ribozyme Switch. Life 2023, 13, 1553. [Google Scholar] [CrossRef] [PubMed]
- Czerniak, T.; Saenz, J.P. Effects of lipid membranes on RNA catalytic activity and stability. Biol. Cell 2025, 117, e202400115. [Google Scholar] [CrossRef]
- Czerniak, T.; Saenz, J.P. Lipid membranes modulate the activity of RNA through sequence-dependent interactions. Proc. Natl. Acad. Sci. USA 2022, 119, e2119235119. [Google Scholar] [CrossRef]
- Wyszko, E.; Popenda, M.; Gudanis, D.; Sarzynska, J.; Belter, A.; Perrigue, P.; Skowronek, P.; Rolle, K.; Barciszewski, J. The model structure of the hammerhead ribozyme formed by RNAs of reciprocal chirality. Biosci. Rep. 2021, 41, BSR20203424. [Google Scholar] [CrossRef]
- Kaloudas, D.; Pavlova, N.; Penchovsky, R. Computational Design of Allosteric Ribozymes via Genetic Algorithms. Methods Mol. Biol. 2024, 2822, 443–469. [Google Scholar]
- Kaloudas, D.; Penchovsky, R. An allosteric ribozyme generator and an inverse folding ribozyme generator: Two computer programs for automated computational design of oligonucleotide-sensing allosteric hammerhead ribozymes with YES Boolean logic function based on experimentally validated algorithms. Comput. Biol. Med. 2022, 145, 105469. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, Y.; Xian, X.; Zhang, H. Hammerhead Ribozymes: Structural Insights, Catalytic Mechanisms, and Cutting-Edge Applications in Synthetic Biology. Int. J. Mol. Sci. 2025, 26, 5624. https://doi.org/10.3390/ijms26125624
Wang L, Liu Y, Xian X, Zhang H. Hammerhead Ribozymes: Structural Insights, Catalytic Mechanisms, and Cutting-Edge Applications in Synthetic Biology. International Journal of Molecular Sciences. 2025; 26(12):5624. https://doi.org/10.3390/ijms26125624
Chicago/Turabian StyleWang, Liangliang, Yan Liu, Xuemin Xian, and Haitao Zhang. 2025. "Hammerhead Ribozymes: Structural Insights, Catalytic Mechanisms, and Cutting-Edge Applications in Synthetic Biology" International Journal of Molecular Sciences 26, no. 12: 5624. https://doi.org/10.3390/ijms26125624
APA StyleWang, L., Liu, Y., Xian, X., & Zhang, H. (2025). Hammerhead Ribozymes: Structural Insights, Catalytic Mechanisms, and Cutting-Edge Applications in Synthetic Biology. International Journal of Molecular Sciences, 26(12), 5624. https://doi.org/10.3390/ijms26125624