Induced Pluripotent (iPSC) and Mesenchymal (MSC) Stem Cells for In Vitro Disease Modeling and Regenerative Medicine
Abstract
1. Introduction
2. Comparative Characterization of iPSC- and MSC-Derived Disease Models
2.1. iPSC-Derived Models
2.2. MSC-Derived Models
- The ability to attach to plastic under cell culture conditions;
- Expression in >95% of the cell population of CD105, CD73, and CD90, but not CD45, CD34, CD14, CD11b, CD79a, CD19, or HLA class II;
- Osteogenic, chondrogenic, and adipogenic differentiation in vitro.
3. Specific Examples of In Vitro Disease Modeling with iPSCs and MSCs
3.1. Ectodermal Derivatives
3.1.1. Inherited Retinal Diseases
3.1.2. Neurodevelopmental and Neurodegenerative Diseases
3.1.3. Skin Diseases
3.2. Mesodermal and Endodermal Derivatives
3.2.1. Hemophilia
3.2.2. Marfan Syndrome
3.2.3. Cystic Fibrosis
3.2.4. Muscular Dystrophies
3.2.5. Bone and Cartilage Disorders
3.2.6. Metabolic Disorders
4. Discussion: Future Perspectives of iPSC- and MSC-Derived Disease Model Development
Author Contributions
Funding
Conflicts of Interest
Abbreviations
iPSC | Induced Pluripotent Stem Cell |
MSC | Mesenchymal Stem Cell |
3D | Three-Dimensional |
2D | Two-Dimensional |
ECM | Extracellular Matrix |
ESC | Embryonic Stem Cells |
PR | Progesterone Receptor |
PEG | Poly Ethylene Glycol |
ISCT | International Society for Cell & Gene Therapy |
BM-MSC | Bone Marrow-Mesenchymal Stem Cell |
UC-MSC | Umbilical Cord-Mesenchymal Stem Cell |
WJ-MSC | Wharton Jelly-Mesenchymal Stem Cell |
ASC | Adipose Stem Cell |
DPSC | Dental Pulp Stem Cell |
AM-MSC | Amniotic Membrane-Mesenchymal Stem Cell |
IRD | Inherited Retinal Disease |
RPE | Retinal Pigment Epithelium |
RGC | Retinal Ganglion Cells |
RP | Retinitis Pigmentosa |
LCA | Leber Congenital Amaurosis |
SD | Stargardt Disease |
AMD | Age-related Macular Degeneration |
AAV | Adeno-Associated Virus |
OS | Outer Segments |
RO | Retinal Organoid |
cGMP | cyclic Guanosine Monophosphate |
NDevD | Neurodevelopmental Disease |
NDD | Neurodegenerative Disease |
RTT | Rett Syndrome |
ASD | Autism Spectrum Disorders |
AD | Alzheimer’s Disease |
PD | Parkinson’s Disease |
ALS | Amyotrophic Lateral Sclerosis |
HD | Huntington’s disease |
MenSC | Menstrual Stromal Cell |
BO | Brain Organoid |
BBB | Blood–Brain Barrier |
NMJ | Neuromuscular Junction |
ID | Intellectual Disability |
DAP | Dopamine Progenitor |
EB | Epidermolysis Bullosa |
ARCI | Autosomal Recessive Congenital Ichthyosis |
KLC | Keratocyte-like Cell |
SkO | Skin Organoid |
TTD | Trichothiodystrophy |
EBS | Epidermolysis Bullosa Simplex |
RDEB | Recessive Dystrophic Epidermolysis Bullosa |
FVIII | Factor VIII |
FIX | Factor IX |
EF-1α | Elongation Factor-1 alpha |
MFS | Marfan Syndrome |
VSMC | Vascular Smooth Muscle Cell |
SHF-VSMC | Second Heart Field-Vascular Smooth Muscle Cell |
NC-VSMC | Neural Crest-Vascular Smooth Muscle Cell |
MRC2 | Mannose Receptor 2 |
EB | Embryoid Body |
CF | Cystic Fibrosis |
CFTR | Cystic Fibrosis Transmembrane conductance Regulator |
FIS | Forskolin-Induced Swelling |
MD | Muscular Dystrophy |
UCMD | Ulrich Congenital Muscular Dystrophy |
DMD | Duchenne Muscular Dystrophy |
BMP | Bone Morphogenic Protein |
FGF | Fibroblast Growth Factors |
EDMD1 | Emery–Dreifuss Muscular Dystrophy type 1 |
EFS | Electrical-Field Stimulation |
ROS | Reactive Oxygen Species |
XF-iMSC | Xeno-Free iPSC-derived Mesenchymal Stem Cell |
DEC | Dystrophin-Expressing Chimeric (cells) |
OI | Osteogenesis Imperfecta |
ACH | Achondroplasia |
UPR | Unfolded Protein Response |
ER | Endoplasmic Reticulum |
PKU | Phenylketonuria |
GDPR | General Data Protection Regulation |
HIPAA | Health Insurance Portability and Accountability Act |
References
- Sertkaya, A.; Beleche, T.; Jessup, A.; Sommers, B.D. Costs of Drug Development and Research and Development Intensity in the US, 2000–2018. JAMA Netw. Open 2024, 7, e2415445. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of Clinical Drug Development Fails and How to Improve It? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef] [PubMed]
- Visk, D. Will Advances in Preclinical In Vitro Models Lower the Costs of Drug Development? Appl. Vitr. Toxicol. 2015, 1, 79–82. [Google Scholar] [CrossRef]
- Loewa, A.; Feng, J.J.; Hedtrich, S. Human Disease Models in Drug Development. Nat. Rev. Bioeng. 2023, 1, 545–559. [Google Scholar] [CrossRef]
- McGonigle, P.; Ruggeri, B. Animal Models of Human Disease: Challenges in Enabling Translation. Biochem. Pharmacol. 2014, 87, 162–171. [Google Scholar] [CrossRef]
- Mccabe, P.; Sheridan, J.; Weiss, J.; Kaplan, J.; Natelson, B.; Pare, W. Animal Models of Disease. Physiol. Behav. 2000, 68, 501–507. [Google Scholar] [CrossRef]
- King, A.J.F. The Use of Animal Models in Diabetes Research. Br. J. Pharmacol. 2012, 166, 877–894. [Google Scholar] [CrossRef]
- Walsh, N.C.; Kenney, L.L.; Jangalwe, S.; Aryee, K.E.; Greiner, D.L.; Brehm, M.A.; Shultz, L.D. Humanized Mouse Models of Clinical Disease. Annu. Rev. Pathol. Mech. Dis. 2017, 12, 187–215. [Google Scholar] [CrossRef]
- Becker, M.; Pinhasov, A.; Ornoy, A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics 2021, 11, 123. [Google Scholar] [CrossRef]
- Xiong, Y.; Mahmood, A.; Chopp, M. Animal Models of Traumatic Brain Injury. Nat. Rev. Neurosci. 2013, 14, 128–142. [Google Scholar] [CrossRef]
- Wright, J.L.; Cosio, M.; Churg, A. Animal Models of Chronic Obstructive Pulmonary Disease. Am. J. Physiol. Cell. Mol. Physiol. 2008, 295, L1–L15. [Google Scholar] [CrossRef]
- Kaese, S.; Frommeyer, G.; Verheule, S.; Van Loon, G.; Gehrmann, J.; Breithardt, G.; Eckardt, L. The ECG in Cardiovascular-Relevant Animal Models of Electrophysiology. Herzschrittmachertherapie Elektrophysiol. 2013, 24, 84–91. [Google Scholar] [CrossRef]
- Clauss, S.; Bleyer, C.; Schüttler, D.; Tomsits, P.; Renner, S.; Klymiuk, N.; Wakili, R.; Massberg, S.; Wolf, E.; Kääb, S. Animal Models of Arrhythmia: Classic Electrophysiology to Genetically Modified Large Animals. Nat. Rev. Cardiol. 2019, 16, 457–475. [Google Scholar] [CrossRef] [PubMed]
- Lempesis, I.G.; Tsilingiris, D.; Liu, J.; Dalamaga, M. Of Mice and Men: Considerations on Adipose Tissue Physiology in Animal Models of Obesity and Human Studies. Metab. Open 2022, 15, 100208. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Palasca, O.; Yarani, R.; Litman, T.; Anthon, C.; Groenen, M.A.M.; Stadler, P.F.; Pociot, F.; Jensen, L.J.; Gorodkin, J. Human Pathways in Animal Models: Possibilities and Limitations. Nucleic Acids Res. 2021, 49, 1859–1871. [Google Scholar] [CrossRef] [PubMed]
- Schnichels, S.; Paquet-Durand, F.; Löscher, M.; Tsai, T.; Hurst, J.; Joachim, S.C.; Klettner, A. Retina in a Dish: Cell Cultures, Retinal Explants and Animal Models for Common Diseases of the Retina. Prog. Retin. Eye Res. 2021, 81, 100880. [Google Scholar] [CrossRef]
- Quiroz, J.; Yazdanyar, A. Animal Models of Diabetic Retinopathy. Ann. Transl. Med. 2021, 9, 1272. [Google Scholar] [CrossRef]
- Williams, S.M.; Haines, J.L.; Moore, J.H. The Use of Animal Models in the Study of Complex Disease: All Else Is Never Equal or Why Do so Many Human Studies Fail to Replicate Animal Findings? BioEssays 2004, 26, 170–179. [Google Scholar] [CrossRef]
- Levy, N. The Use of Animal as Models: Ethical Considerations. Int. J. Stroke 2012, 7, 440–442. [Google Scholar] [CrossRef]
- Henderson, V.C.; Kimmelman, J.; Fergusson, D.; Grimshaw, J.M.; Hackam, D.G. Threats to Validity in the Design and Conduct of Preclinical Efficacy Studies: A Systematic Review of Guidelines for In Vivo Animal Experiments. PLoS Med. 2013, 10, e1001489. [Google Scholar] [CrossRef]
- Mak, I.W.Y.; Evaniew, N.; Ghert, M. Lost in Translation: Animal Models and Clinical Trials in Cancer Treatment. Am. J. Transl. Res. 2014, 6, 114–118. [Google Scholar] [PubMed]
- Everitt, J.I. The Future of Preclinical Animal Models in Pharmaceutical Discovery and Development:A Need to Bring In Cerebro to the In Vivo Discussions. Toxicol. Pathol. 2015, 43, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Stresser, D.M.; Kopec, A.K.; Hewitt, P.; Hardwick, R.N.; Van Vleet, T.R.; Mahalingaiah, P.K.S.; O’Connell, D.; Jenkins, G.J.; David, R.; Graham, J.; et al. Towards in Vitro Models for Reducing or Replacing the Use of Animals in Drug Testing. Nat. Biomed. Eng. 2023, 8, 930–935. [Google Scholar] [CrossRef]
- Díaz, L.; Zambrano-González, E.; Flores, M.E.; Contreras, M.; Crispín, J.C.; Alemán, G.; Bravo, C.; Armenta-Espinosa, A.; Valdés, V.J.; Tovar, A.; et al. Ethical Considerations in Animal Research: The Principle of 3R’s. Rev. Investig. Clin. 2021, 73, 199–209. [Google Scholar] [CrossRef]
- Astashkina, A.; Mann, B.; Grainger, D.W. A Critical Evaluation of in Vitro Cell Culture Models for High-Throughput Drug Screening and Toxicity. Pharmacol. Ther. 2012, 134, 82–106. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, M.C.; Foley, M.A.; Cardinal, K.O.H. Thinking Inside the Box: Keeping Tissue-Engineered Constructs In Vitro for Use as Preclinical Models. Tissue Eng. Part B Rev. 2013, 19, 14–30. [Google Scholar] [CrossRef]
- Saraswathibhatla, A.; Indana, D.; Chaudhuri, O. Cell–Extracellular Matrix Mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 2023, 24, 495–516. [Google Scholar] [CrossRef]
- Ahn, S.J.; Lee, S.; Kwon, D.; Oh, S.; Park, C.; Jeon, S.; Lee, J.H.; Kim, T.S.; Oh, I.U. Essential Guidelines for Manufacturing and Application of Organoids. Int. J. Stem Cells 2024, 17, 102–112. [Google Scholar] [CrossRef]
- Verma, A.; Verma, M.; Singh, A. Animal Tissue Culture Principles and Applications. In Animal Biotechnology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 269–293. ISBN 9780128117101. [Google Scholar]
- Mizee, M.R.; Miedema, S.S.M.; van der Poel, M.; Adelia; Schuurman, K.G.; van Strien, M.E.; Melief, J.; Smolders, J.; Hendrickx, D.A.; Heutinck, K.M.; et al. Isolation of Primary Microglia from the Human Post-Mortem Brain: Effects of Ante- and Post-Mortem Variables. Acta Neuropathol. Commun. 2017, 5, 16. [Google Scholar] [CrossRef]
- Schwartz, P.H.; Bryant, P.J.; Fuja, T.J.; Su, H.; O’Dowd, D.K.; Klassen, H. Isolation and Characterization of Neural Progenitor Cells from Post-Mortem Human Cortex. J. Neurosci. Res. 2003, 74, 838–851. [Google Scholar] [CrossRef]
- Aotaki-Keen, A.E.; Harvey, A.K.; de Juan, E.; Hjelmeland, L.M. Primary Culture of Human Retinal Glia. Investig. Ophthalmol. Vis. Sci. 1991, 32, 1733–1738. [Google Scholar]
- Murali, A.; Ramlogan-Steel, C.A.; Andrzejewski, S.; Steel, J.C.; Layton, C.J. Retinal Explant Culture: A Platform to Investigate Human Neuro-Retina. Clin. Exp. Ophthalmol. 2019, 47, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Raab, S.; Klingenstein, M.; Liebau, S.; Linta, L. A Comparative View on Human Somatic Cell Sources for IPSC Generation. Stem Cells Int. 2014, 2014, 768391. [Google Scholar] [CrossRef]
- Giai Via, A.; Frizziero, A.; Oliva, F. Biological Properties of Mesenchymal Stem Cells from Different Sources. Muscles Ligaments Tendons J. 2012, 2, 154–162. [Google Scholar]
- Horisberger, M. A Method for Prolonged Survival of Primary Cell Lines. Vitr. Cell. Dev. Biol. 2006, 42, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Santos, M.E.; Garcia-Arranz, M.; Andreu, E.J.; García-Hernández, A.M.; López-Parra, M.; Villarón, E.; Sepúlveda, P.; Fernández-Avilés, F.; García-Olmo, D.; Prosper, F.; et al. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front. Immunol. 2022, 13, 8565. [Google Scholar] [CrossRef]
- Lee, B.; Jung, S.; Hashimura, Y.; Lee, M.; Borys, B.S.; Dang, T.; Kallos, M.S.; Rodrigues, C.A.V.; Silva, T.P.; Cabral, J.M.S. Cell Culture Process Scale-Up Challenges for Commercial-Scale Manufacturing of Allogeneic Pluripotent Stem Cell Products. Bioengineering 2022, 9, 92. [Google Scholar] [CrossRef]
- Choi, W.H.; Bae, D.H.; Yoo, J. Current Status and Prospects of Organoid-Based Regenerative Medicine. BMB Rep. 2022, 56, 10–14. [Google Scholar] [CrossRef]
- Lewis, A.; Koukoura, A.; Tsianos, G.I.; Gargavanis, A.A.; Nielsen, A.A.; Vassiliadis, E. Organ Donation in the US and Europe: The Supply vs Demand Imbalance. Transplant. Rev. 2021, 35, 100585. [Google Scholar] [CrossRef]
- Romito, A.; Cobellis, G. Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells Int. 2016, 2016, 9451492. [Google Scholar] [CrossRef]
- Andrews, P.W.; Gokhale, P.J. A Short History of Pluripotent Stem Cells Markers. Stem Cell Rep. 2024, 19, 1–10. [Google Scholar] [CrossRef]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef]
- Camarasa, M.V.; Galvez, V.M.; Brison, D.R.; Bachiller, D. Optimized Protocol for Derivation of Human Embryonic Stem Cell Lines. Stem Cell Rev. Rep. 2012, 8, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Rippon, H.J.; Bishop, A.E. Embryonic Stem Cells. Cell Prolif. 2004, 37, 23–34. [Google Scholar] [CrossRef] [PubMed]
- De Wert, G.; Mummery, C. Human Embryonic Stem Cells: Research, Ethics and Policy. Hum. Reprod. 2003, 18, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.; Mallard, W.; Clement, K.; Tagliazucchi, G.M.; Lim, H.; Choi, I.Y.; Ferrari, F.; Tsankov, A.M.; Pop, R.; et al. A Comparison of Genetically Matched Cell Lines Reveals the Equivalence of Human IPSCs and ESCs. Nat. Biotechnol. 2015, 33, 1173–1181. [Google Scholar] [CrossRef]
- Marei, H.E.; Althani, A.; Lashen, S.; Cenciarelli, C.; Hasan, A. Genetically Unmatched Human IPSC and ESC Exhibit Equivalent Gene Expression and Neuronal Differentiation Potential. Sci. Rep. 2017, 7, 17504. [Google Scholar] [CrossRef]
- Pappas, J.J.; Yang, P.C. Human ESC vs. IPSC-Pros and Cons. J. Cardiovasc. Transl. Res. 2008, 1, 96–99. [Google Scholar] [CrossRef]
- Scesa, G.; Adami, R.; Bottai, D. IPSC Preparation and Epigenetic Memory: Does the Tissue Origin Matter? Cells 2021, 10, 1470. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.S.; Malik, N. Assessing IPSC Reprogramming Methods for Their Suitability in Translational Medicine. J. Cell. Biochem. 2012, 113, 3061–3068. [Google Scholar] [CrossRef] [PubMed]
- Cerneckis, J.; Cai, H.; Shi, Y. Induced Pluripotent Stem Cells (IPSCs): Molecular Mechanisms of Induction and Applications. Signal Transduct. Target. Ther. 2024, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Brooks, I.R.; Garrone, C.M.; Kerins, C.; Kiar, C.S.; Syntaka, S.; Xu, J.Z.; Spagnoli, F.M.; Watt, F.M. Functional Genomics and the Future of IPSCs in Disease Modeling. Stem Cell Rep. 2022, 17, 1033–1047. [Google Scholar] [CrossRef]
- Rispoli, P.; Scandiuzzi Piovesan, T.; Decorti, G.; Stocco, G.; Lucafò, M. IPSCs as a Groundbreaking Tool for the Study of Adverse Drug Reactions: A New Avenue for Personalized Therapy. WIREs Mech. Dis. 2024, 16, e1630. [Google Scholar] [CrossRef]
- Takahashi, J. IPSC-Based Cell Replacement Therapy: From Basic Research to Clinical Application. Cytotherapy, 2025; in press. [Google Scholar] [CrossRef]
- Carcamo-Orive, I.; Hoffman, G.E.; Cundiff, P.; Beckmann, N.D.; D’Souza, S.L.; Knowles, J.W.; Patel, A.; Papatsenko, D.; Abbasi, F.; Reaven, G.M.; et al. Analysis of Transcriptional Variability in a Large Human IPSC Library Reveals Genetic and Non-Genetic Determinants of Heterogeneity. Cell Stem Cell 2017, 20, 518–532.e9. [Google Scholar] [CrossRef]
- Hörmanseder, E. Epigenetic Memory in Reprogramming. Curr. Opin. Genet. Dev. 2021, 70, 24–31. [Google Scholar] [CrossRef]
- Edwards, M.M.; Wang, N.; Massey, D.J.; Bhatele, S.; Egli, D.; Koren, A. Incomplete Reprogramming of DNA Replication Timing in Induced Pluripotent Stem Cells. Cell Rep. 2024, 43, 113664. [Google Scholar] [CrossRef]
- Volpato, V.; Webber, C. Addressing Variability in IPSC-Derived Models of Human Disease: Guidelines to Promote Reproducibility. DMM Dis. Model. Mech. 2020, 13, dmm042317. [Google Scholar] [CrossRef]
- Yang, S.; Cho, Y.; Jang, J. Single Cell Heterogeneity in Human Pluripotent Stem Cells. BMB Rep. 2021, 54, 505–515. [Google Scholar] [CrossRef]
- Biendarra-Tiegs, S.M.; Secreto, F.J.; Nelson, T.J. Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. In Cell Biology and Translational Medicine, Volume 6: Stem Cells: Their Heterogeneity, Niche and Regenerative Potential; Springer Nature: London, UK, 2020; Volume 1212, pp. 1–29. [Google Scholar] [CrossRef]
- Kim, K.; Doi, A.; Wen, B.; Ng, K.; Zhao, R.; Cahan, P.; Kim, J.; Aryee, M.J.; Ji, H.; Ehrlich, L.I.R.; et al. Epigenetic Memory in Induced Pluripotent Stem Cells. Nature 2010, 467, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Kyttälä, A.; Moraghebi, R.; Valensisi, C.; Kettunen, J.; Andrus, C.; Pasumarthy, K.K.; Nakanishi, M.; Nishimura, K.; Ohtaka, M.; Weltner, J.; et al. Genetic Variability Overrides the Impact of Parental Cell Type and Determines IPSC Differentiation Potential. Stem Cell Rep. 2016, 6, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Kilpinen, H.; Goncalves, A.; Leha, A.; Afzal, V.; Alasoo, K.; Ashford, S.; Bala, S.; Bensaddek, D.; Casale, F.P.; Culley, O.J.; et al. Common Genetic Variation Drives Molecular Heterogeneity in Human IPSCs. Nature 2017, 546, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Poetsch, M.S.; Strano, A.; Guan, K. Human Induced Pluripotent Stem Cells: From Cell Origin, Genomic Stability, and Epigenetic Memory to Translational Medicine. Stem Cells 2022, 40, 546–555. [Google Scholar] [CrossRef]
- Mirizio, G.; Sampson, S.; Iwafuchi, M. Interplay between Pioneer Transcription Factors and Epigenetic Modifiers in Cell Reprogramming. Regen. Ther. 2025, 28, 246–252. [Google Scholar] [CrossRef]
- Cooke, J.A.; Mullin, N.K.; Critser, D.B.; Stone, E.M.; Mullins, R.F.; Tucker, B.A. Retinal Differentiation Propensity Is Linked to Pluripotency Factor Localization and Donor Cell Epigenetic Memory. Investig. Ophthalmol. Vis. Sci. 2024, 65, 1543. [Google Scholar]
- Wang, L.; Hiler, D.; Xu, B.; AlDiri, I.; Chen, X.; Zhou, X.; Griffiths, L.; Valentine, M.; Shirinifard, A.; Sablauer, A.; et al. Retinal Cell Type DNA Methylation and Histone Modifications Predict Reprogramming Efficiency and Retinogenesis in 3D Organoid Cultures. Cell Rep. 2018, 22, 2601–2614. [Google Scholar] [CrossRef]
- Manganelli, M.; Mazzoldi, E.L.; Ferraro, R.M.; Pinelli, M.; Parigi, M.; Aghel, S.A.M.; Bugatti, M.; Collo, G.; Stocco, G.; Vermi, W.; et al. Progesterone Receptor Is Constitutively Expressed in Induced Pluripotent Stem Cells (IPSCs). Stem Cell Rev. Rep. 2024, 20, 2303–2317. [Google Scholar] [CrossRef]
- Cuesta-Gomez, N.; Verhoeff, K.; Dadheech, N.; Dang, T.; Jasra, I.T.; de Leon, M.B.; Pawlick, R.; Marfil-Garza, B.; Anwar, P.; Razavy, H.; et al. Suspension Culture Improves IPSC Expansion and Pluripotency Phenotype. Stem Cell Res. Ther. 2023, 14, 154. [Google Scholar] [CrossRef]
- Wiegand, C.; Banerjee, I. Recent Advances in the Applications of IPSC Technology. Curr. Opin. Biotechnol. 2019, 60, 250–258. [Google Scholar] [CrossRef]
- de Leeuw, S.M.; Davaz, S.; Wanner, D.; Milleret, V.; Ehrbar, M.; Gietl, A.; Tackenberg, C. Increased Maturation of IPSC-Derived Neurons in a Hydrogel-Based 3D Culture. J. Neurosci. Methods 2021, 360, 109254. [Google Scholar] [CrossRef] [PubMed]
- Vučković, S.; Dinani, R.; Nollet, E.E.; Kuster, D.W.D.; Buikema, J.W.; Houtkooper, R.H.; Nabben, M.; van der Velden, J.; Goversen, B. Characterization of Cardiac Metabolism in IPSC-Derived Cardiomyocytes: Lessons from Maturation and Disease Modeling. Stem Cell Res. Ther. 2022, 13, 332. [Google Scholar] [CrossRef]
- Lee, S.Y.; Koo, I.S.; Hwang, H.J.; Lee, D.W. In Vitro Three-Dimensional (3D) Cell Culture Tools for Spheroid and Organoid Models. SLAS Discov. 2023, 28, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, S.O.; Cappuccio, G.; Kruth, K.; Osenberg, S.; Khalil, S.M.; Méndez-Albelo, N.M.; Padmanabhan, K.; Wang, D.; Niciu, M.J.; Bhattacharyya, A.; et al. Rigor and Reproducibility in Human Brain Organoid Research: Where We Are and Where We Need to Go. Stem Cell Rep. 2024, 19, 796–816. [Google Scholar] [CrossRef]
- Castro, M.A.A.; Klamt, F.; Grieneisen, V.A.; Grivicich, I.; Moreira, J.C.F. Gompertzian Growth Pattern Correlated with Phenotypic Organization of Colon Carcinoma, Malignant Glioma and Non-Small Cell Lung Carcinoma Cell Lines. Cell Prolif. 2003, 36, 65–73. [Google Scholar] [CrossRef]
- Marton, R.M.; Pașca, S.P. Organoid and Assembloid Technologies for Investigating Cellular Crosstalk in Human Brain Development and Disease. Trends Cell Biol. 2020, 30, 133–143. [Google Scholar] [CrossRef]
- Dao, L.; You, Z.; Lu, L.; Xu, T.; Sarkar, A.K.; Zhu, H.; Liu, M.; Calandrelli, R.; Yoshida, G.; Lin, P.; et al. Modeling Blood-Brain Barrier Formation and Cerebral Cavernous Malformations in Human PSC-Derived Organoids. Cell Stem Cell 2024, 31, 818–833.e11. [Google Scholar] [CrossRef]
- Sun, X.; Kofman, S.; Ogbolu, V.C.; Karch, C.M.; Ibric, L.; Qiang, L. Vascularized Brain Assembloids With Enhanced Cellular Complexity Provide Insights Into the Cellular Deficits of Tauopathy. Stem Cells 2024, 42, 107–115. [Google Scholar] [CrossRef]
- Tang, X.Y.; Wu, S.; Wang, D.; Chu, C.; Hong, Y.; Tao, M.; Hu, H.; Xu, M.; Guo, X.; Liu, Y. Human Organoids in Basic Research and Clinical Applications. Signal Transduct. Target. Ther. 2022, 7, 168. [Google Scholar] [CrossRef]
- Cao, S.Y.; Yang, D.; Huang, Z.Q.; Lin, Y.H.; Wu, H.Y.; Chang, L.; Luo, C.X.; Xu, Y.; Liu, Y.; Zhu, D.Y. Cerebral Organoids Transplantation Repairs Infarcted Cortex and Restores Impaired Function after Stroke. NPJ Regen. Med. 2023, 8, 27. [Google Scholar] [CrossRef]
- Tadokoro, T.; Murata, S.; Kato, M.; Ueno, Y.; Tsuchida, T.; Okumura, A.; Kuse, Y.; Konno, T.; Uchida, Y.; Yamakawa, Y.; et al. Human IPSC–Liver Organoid Transplantation Reduces Fibrosis through Immunomodulation. Sci. Transl. Med. 2024, 16, eadg0338. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Coyle, R.C.; Barrs, R.W.; Silver, S.E.; Li, M.; Richards, D.J.; Lin, Y.; Jiang, Y.; Wang, H.; Menick, D.R.; et al. Nanowired Human Cardiac Organoid Transplantation Enables Highly Efficient and Effective Recovery of Infarcted Hearts. Sci. Adv. 2023, 9, eadf2898. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, K.T.; Vanslambrouck, J.M.; Higgins, J.W.; Chambon, A.; Bishard, K.; Arndt, D.; Er, P.X.; Wilson, S.B.; Howden, S.E.; Tan, K.S.; et al. Cellular Extrusion Bioprinting Improves Kidney Organoid Reproducibility and Conformation. Nat. Mater. 2021, 20, 260–271. [Google Scholar] [CrossRef]
- Palasantzas, V.E.J.M.; Tamargo-Rubio, I.; Le, K.; Slager, J.; Wijmenga, C.; Jonkers, I.H.; Kumar, V.; Fu, J.; Withoff, S. IPSC-Derived Organ-on-a-Chip Models for Personalized Human Genetics and Pharmacogenomics Studies. Trends Genet. 2023, 39, 268–284. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Viswanathan, S.; Shi, Y.; Galipeau, J.; Krampera, M.; Leblanc, K.; Martin, I.; Nolta, J.; Phinney, D.G.; Sensebe, L. Mesenchymal Stem versus Stromal Cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell Committee Position Statement on Nomenclature. Cytotherapy 2019, 21, 1019–1024. [Google Scholar] [CrossRef]
- Renesme, L.; Pierro, M.; Cobey, K.D.; Mital, R.; Nangle, K.; Shorr, R.; Lalu, M.M.; Thébaud, B. Definition and Characteristics of Mesenchymal Stromal Cells in Preclinical and Clinical Studies: A Scoping Review. Stem Cells Transl. Med. 2022, 11, 44–54. [Google Scholar] [CrossRef]
- Klingemann, H.; Matzilevich, D.; Marchand, J. Mesenchymal Stem Cells—Sources and Clinical Applications. Transfus. Med. Hemother. 2008, 35, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I. New MSC: MSCs as Pericytes Are Sentinels and Gatekeepers. J. Orthop. Res. 2017, 35, 1151–1159. [Google Scholar] [CrossRef]
- Marson, R.F.; Regner, A.P.; da Silva Meirelles, L. Mesenchymal “Stem” Cells, or Facilitators for the Development of Regenerative Macrophages? Pericytes at the Interface of Wound Healing. Front. Cell Dev. Biol. 2023, 11, 1148121. [Google Scholar] [CrossRef]
- Crisan, M.; Yap, S.; Casteilla, L.; Chen, C.W.; Corselli, M.; Park, T.S.; Andriolo, G.; Sun, B.; Zheng, B.; Zhang, L.; et al. A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell Stem Cell 2008, 3, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Polat, S.; Yazir, Y.; Duruksu, G.; Kiliç, K.C.; Mert, S.; Gacar, G.; Öncel Duman, B.; Halbutoğullari, Z.S. Investigation of the Differentiation Potential of Pericyte Cells as an Alternative Source of Mesenchymal Stem Cells. Acta Histochem. 2024, 126, 152145. [Google Scholar] [CrossRef]
- Pagani, F.; Tratta, E.; Dell’Era, P.; Cominelli, M.; Poliani, P.L. EBF1 Is Expressed in Pericytes and Contributes to Pericyte Cell Commitment. Histochem. Cell Biol. 2021, 156, 333–347. [Google Scholar] [CrossRef]
- Zha, K.; Li, X.; Yang, Z.; Tian, G.; Sun, Z.; Sui, X.; Dai, Y.; Liu, S.; Guo, Q. Heterogeneity of Mesenchymal Stem Cells in Cartilage Regeneration: From Characterization to Application. NPJ Regen. Med. 2021, 6, 14. [Google Scholar] [CrossRef]
- Česnik, A.B.; Švajger, U. The Issue of Heterogeneity of MSC-Based Advanced Therapy Medicinal Products—A Review. Front. Cell Dev. Biol. 2024, 12, 1400347. [Google Scholar] [CrossRef] [PubMed]
- Costela-Ruiz, V.J.; Melguizo-Rodríguez, L.; Bellotti, C.; Illescas-Montes, R.; Stanco, D.; Arciola, C.R.; Lucarelli, E. Different Sources of Mesenchymal Stem Cells for Tissue Regeneration: A Guide to Identifying the Most Favorable One in Orthopedics and Dentistry Applications. Int. J. Mol. Sci. 2022, 23, 6356. [Google Scholar] [CrossRef] [PubMed]
- Calcat-i-Cervera, S.; Sanz-Nogués, C.; O’Brien, T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front. Med. 2021, 8, 728496. [Google Scholar] [CrossRef]
- Costa, L.A.; Eiro, N.; Fraile, M.; Gonzalez, L.O.; Saá, J.; Garcia-Portabella, P.; Vega, B.; Schneider, J.; Vizoso, F.J. Functional Heterogeneity of Mesenchymal Stem Cells from Natural Niches to Culture Conditions: Implications for Further Clinical Uses. Cell. Mol. Life Sci. 2021, 78, 447–467. [Google Scholar] [CrossRef]
- Liu, J.; Gao, J.; Liang, Z.; Gao, C.; Niu, Q.; Wu, F.; Zhang, L. Mesenchymal Stem Cells and Their Microenvironment. Stem Cell Res. Ther. 2022, 13, 429. [Google Scholar] [CrossRef]
- Berebichez-Fridman, R.; Montero-Olvera, P.R. Sources and Clinical Applications of Mesenchymal Stem Cells State-of-the-Art Review. Sultan Qaboos Univ. Med. J. 2018, 18, e264–e277. [Google Scholar] [CrossRef]
- Gou, Y.; Huang, Y.; Luo, W.; Li, Y.; Zhao, P.; Zhong, J.; Dong, X.; Guo, M.; Li, A.; Hao, A.; et al. Adipose-Derived Mesenchymal Stem Cells (MSCs) Are a Superior Cell Source for Bone Tissue Engineering. Bioact. Mater. 2024, 34, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chai, C.; Wang, R.; Feng, Y.; Huang, L.; Zhang, Y.; Xiao, X.; Yang, S.; Zhang, Y.; Zhang, X. Single-cell Transcriptome Atlas of Human Mesenchymal Stem Cells Exploring Cellular Heterogeneity. Clin. Transl. Med. 2021, 11, e650. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Yang, J.; Gong, Y.; Zhang, H.; Qiu, X.; Liu, Y.; Zhou, C.; Chen, Y.; Greenbaum, J.; et al. Single-Cell RNA Sequencing Deconvolutes the in Vivo Heterogeneity of Human Bone Marrow-Derived Mesenchymal Stem Cells. Int. J. Biol. Sci. 2021, 17, 4192–4206. [Google Scholar] [CrossRef]
- Zhang, C.; Han, X.; Liu, J.; Chen, L.; Lei, Y.; Chen, K.; Si, J.; Wang, T.-Y.; Zhou, H.; Zhao, X.; et al. Single-Cell Transcriptomic Analysis Reveals the Cellular Heterogeneity of Mesenchymal Stem Cells. Genom. Proteom. Bioinforma 2022, 20, 70–86. [Google Scholar] [CrossRef]
- Sun, C.; Wang, L.; Wang, H.; Huang, T.; Yao, W.; Li, J.; Zhang, X. Single-Cell RNA-Seq Highlights Heterogeneity in Human Primary Wharton’s Jelly Mesenchymal Stem/Stromal Cells Cultured in Vitro. Stem Cell Res. Ther. 2020, 11, 149. [Google Scholar] [CrossRef]
- Wright, A.; Arthaud-Day, M.L.; Weiss, M.L. Therapeutic Use of Mesenchymal Stromal Cells: The Need for Inclusive Characterization Guidelines to Accommodate All Tissue Sources and Species. Front. Cell Dev. Biol. 2021, 9, 632717. [Google Scholar] [CrossRef]
- Assis-Ribas, T.; Forni, M.F.; Winnischofer, S.M.B.; Sogayar, M.C.; Trombetta-Lima, M. Extracellular Matrix Dynamics during Mesenchymal Stem Cells Differentiation. Dev. Biol. 2018, 437, 63–74. [Google Scholar] [CrossRef]
- Twine, N.A.; Chen, L.; Pang, C.N.; Wilkins, M.R.; Kassem, M. Identification of Differentiation-Stage Specific Markers That Define the Ex Vivo Osteoblastic Phenotype. Bone 2014, 67, 23–32. [Google Scholar] [CrossRef] [PubMed]
- James, A.W. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. Scientifica 2013, 2013, 684736. [Google Scholar] [CrossRef]
- New, S.E.P.; Alvarez-Gonzalez, C.; Vagaska, B.; Gomez, S.G.; Bulstrode, N.W.; Madrigal, A.; Ferretti, P. A Matter of Identity—Phenotype and Differentiation Potential of Human Somatic Stem Cells. Stem Cell Res. 2015, 15, 1–13. [Google Scholar] [CrossRef]
- Jauković, A.; Abadjieva, D.; Trivanović, D.; Stoyanova, E.; Kostadinova, M.; Pashova, S.; Kestendjieva, S.; Kukolj, T.; Jeseta, M.; Kistanova, E.; et al. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev. Rep. 2020, 16, 853–875. [Google Scholar] [CrossRef] [PubMed]
- Pisciotta, A.; Bertoni, L.; Riccio, M.; Mapelli, J.; Bigiani, A.; Noce, M.L.; Orciani, M.; de Pol, A.; Carnevale, G. Use of a 3D Floating Sphere Culture System to Maintain the Neural Crest-Related Properties of Human Dental Pulp Stem Cells. Front. Physiol. 2018, 9, 547. [Google Scholar] [CrossRef] [PubMed]
- Strobel, H.A.; Gerton, T.; Hoying, J.B. Vascularized Adipocyte Organoid Model Using Isolated Human Microvessel Fragments. Biofabrication 2021, 13, 035022. [Google Scholar] [CrossRef]
- Nelakanti, R.V.; Kooreman, N.G.; Wu, J.C. Teratoma Formation: A Tool for Monitoring Pluripotency in Stem Cell Research. Curr. Protoc. Stem Cell Biol. 2015, 2015, 4a.8.1–4a.8.17. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, P.; Gupta, A.; Singh, S. Therapeutic Advancement in Neuronal Transdifferentiation of Mesenchymal Stromal Cells for Neurological Disorders. J. Mol. Neurosci. 2021, 71, 889–901. [Google Scholar] [CrossRef]
- Shiri, H.; Javan, M. Sox2-Mediated Transdifferentiation of HAT-MSCs into Induced Neural Progenitor-like Cells for Remyelination Therapies. Tissue Cell 2024, 91, 102553. [Google Scholar] [CrossRef]
- Gwam, C.; Mohammed, N.; Ma, X. Stem Cell Secretome, Regeneration, and Clinical Translation: A Narrative Review. Ann. Transl. Med. 2021, 9, 70. [Google Scholar] [CrossRef]
- Sagaradze, G.D.; Basalova, N.A.; Efimenko, A.Y.; Tkachuk, V.A. Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Front. Cell Dev. Biol. 2020, 8, 576176. [Google Scholar] [CrossRef]
- Caplan, A.I. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl. Med. 2017, 6, 1445–1451. [Google Scholar] [CrossRef]
- Turlo, A.J.; Hammond, D.E.; Ramsbottom, K.A.; Soul, J.; Gillen, A.; McDonald, K.; Peffers, M.J. Mesenchymal Stromal Cell Secretome Is Affected by Tissue Source and Donor Age. Stem Cells 2023, 41, 1047–1059. [Google Scholar] [CrossRef]
- Shin, S.; Lee, J.; Kwon, Y.; Park, K.S.; Jeong, J.H.; Choi, S.J.; Bang, S.I.; Chang, J.W.; Lee, C. Comparative Proteomic Analysis of the Mesenchymal Stem Cells Secretome from Adipose, Bone Marrow, Placenta and Wharton’s Jelly. Int. J. Mol. Sci. 2021, 22, 845. [Google Scholar] [CrossRef] [PubMed]
- Daiger, S.; Rossiter, B.; Greenberg, J.; Christoffels, A.; Hide, W. Data Services and Software for Identifying Genes and Mutations Causing Retinal Degeneration. Investig. Ophthalmol. Vis. Sci. 1998, 39, S295. [Google Scholar]
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-Syndromic Retinitis Pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef]
- Huang, C.-H.; Yang, C.-M.; Yang, C.-H.; Hou, Y.-C.; Chen, T.-C. Leber’s Congenital Amaurosis: Current Concepts of Genotype-Phenotype Correlations. Genes 2021, 12, 1261. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Heath Jeffery, R.C.; Aung-Htut, M.T.; McLenachan, S.; Fletcher, S.; Wilton, S.D.; Chen, F.K. Stargardt Disease and Progress in Therapeutic Strategies. Ophthalmic Genet. 2022, 43, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Yadav, A.; Yadav, M.; Tanwar, M. Genetic Dissection of Non-Syndromic Retinitis Pigmentosa. Indian J. Ophthalmol. 2022, 70, 2355–2385. [Google Scholar] [CrossRef]
- Tatour, Y.; Ben-Yosef, T. Syndromic Inherited Retinal Diseases: Genetic, Clinical and Diagnostic Aspects. Diagnostics 2020, 10, 779. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Pierce, E.A. Photoreceptor Sensory Cilia and Inherited Retinal Degeneration. Adv. Exp. Med. Biol. 2010, 664, 223–232. [Google Scholar] [CrossRef]
- Heesterbeek, T.J.; Lorés-Motta, L.; Hoyng, C.B.; Lechanteur, Y.T.E.; den Hollander, A.I. Risk Factors for Progression of Age-Related Macular Degeneration. Ophthalmic Physiol. Opt. 2020, 40, 140–170. [Google Scholar] [CrossRef]
- Stein-Streilein, J. Mechanisms of Immune Privilege in the Posterior Eye. Int. Rev. Immunol. 2013, 32, 42–56. [Google Scholar] [CrossRef]
- Hu, M.L.; Edwards, T.L.; O’Hare, F.; Hickey, D.G.; Wang, J.H.; Liu, Z.; Ayton, L.N. Gene Therapy for Inherited Retinal Diseases: Progress and Possibilities. Clin. Exp. Optom. 2021, 104, 444–454. [Google Scholar] [CrossRef]
- Carvalho, C.; Lemos, L.; Antas, P.; Seabra, M.C. Gene Therapy for Inherited Retinal Diseases: Exploiting New Tools in Genome Editing and Nanotechnology. Front. Ophthalmol. 2023, 3, 1270561. [Google Scholar] [CrossRef]
- Ducloyer, J.B.; Le Meur, G.; Cronin, T.; Adjali, O.; Weber, M. Gene Therapy for Retinitis Pigmentosa. Med. Sci. 2020, 36, 607–615. [Google Scholar] [CrossRef]
- Shamshad, A.; Kang, C.; Jenny, L.A.; Persad-Paisley, E.M.; Tsang, S.H. Translatability Barriers between Preclinical and Clinical Trials of AAV Gene Therapy in Inherited Retinal Diseases. Vision Res. 2023, 210, 108258. [Google Scholar] [CrossRef]
- Achberger, K.; Haderspeck, J.C.; Kleger, A.; Liebau, S. Stem Cell-Based Retina Models. Adv. Drug Deliv. Rev. 2019, 140, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.K.; Yip, S.P.; Huang, C.L. Establishing Functional Retina in a Dish: Progress and Promises of Induced Pluripotent Stem Cell-Based Retinal Neuron Differentiation. Int. J. Mol. Sci. 2023, 24, 13652. [Google Scholar] [CrossRef]
- Dodina, M.; Gurtsieva, D.; Karabelsky, A.; Minskaia, E. Evaluation of Mesenchymal Stem Cells as an in Vitro Model for Inherited Retinal Diseases. Front. Cell Dev. Biol. 2024, 12, 1455140. [Google Scholar] [CrossRef]
- Regha, K.; Bhargava, M.; Al-Mubaarak, A.; Chai, C.; Parikh, B.H.; Liu, Z.; Wong, C.S.W.; Hunziker, W.; Lim, K.L.; Su, X. Customized Strategies for High-Yield Purification of Retinal Pigment Epithelial Cells Differentiated from Different Stem Cell Sources. Sci. Rep. 2022, 12, 15563. [Google Scholar] [CrossRef]
- Kurzawa-Akanbi, M.; Tzoumas, N.; Corral-Serrano, J.C.; Guarascio, R.; Steel, D.H.; Cheetham, M.E.; Armstrong, L.; Lako, M. Pluripotent Stem Cell-Derived Models of Retinal Disease: Elucidating Pathogenesis, Evaluating Novel Treatments, and Estimating Toxicity. Prog. Retin. Eye Res. 2024, 100, 101248. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jo, D.H. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev. Rep. 2024, 21, 167–197. [Google Scholar] [CrossRef]
- Fligor, C.M.; Lavekar, S.S.; Harkin, J.; Shields, P.K.; VanderWall, K.B.; Huang, K.C.; Gomes, C.; Meyer, J.S. Extension of Retinofugal Projections in an Assembled Model of Human Pluripotent Stem Cell-Derived Organoids. Stem Cell Rep. 2021, 16, 2228–2241. [Google Scholar] [CrossRef] [PubMed]
- Fligor, C.M.; Huang, K.C.; Lavekar, S.S.; VanderWall, K.B.; Meyer, J.S. Differentiation of Retinal Organoids from Human Pluripotent Stem Cells. In Methods in Cell Biology, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 159, ISBN 9780128215319. [Google Scholar]
- Achberger, K.; Probst, C.; Haderspeck, J.C.; Bolz, S.; Rogal, J.; Chuchuy, J.; Nikolova, M.; Cora, V.; Antkowiak, L.; Haq, W.; et al. Merging Organoid and Organ-on-a-Chip Technology to Generate Complex Multi-Layer Tissue Models in a Human Retina-on-a-Chip Platform. Elife 2019, 8, e46188. [Google Scholar] [CrossRef]
- Su, T.; Liang, L.; Zhang, L.; Wang, J.; Chen, L.; Su, C.; Cao, J.; Yu, Q.; Deng, S.; Chan, H.F.; et al. Retinal Organoids and Microfluidic Chip-Based Approaches to Explore the Retinitis Pigmentosa with USH2A Mutations. Front. Bioeng. Biotechnol. 2022, 10, 939774. [Google Scholar] [CrossRef]
- Paek, J.; Park, S.E.; Lu, Q.; Park, K.T.; Cho, M.; Oh, J.M.; Kwon, K.W.; Yi, Y.S.; Song, J.W.; Edelstein, H.I.; et al. Microphysiological Engineering of Self-Assembled and Perfusable Microvascular Beds for the Production of Vascularized Three-Dimensional Human Microtissues. ACS Nano 2019, 13, 7627–7643. [Google Scholar] [CrossRef] [PubMed]
- Manian, K.V.; Galloway, C.A.; Dalvi, S.; Emanuel, A.A.; Mereness, J.A.; Black, W.; Winschel, L.; Soto, C.; Li, Y.; Song, Y.; et al. 3D IPSC Modeling of the Retinal Pigment Epithelium-Choriocapillaris Complex Identifies Factors Involved in the Pathology of Macular Degeneration. Cell Stem Cell 2021, 28, 846–862.e8. [Google Scholar] [CrossRef]
- Inagaki, S.; Nakamura, S.; Kuse, Y.; Aoshima, K.; Funato, M.; Shimazawa, M.; Hara, H. Establishment of Vascularized Human Retinal Organoids from Induced Pluripotent Stem Cells. Stem Cells 2025, 43, sxae093. [Google Scholar] [CrossRef]
- Gao, M.L.; Wang, T.Y.; Lin, X.; Tang, C.; Li, M.; Bai, Z.P.; Liu, Z.C.; Chen, L.J.; Kong, Q.R.; Pan, S.H.; et al. Retinal Organoid Microenvironment Enhanced Bioactivities of Microglia-Like Cells Derived From HiPSCs. Investig. Ophthalmol. Vis. Sci. 2024, 65, 19. [Google Scholar] [CrossRef]
- Chichagova, V.; Georgiou, M.; Carter, M.; Dorgau, B.; Hilgen, G.; Collin, J.; Queen, R.; Chung, G.; Ajeian, J.; Moya-Molina, M.; et al. Incorporating Microglia-like Cells in Human Induced Pluripotent Stem Cell-Derived Retinal Organoids. J. Cell. Mol. Med. 2023, 27, 435–445. [Google Scholar] [CrossRef]
- Usui-Ouchi, A.; Giles, S.; Harkins-Perry, S.; Mills, E.A.; Bonelli, R.; Wei, G.; Ouchi, Y.; Ebihara, N.; Nakao, S.; Friedlander, M.; et al. Integrating Human IPSC-Derived Macrophage Progenitors into Retinal Organoids to Generate a Mature Retinal Microglial Niche. Glia 2023, 71, 2372–2382. [Google Scholar] [CrossRef]
- Seah, I.; Goh, D.; Banerjee, A.; Su, X. Modeling Inherited Retinal Diseases Using Human Induced Pluripotent Stem Cell Derived Photoreceptor Cells and Retinal Pigment Epithelial Cells. Front. Med. 2024, 11, 1328474. [Google Scholar] [CrossRef]
- Navinés-Ferrer, A.; Pomares, E. Endoplasmic Reticulum Stress and Rhodopsin Accumulation in an Organoid Model of Retinitis Pigmentosa Carrying a RHO Pathogenic Variant. Stem Cell Res. Ther. 2025, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.; Queen, R.; Ferrández-Peral, L.; Dorgau, B.; Collin, J.; Nelson, A.; Hussain, R.; Coxhead, J.; McCorkindale, M.; Atkinson, R.; et al. Unravelling Genotype-Phenotype Correlations in Stargardt Disease Using Patient-Derived Retinal Organoids. Cell Death Dis. 2025, 16, 108. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, F. Retinal Organoids: A Next-Generation Platform for High-Throughput Drug Discovery. Stem Cell Rev. Rep. 2024, 20, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Sai, H.; Ollington, B.; Rezek, F.O.; Chai, N.; Lane, A.; Georgiadis, T.; Bainbridge, J.; Michaelides, M.; Sacristan-Reviriego, A.; Perdigão, P.R.L.; et al. Effective AAV-Mediated Gene Replacement Therapy in Retinal Organoids Modeling AIPL1-Associated LCA4. Mol. Ther. Nucleic Acids 2024, 35, 102148. [Google Scholar] [CrossRef]
- Muller, A.; Sullivan, J.; Schwarzer, W.; Wang, M.; Park-Windhol, C.; Hasler, P.W.; Janeschitz-Kriegl, L.; Duman, M.; Klingler, B.; Matsell, J.; et al. High-Efficiency Base Editing in the Retina in Primates and Human Tissues. Nat. Med. 2025, 31, 490–501. [Google Scholar] [CrossRef]
- Athanasiou, D.; Afanasyeva, T.A.V.; Chai, N.; Ziaka, K.; Jovanovic, K.; Guarascio, R.; Boldt, K.; Corral-Serrano, J.C.; Kanuga, N.; Roepman, R.; et al. Small Molecule Treatment Alleviates Photoreceptor Cilia Defects in LCA5-Deficient Human Retinal Organoids. Acta Neuropathol. Commun. 2025, 13, 26. [Google Scholar] [CrossRef]
- Truong, V.; Viken, K.; Geng, Z.; Barkan, S.; Johnson, B.; Ebeling, M.C.; Montezuma, S.R.; Ferrington, D.A.; Dutton, J.R. Automating Human Induced Pluripotent Stem Cell Culture and Differentiation of IPSC-Derived Retinal Pigment Epithelium for Personalized Drug Testing. SLAS Technol. 2021, 26, 287–299. [Google Scholar] [CrossRef]
- Bohrer, L.R.; Stone, N.E.; Mullin, N.K.; Voigt, A.P.; Anfinson, K.R.; Fick, J.L.; Luangphakdy, V.; Hittle, B.; Powell, K.; Muschler, G.F.; et al. Automating IPSC Generation to Enable Autologous Photoreceptor Cell Replacement Therapy. J. Transl. Med. 2023, 21, 161. [Google Scholar] [CrossRef]
- Terada, M.; Kogawa, Y.; Shibata, Y.; Kitagawa, M.; Kato, S.; Iida, T.; Yorimitsu, T.; Kato, A.; Matsukuma, K.; Maeda, T.; et al. Robotic Cell Processing Facility for Clinical Research of Retinal Cell Therapy. SLAS Technol. 2023, 28, 449–459. [Google Scholar] [CrossRef]
- Cheng, L.; Kuehn, M.H. Human Retinal Organoids in Therapeutic Discovery: A Review of Applications. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2023; Volume 281, pp. 157–187. ISBN 978-3-031-42349-9. [Google Scholar]
- Wu, K.Y.; Dhaliwal, J.K.; Sasitharan, A.; Kalevar, A. Cell Therapy for Retinal Degenerative Diseases: Progress and Prospects. Pharmaceutics 2024, 16, 1299. [Google Scholar] [CrossRef]
- Adak, S.; Magdalene, D.; Deshmukh, S.; Das, D.; Jaganathan, B.G. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Rev. Rep. 2021, 17, 1154–1173. [Google Scholar] [CrossRef] [PubMed]
- Bovi dos Santos, G.; de Lima-Vasconcellos, T.H.; Móvio, M.I.; Birbrair, A.; Del Debbio, C.B.; Kihara, A.H. New Perspectives in Stem Cell Transplantation and Associated Therapies to Treat Retinal Diseases: From Gene Editing to 3D Bioprinting. Stem Cell Rev. Rep. 2024, 20, 722–737. [Google Scholar] [CrossRef] [PubMed]
- Gold, W.A.; Percy, A.K.; Neul, J.L.; Cobb, S.R.; Pozzo-Miller, L.; Issar, J.K.; Ben-Zeev, B.; Vignoli, A.; Kaufmann, W.E. Rett Syndrome. Nat. Rev. Dis. Prim. 2024, 10, 84. [Google Scholar] [CrossRef]
- Genovese, A.; Butler, M.G. The Autism Spectrum: Behavioral, Psychiatric and Genetic Associations. Genes 2023, 14, 677. [Google Scholar] [CrossRef]
- Morris, H.R.; Spillantini, M.G.; Sue, C.M.; Williams-Gray, C.H. The Pathogenesis of Parkinson’s Disease. Lancet 2024, 403, 293–304. [Google Scholar] [CrossRef]
- Ilieva, H.; Vullaganti, M.; Kwan, J. Advances in Molecular Pathology, Diagnosis, and Treatment of Amyotrophic Lateral Sclerosis. BMJ 2023, 383, e075037. [Google Scholar] [CrossRef]
- Jiang, A.; Handley, R.R.; Lehnert, K.; Snell, R.G. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington’s Disease Research. Int. J. Mol. Sci. 2023, 24, 13021. [Google Scholar] [CrossRef]
- Andrade-Guerrero, J.; Santiago-Balmaseda, A.; Jeronimo-Aguilar, P.; Vargas-Rodríguez, I.; Cadena-Suárez, A.R.; Sánchez-Garibay, C.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Cardenas-Aguayo, M.D.C.; Diaz-Cintra, S.; et al. Alzheimer’s Disease: An Updated Overview of Its Genetics. Int. J. Mol. Sci. 2023, 24, 3754. [Google Scholar] [CrossRef]
- Raulin, A.C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.C. ApoE in Alzheimer’s Disease: Pathophysiology and Therapeutic Strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, S. Potential Role of Growth Factors Controlled Release in Achieving Enhanced Neuronal Trans-Differentiation from Mesenchymal Stem Cells for Neural Tissue Repair and Regeneration. Mol. Neurobiol. 2022, 59, 983–1001. [Google Scholar] [CrossRef]
- Sramkó, B.; Földes, A.; Kádár, K.; Varga, G.; Zsembery, Á.; Pircs, K. The Wisdom in Teeth: Neuronal Differentiation of Dental Pulp Cells. Cell. Reprogram. 2023, 25, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Soumya, B.S.; Gamit, N.; Patil, M.; Shreenidhi, V.P.; Dharmarajan, A.; Warrier, S. Modeling Amyotrophic Lateral Sclerosis with Amniotic Membrane-Derived Mesenchymal Stem Cells: A Novel Approach for Disease Modeling. Exp. Cell Res. 2025, 446, 114449. [Google Scholar] [CrossRef]
- Gamit, N.; Patil, M.; B Sundrappa, S.; Sundaram, S.M.; Sethi, G.; Dharmarajan, A.; Warrier, S. Mesenchymal Stem Cell-Derived Rapid Drug Screening System for Alzheimer’s Disease for the Identification of Novel Drugs. Drug Dev. Res. 2023, 84, 1496–1512. [Google Scholar] [CrossRef] [PubMed]
- Soto-Mercado, V.; Mendivil-Perez, M.; Velez-Pardo, C.; Jimenez-Del-Rio, M. Neuroprotective Effect of Combined Treatment with Epigallocatechin 3-Gallate and Melatonin on Familial Alzheimer’s Disease PSEN1 E280A Cerebral Spheroids Derived from Menstrual Mesenchymal Stromal Cells. J. Alzheimer’s Dis. 2024, 99, S51–S66. [Google Scholar] [CrossRef]
- Jhanji, M.; York, E.M.; Lizarraga, S.B. The Power of Human Stem Cell-Based Systems in the Study of Neurodevelopmental Disorders. Curr. Opin. Neurobiol. 2024, 89, 102916. [Google Scholar] [CrossRef]
- Evangelisti, C.; Ramadan, S.; Orlacchio, A.; Panza, E. Experimental Cell Models for Investigating Neurodegenerative Diseases. Int. J. Mol. Sci. 2024, 25, 9747. [Google Scholar] [CrossRef] [PubMed]
- Quadrato, G.; Nguyen, T.; Macosko, E.Z.; Sherwood, J.L.; Yang, S.M.; Berger, D.R.; Maria, N.; Scholvin, J.; Goldman, M.; Kinney, J.P.; et al. Cell Diversity and Network Dynamics in Photosensitive Human Brain Organoids. Nature 2017, 545, 48–53. [Google Scholar] [CrossRef]
- Aili, Y.; Maimaitiming, N.; Wang, Z.; Wang, Y. Brain Organoids: A New Tool for Modelling of Neurodevelopmental Disorders. J. Cell. Mol. Med. 2024, 28, e18560. [Google Scholar] [CrossRef]
- Acharya, P.; Choi, N.Y.; Shrestha, S.; Jeong, S.; Lee, M.Y. Brain Organoids: A Revolutionary Tool for Modeling Neurological Disorders and Development of Therapeutics. Biotechnol. Bioeng. 2024, 121, 489–506. [Google Scholar] [CrossRef]
- Fitzgerald, M.Q.; Chu, T.; Puppo, F.; Blanch, R.; Chillón, M.; Subramaniam, S.; Muotri, A.R. Generation of ‘Semi-Guided’ Cortical Organoids with Complex Neural Oscillations. Nat. Protoc. 2024, 19, 2712–2738. [Google Scholar] [CrossRef]
- Nickels, S.L.; Modamio, J.; Mendes-Pinheiro, B.; Monzel, A.S.; Betsou, F.; Schawborn, J.C. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson’s disease. Stem Cell Res. 2020, 46, 101870. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Cakir, B.; Park, I.H. Generation of Regionally Specified Human Brain Organoids Resembling Thalamus Development. STAR Protoc. 2020, 1, 100001. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.K.; Wong, S.Z.H.; Pather, S.R.; Nguyen, P.T.T.; Zhang, F.; Zhang, D.Y.; Zhang, Z.; Lu, L.; Fang, W.; Chen, L.; et al. Generation of Hypothalamic Arcuate Organoids from Human Induced Pluripotent Stem Cells. Cell Stem Cell 2021, 28, 1657–1670.e10. [Google Scholar] [CrossRef]
- Kano, M.; Sasaki, H.; Miwata, T.; Suga, H. Recipe for Pituitary Organoids. Front. Endocrinol. 2023, 13, 1025825. [Google Scholar] [CrossRef]
- Imani Farahani, N.; Lin, L.; Nazir, S.; Naderi, A.; Rokos, L.; McIntosh, A.R.; Julian, L.M. Advances in Physiological and Clinical Relevance of HiPSC-Derived Brain Models for Precision Medicine Pipelines. Front. Cell. Neurosci. 2024, 18, 1478572. [Google Scholar] [CrossRef]
- Wu, S.R.; Nowakowski, T.J. Exploring Human Brain Development and Disease Using Assembloids. Neuron 2025, 113, 1133–1150. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, K.; Wang, Y.; Ma, Y.; Guo, W.; Shi, C. Human-Mouse Chimeric Brain Models Constructed from IPSC-Derived Brain Cells: Applications and Challenges. Exp. Neurol. 2024, 379, 114848. [Google Scholar] [CrossRef]
- Mrza, M.A.; He, J.; Wang, Y. Integration of IPSC-Derived Microglia into Brain Organoids for Neurological Research. Int. J. Mol. Sci. 2024, 25, 3148. [Google Scholar] [CrossRef] [PubMed]
- Sabogal-Guaqueta, A.M.; Mitchell-Garcia, T.; Hunneman, J.; Voshart, D.; Thiruvalluvan, A.; Foijer, F.; Kruyt, F.; Trombetta-Lima, M.; Eggen, B.J.L.; Boddeke, E.; et al. Brain Organoid Models for Studying the Function of IPSC-Derived Microglia in Neurodegeneration and Brain Tumours. Neurobiol. Dis. 2024, 203, 106742. [Google Scholar] [CrossRef]
- Vetter, J.; Palagi, I.; Waisman, A.; Blaeser, A. Recent Advances in Blood-Brain Barrier-on-a-Chip Models. Acta Biomater. 2025, 197, 1–28. [Google Scholar] [CrossRef]
- Kistemaker, L.; van Bodegraven, E.J.; de Vries, H.E.; Hol, E.M. Vascularized Human Brain Organoids: Current Possibilities and Prospects. Trends Biotechnol. 2025, 43, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Pramotton, F.M.; Spitz, S.; Kamm, R.D. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. Adv. Sci. 2024, 11, e2403892. [Google Scholar] [CrossRef] [PubMed]
- Fanizza, F.; Perottoni, S.; Boeri, L.; Donnaloja, F.; Negro, F.; Pugli, F.; Forloni, G.; Giordano, C.; Albani, D. A Gut-Brain Axis on-a-Chip Platform for Drug Testing Challenged with Donepezil. Lab Chip 2025, 25, 1854–1874. [Google Scholar] [CrossRef]
- Solana-Manrique, C.; Sánchez-Pérez, A.M.; Paricio, N.; Muñoz-Descalzo, S. Two- and Three-Dimensional In Vitro Models of Parkinson’s and Alzheimer’s Diseases: State-of-the-Art and Applications. Int. J. Mol. Sci. 2025, 26, 620. [Google Scholar] [CrossRef]
- Chiola, S.; Edgar, N.U.; Shcheglovitov, A. IPSC Toolbox for Understanding and Repairing Disrupted Brain Circuits in Autism. Mol. Psychiatry 2022, 27, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Dawoody Nejad, L.; Pioro, E.P. Modeling ALS with Patient-Derived IPSCs: Recent Advances and Future Potentials. Brain Sci. 2025, 15, 134. [Google Scholar] [CrossRef]
- Nani, J.V.; Muotri, A.R.; Hayashi, M.A.F. Peering into the Mind: Unraveling Schizophrenia’s Secrets Using Models. Mol. Psychiatry 2025, 30, 659–678. [Google Scholar] [CrossRef]
- Barmpa, K.; Saraiva, C.; Lopez-Pigozzi, D.; Gomez-Giro, G.; Gabassi, E.; Spitz, S.; Brandauer, K.; Rodriguez Gatica, J.E.; Antony, P.; Robertson, G.; et al. Modeling Early Phenotypes of Parkinson’s Disease by Age-Induced Midbrain-Striatum Assembloids. Commun. Biol. 2024, 7, 1561. [Google Scholar] [CrossRef]
- Ting, H.C.; Guo, Y.T.; Su, H.L.; Chen, Y.S.; Lin, S.Z.; Harn, H.J.; Chang, C.Y. Rapid IPSC-Derived Neuromuscular Junction Model Uncovers Motor Neuron Dominance in Amyotrophic Lateral Sclerosis Cytopathy. Cell Death Discov. 2025, 11, 23. [Google Scholar] [CrossRef]
- Ling, S.; Zhang, X.; Dai, Y.; Jiang, Z.; Zhou, X.; Lu, S.; Qian, X.; Liu, J.; Selfjord, N.; Satir, T.M.; et al. Customizable Virus-like Particles Deliver CRISPR–Cas9 Ribonucleoprotein for Effective Ocular Neovascular and Huntington’s Disease Gene Therapy. Nat. Nanotechnol. 2025, 20, 543–553. [Google Scholar] [CrossRef]
- Bajikar, S.S.; Sztainberg, Y.; Trostle, A.J.; Tirumala, H.P.; Wan, Y.-W.; Harrop, C.L.; Bengtsson, J.D.; Carvalho, C.M.B.; Pehlivan, D.; Suter, B.; et al. Modeling Antisense Oligonucleotide Therapy in MECP2 Duplication Syndrome Human IPSC-Derived Neurons Reveals Gene Expression Programs Responsive to MeCP2 Levels. Hum. Mol. Genet. 2024, 33, 1986–2001. [Google Scholar] [CrossRef] [PubMed]
- Kempthorne, L.; Vaizoglu, D.; Cammack, A.J.; Carcolé, M.; Roberts, M.J.; Mikheenko, A.; Fisher, A.; Suklai, P.; Muralidharan, B.; Kroll, F.; et al. Dual-Targeting CRISPR-CasRx Reduces C9orf72 ALS/FTD Sense and Antisense Repeat RNAs in Vitro and in Vivo. Nat. Commun. 2025, 16, 459. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.S.; Koubek, E.J.; Sakowski, S.A.; Feldman, E.L. Stem Cell Therapeutics and Gene Therapy for Neurologic Disorders. Neurotherapeutics 2024, 21, e00427. [Google Scholar] [CrossRef]
- Bhatt, A.; Bhardwaj, H.; Srivastava, P. Mesenchymal Stem Cell Therapy for Alzheimer’s Disease: A Novel Therapeutic Approach for Neurodegenerative Diseases. Neuroscience 2024, 555, 52–68. [Google Scholar] [CrossRef]
- Ekrani, S.T.; Mahmoudi, M.; Haghmorad, D.; Kheder, R.K.; Hatami, A.; Esmaeili, S.A. Manipulated Mesenchymal Stem Cell Therapy in the Treatment of Parkinson’s Disease. Stem Cell Res. Ther. 2024, 15, 476. [Google Scholar] [CrossRef] [PubMed]
- Frawley, L.; Taylor, N.T.; Sivills, O.; McPhillamy, E.; To, T.D.; Wu, Y.; Chin, B.Y.; Wong, C.Y. Stem Cell Therapy for the Treatment of Amyotrophic Lateral Sclerosis: Comparison of the Efficacy of Mesenchymal Stem Cells, Neural Stem Cells, and Induced Pluripotent Stem Cells. Biomedicines 2024, 13, 35. [Google Scholar] [CrossRef]
- Shah, S.; Mansour, H.M.; Lucke-Wold, B. Advances in Stem Cell Therapy for Huntington’s Disease: A Comprehensive Literature Review. Cells 2025, 14, 42. [Google Scholar] [CrossRef]
- Izrael, M.; Chebath, J.; Molakandov, K.; Revel, M. Clinical Perspective on Pluripotent Stem Cells Derived Cell Therapies for the Treatment of Neurodegenerative Diseases. Adv. Drug Deliv. Rev. 2025, 218, 115525. [Google Scholar] [CrossRef]
- Quan, J.; Liu, Q.; Li, P.; Yang, Z.; Zhang, Y.; Zhao, F.; Zhu, G. Mesenchymal Stem Cell Exosome Therapy: Current Research Status in the Treatment of Neurodegenerative Diseases and the Possibility of Reversing Normal Brain Aging. Stem Cell Res. Ther. 2025, 16, 76. [Google Scholar] [CrossRef]
- Jamali, F.; Aldughmi, M.; Khasawneh, M.W.; Dahbour, S.; Salameh, A.A.; Awidi, A. A New Tool for Safety Evaluation and a Combination of Measures for Efficacy Assessment of Cotransplanting Human Allogenic Neuronal Stem Cells and Mesenchymal Stem Cells for the Treatment of Parkinson Disease: Protocol for an Interventional Study. JMIR Res. Protoc. 2021, 10, e29695. [Google Scholar] [CrossRef]
- Gutiérrez-Cerrajero, C.; Sprecher, E.; Paller, A.S.; Akiyama, M.; Mazereeuw-Hautier, J.; Hernández-Martín, A.; González-Sarmiento, R. Ichthyosis. Nat. Rev. Dis. Prim. 2023, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Mariath, L.M.; Santin, J.T.; Schuler-Faccini, L.; Kiszewski, A.E. Inherited Epidermolysis Bullosa: Update on the Clinical and Genetic Aspects. An. Bras. Dermatol. 2020, 95, 551–569. [Google Scholar] [CrossRef] [PubMed]
- Chulpanova, D.S.; Shaimardanova, A.A.; Ponomarev, A.S.; Elsheikh, S.; Rizvanov, A.A.; Solovyeva, V.V. Current Strategies for the Gene Therapy of Autosomal Recessive Congenital Ichthyosis and Other Types of Inherited Ichthyosis. Int. J. Mol. Sci. 2022, 23, 2506. [Google Scholar] [CrossRef]
- Has, C.; Bauer, J.W.; Bodemer, C.; Bolling, M.C.; Bruckner-Tuderman, L.; Diem, A.; Fine, J.D.; Heagerty, A.; Hovnanian, A.; Marinkovich, M.P.; et al. Consensus Reclassification of Inherited Epidermolysis Bullosa and Other Disorders with Skin Fragility. Br. J. Dermatol. 2020, 183, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Hennies, H.C.; Poumay, Y. Skin Disease Models In Vitro and Inflammatory Mechanisms: Predictability for Drug Development. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2021; Volume 265, pp. 187–218. ISBN 978-3-030-70063-8. [Google Scholar]
- Zhao, H.; Chen, Z.; Kang, X.; Yang, B.; Luo, P.; Li, H.; He, Q. The Frontline of Alternatives to Animal Testing: Novel in Vitro Skin Model Application in Drug Development and Evaluation. Toxicol. Sci. 2023, 196, 152–169. [Google Scholar] [CrossRef]
- Hazrati, R.; Davaran, S.; Keyhanvar, P.; Soltani, S.; Alizadeh, E. A Systematic Review of Stem Cell Differentiation into Keratinocytes for Regenerative Applications. Stem Cell Rev. Rep. 2024, 20, 362–393. [Google Scholar] [CrossRef]
- Lee, J.; Rabbani, C.C.; Gao, H.; Steinhart, M.R.; Woodruff, B.M.; Pflum, Z.E.; Kim, A.; Heller, S.; Liu, Y.; Shipchandler, T.Z.; et al. Hair-Bearing Human Skin Generated Entirely from Pluripotent Stem Cells. Nature 2020, 582, 399–404. [Google Scholar] [CrossRef]
- Shafiee, A.; Sun, J.; Ahmed, I.A.; Phua, F.; Rossi, G.R.; Lin, C.Y.; Souza-Fonseca-Guimaraes, F.; Wolvetang, E.J.; Brown, J.; Khosrotehrani, K. Development of Physiologically Relevant Skin Organoids from Human Induced Pluripotent Stem Cells. Small 2024, 20, e2304879. [Google Scholar] [CrossRef]
- Ahmed, I.; Sun, J.; Brown, J.; Khosrotehrani, K.; Shafiee, A. An Optimized Protocol for Generating Appendage-Bearing Skin Organoids from Human-Induced Pluripotent Stem Cells. Biol. Methods Protoc. 2024, 9, 1785. [Google Scholar] [CrossRef]
- Cunha, D.L.; Oram, A.; Gruber, R.; Plank, R.; Lingenhel, A.; Gupta, M.K.; Altmüller, J.; Nürnberg, P.; Schmuth, M.; Zschocke, J.; et al. HiPSC-Derived Epidermal Keratinocytes from Ichthyosis Patients Show Altered Expression of Cornification Markers. Int. J. Mol. Sci. 2021, 22, 1785. [Google Scholar] [CrossRef]
- Coutier, J.; Bonnette, M.; Martineau, S.; Mercadier, A.; Domingues, S.; Saidani, M.; Jarrige, M.; Polveche, H.; Darle, A.; Holic, N.; et al. Human-Induced Pluripotent Stem Cell—Derived Keratinocytes, a Useful Model to Identify and Explore the Pathological Phenotype of Epidermolysis Bullosa Simplex. J. Investig. Dermatol. 2022, 142, 2695–2705.e11. [Google Scholar] [CrossRef] [PubMed]
- Steinbeck, B.J.; Gao, X.D.; McElroy, A.N.; Pandey, S.; Doman, J.L.; Riddle, M.J.; Xia, L.; Chen, W.; Eide, C.R.; Lengert, A.H.; et al. Twin Prime Editing Mediated Exon Skipping/Reinsertion for Restored Collagen VII Expression in Recessive Dystrophic Epidermolysis Bullosa. J. Investig. Dermatol. 2024, 144, 2764–2777.e9. [Google Scholar] [CrossRef] [PubMed]
- Neumayer, G.; Torkelson, J.L.; Li, S.; McCarthy, K.; Zhen, H.H.; Vangipuram, M.; Mader, M.M.; Gebeyehu, G.; Jaouni, T.M.; Jacków-Malinowska, J.; et al. A Scalable and CGMP-Compatible Autologous Organotypic Cell Therapy for Dystrophic Epidermolysis Bullosa. Nat. Commun. 2024, 15, 5834. [Google Scholar] [CrossRef] [PubMed]
- Ebner-Peking, P.; Krisch, L.; Wolf, M.; Hochmann, S.; Hoog, A.; Vári, B.; Muigg, K.; Poupardin, R.; Scharler, C.; Schmidhuber, S.; et al. Self-Assembly of Differentiated Progenitor Cells Facilitates Spheroid Human Skin Organoid Formation and Planar Skin Regeneration. Theranostics 2021, 11, 8430–8447. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Sun, J.; Kong, M.J.; Khosrotehrani, K.; Shafiee, A. Generating Skin-Derived Precursor-Like Cells From Human-Induced Pluripotent Stem Cell-Derived Skin Organoids. Exp. Dermatol. 2024, 33, e70017. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Song, C.L.; Lee, J.; Kim, S.; Nam, S.; Park, Y.J.; Lee, J. Development of Pluripotent Stem Cell-Derived Epidermal Organoids That Generate Effective Extracellular Vesicles in Skin Regeneration. Biomaterials 2024, 307, 122522. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, H.; Peng, Y.; Sheng, K.; Chen, F.; Zhu, G.; Guo, X. Human-Induced Pluripotent Stem Cell-Derived Exosomes Promote Skin Wound Healing through Activating FGF2-Mediated P38 Pathway. Mol. Cell. Biochem. 2025; epub ahead of print. [Google Scholar] [CrossRef]
- Niti, A.; Koliakos, G.; Michopoulou, A. Stem Cell Therapies for Epidermolysis Bullosa Treatment. Bioengineering 2023, 10, 422. [Google Scholar] [CrossRef]
- Bian, D.; Wu, Y.; Song, G.; Azizi, R.; Zamani, A. The Application of Mesenchymal Stromal Cells (MSCs) and Their Derivative Exosome in Skin Wound Healing: A Comprehensive Review. Stem Cell Res. Ther. 2022, 13, 24. [Google Scholar] [CrossRef]
- Chernyi, N.; Gavrilova, D.; Saruhanyan, M.; Oloruntimehin, E.S.; Karabelsky, A.; Bezsonov, E.; Malogolovkin, A. Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives. Biomolecules 2024, 14, 854. [Google Scholar] [CrossRef]
- Poston, J.N.; Kruse-Jarres, R. Perioperative Hemostasis for Patients with Hemophilia. Hematology 2022, 2022, 586–593. [Google Scholar] [CrossRef]
- Tonetto, E.; Cucci, A.; Follenzi, A.; Bernardi, F.; Pinotti, M.; Balestra, D. DNA Base Editing Corrects Common Hemophilia A Mutations and Restores Factor VIII Expression in in Vitro and Ex Vivo Models. J. Thromb. Haemost. 2024, 22, 2171–2183. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Chen, S.; Zhao, Z.; Liu, P.; Cai, J.; Qin, D.; Du, J.; Wu, C.; Chen, Q.; Cai, X.; et al. Modeling of Hemophilia A Using Patient-Specific Induced Pluripotent Stem Cells Derived from Urine Cells. Life Sci. 2014, 108, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Hu, X.; Wang, L.; Ma, Y.; Zhang, X.; Zhang, R.; Zhao, L.; Ren, J.; Yang, L.; Wang, G. Generation of IPSC Line from Urine Cells of Hemophilia A with F8 (p. R814X) Mutation. Stem Cell Res. 2022, 60, 102682. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Moake, J.L. Factor VIII Is Synthesized in Human Endothelial Cells, Packaged in Weibel-Palade Bodies and Secreted Bound to ULVWF Strings. PLoS ONE 2015, 10, e0140740. [Google Scholar] [CrossRef]
- Tatsumi, K.; Ohashi, K.; Mukobata, S.; Kubo, A.; Koyama, F.; Nakajima, Y.; Shima, M.; Okano, T. Hepatocyte Is a Sole Cell Type Responsible for the Production of Coagulation Factor IX in Vivo. Cell Med. 2012, 3, 25–31. [Google Scholar] [CrossRef]
- Son, J.S.; Park, C.Y.; Lee, G.; Park, J.Y.; Kim, H.J.; Kim, G.; Chi, K.Y.; Woo, D.H.; Han, C.; Kim, S.K.; et al. Therapeutic Correction of Hemophilia A Using 2D Endothelial Cells and Multicellular 3D Organoids Derived from CRISPR/Cas9-Engineered Patient IPSCs. Biomaterials 2022, 283, 121429. [Google Scholar] [CrossRef]
- Hiramoto, T.; Kashiwakura, Y.; Hayakawa, M.; Baatartsogt, N.; Kamoshita, N.; Abe, T.; Inaba, H.; Nishimasu, H.; Uosaki, H.; Hanazono, Y.; et al. PAM-Flexible Cas9-Mediated Base Editing of a Hemophilia B Mutation in Induced Pluripotent Stem Cells. Commun. Med. 2023, 3, 4–6. [Google Scholar] [CrossRef]
- Rose, M.; Gao, K.; Cortez-Toledo, E.; Agu, E.; Hyllen, A.A.; Conroy, K.; Pan, G.; Nolta, J.A.; Wang, A.; Zhou, P. Endothelial Cells Derived from Patients’ Induced Pluripotent Stem Cells for Sustained Factor VIII Delivery and the Treatment of Hemophilia A. Stem Cells Transl. Med. 2020, 9, 686–696. [Google Scholar] [CrossRef]
- Ar, M.C.; Balkan, C.; Kavaklı, K. Extended Half-Life Coagulation Factors: A New Era in the Management of Hemophilia Patients. Turk. J. Hematol. 2019, 36, 141–154. [Google Scholar] [CrossRef]
- Tang, Q.; Hu, Z.; Zhao, J.; Zhou, T.; Tang, S.; Wang, P.; Xiao, R.; Chen, Y.; Wu, L.; Zhou, M.; et al. CRISPR-Mediated In Situ Introduction or Integration of F9-Padua in Human IPSCs for Gene Therapy of Hemophilia B. Int. J. Mol. Sci. 2023, 24, 9013. [Google Scholar] [CrossRef]
- Kim, D.H.; Choi, S.H.; Sung, J.J.; Kim, S.; Yi, H.; Park, S.; Park, C.W.; Oh, Y.W.; Lee, J.; Kim, D.S.; et al. Long-Term Correction of Hemophilia A via Integration of a Functionally Enhanced FVIII Gene into the AAVS1 Locus by Nickase in Patient-Derived IPSCs. Exp. Mol. Med. 2025, 57, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Luce, E.; Steichen, C.; Allouche, M.; Messina, A.; Heslan, J.M.; Lambert, T.; Weber, A.; Nguyen, T.H.; Christophe, O.; Dubart-Kupperschmitt, A. In Vitro Recovery of FIX Clotting Activity as a Marker of Highly Functional Hepatocytes in a Hemophilia B IPSC Model. Hepatology 2022, 75, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Hemşinlioğlu, C.; Aslan, E.S.; Taştan, C.; Çakırsoy, D.; Turan, R.D.; Seyis, U.; Elek, M.; Karakuş, G.S.; Günaydın, Ö.S.; Abanuz, S.; et al. In Vitro FVIII-Encoding Transgenic Mesenchymal Stem Cells Maintain Successful Coagulation in FVIII-Deficient Plasma Mimicking Hemophilia A. Turk. J. Hematol. 2023, 40, 118–124. [Google Scholar] [CrossRef]
- Bu, Z.; Lou, J.; Xu, W.; Zhang, L.; Tang, Y. Human Umbilical Cord Mesenchymal Stem Cell-Based Gene Therapy for Hemophilia B Using ScAAV-DJ/8-LP1-HFIXco Transduction. Stem Cell Res. Ther. 2024, 15, 210. [Google Scholar] [CrossRef]
- Lara-Navarro, I.J.; Jave-Suárez, L.F.; Marchal, J.A.; Jaloma-Cruz, A.R. CRISPR/Cas9 Edition of the F9 Gene in Human Mesenchymal Stem Cells for Hemophilia B Therapy. Life 2024, 14, 1640. [Google Scholar] [CrossRef]
- Barbon, S.; Stocco, E.; Rajendran, S.; Zardo, L.; Macchi, V.; Grandi, C.; Tagariello, G.; Porzionato, A.; Radossi, P.; De Caro, R.; et al. In Vitro Conditioning of Adipose-Derived Mesenchymal Stem Cells by the Endothelial Microenvironment: Modeling Cell Responsiveness towards Non-Genetic Correction of Haemophilia A. Int. J. Mol. Sci. 2022, 23, 7282. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.-T.; Yen, C.-C.; Fan, H.-C.; Chen, J.-K.; Chen, M.-S.; Lan, Y.-W.; Yang, S.-H.; Chen, C.-M. In Utero Cell Treatment of Hemophilia A Mice via Human Amniotic Fluid Mesenchymal Stromal Cell Engraftment. Int. J. Mol. Sci. 2023, 24, 16411. [Google Scholar] [CrossRef]
- Qiu, L.; Xie, M.; Zhou, M.; Liu, X.; Hu, Z.; Wu, L. Restoration of FVIII Function and Phenotypic Rescue in Hemophilia A Mice by Transplantation of MSCs Derived From F8-Modified IPSCs. Front. Cell Dev. Biol. 2021, 9, 630353. [Google Scholar] [CrossRef]
- Dean, J.C.S. Marfan Syndrome: Clinical Diagnosis and Management. Eur. J. Hum. Genet. 2007, 15, 724–733. [Google Scholar] [CrossRef]
- Aalders, J.; Muiño Mosquera, L.; van Hengel, J. Human Stem Cell Models for Marfan Syndrome: A Brief Overview of the Rising Star in Disease Modelling. Front. Cell Dev. Biol. 2024, 12, 1498669. [Google Scholar] [CrossRef]
- Zein Abdin, Z.; Yin, H.; Giannis, C.; Hsieh, R.; Pickering, J.G.; Chandy, M. Harnessing IPSCs to Model Marfan Syndrome: Advancing Clinical Diagnosis and Drug Discovery. Curr. Treat. Options Cardiovasc. Med. 2025, 27, 20. [Google Scholar] [CrossRef]
- Nakamura, K.; Dalal, A.R.; Yokoyama, N.; Pedroza, A.J.; Kusadokoro, S.; Mitchel, O.; Gilles, C.; Masoudian, B.; Leipzig, M.; Casey, K.M.; et al. Lineage-Specific Induced Pluripotent Stem Cell-Derived Smooth Muscle Cell Modeling Predicts Integrin Alpha-V Antagonism Reduces Aortic Root Aneurysm Formation in Marfan Syndrome Mice. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1134–1153. [Google Scholar] [CrossRef] [PubMed]
- Davaapil, H.; McNamara, M.; Granata, A.; Macrae, R.G.C.; Hirano, M.; Fitzek, M.; Aragon-Martin, J.A.; Child, A.; Smith, D.M.; Sinha, S. A Phenotypic Screen of Marfan Syndrome IPSC-Derived Vascular Smooth Muscle Cells Uncovers GSK3β as a New Target. Stem Cell Rep. 2023, 18, 555–569. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Ming, Y.; Xiang, B.; Zhou, X.; Chen, Y.; Chen, N.; Abudupataer, M.; Zhu, S.; Sun, X.; et al. A HiPSC-Derived Lineage-Specific Vascular Smooth Muscle Cell-on-a-Chip Identifies Aortic Heterogeneity across Segments. Lab Chip 2023, 23, 1835–1851. [Google Scholar] [CrossRef] [PubMed]
- Aalders, J.; Léger, L.; Van der Meeren, L.; Sinha, S.; Skirtach, A.G.; De Backer, J.; van Hengel, J. Three-Dimensional Co-Culturing of Stem Cell-Derived Cardiomyocytes and Cardiac Fibroblasts Reveals a Role for Both Cell Types in Marfan-Related Cardiomyopathy. Matrix Biol. 2024, 126, 14–24. [Google Scholar] [CrossRef]
- Shetty, D.; Sinha, S. BS25 Aberrant Mechano-Transduction in IPSC-Derived Vascular Smooth Muscle Cells Modelling Aortic Aneurysm in Marfan Syndrome. In Proceedings of the British Cardiovascular Society Annual Conference, ‘Future-proofing Cardiology for the next 10 years’, 5–7 June 2023, Manchester, UK; BMJ Publishing Group Ltd.: London, UK; British Cardiovascular Society: London, UK, 2023; Volume 109, pp. A262.2–A263.2. [Google Scholar]
- Wiener, R.J.; Schaniel, C.; Ramirez, F.; Costa, K.D. Nanoindentation of IPSC-Derived Aortic Smooth Muscle Cells Reveals a Biomechanical and Developmental Basis for Aneurysm Localization in Marfan Syndrome. Biophys. J. 2021, 120, 63a. [Google Scholar] [CrossRef]
- Kusadokoro, S.; Yokoyama, N.; Kim, J.; Bolar, N.; Dalal, A.; Pedroza, A.; Gilles, C.; Puaala, A.M.; Klinder, A.; Yamaguchi, A.; et al. Lineage-Specific IPSC Derived Smooth Muscle Cells Predict Mannose Receptor C Type 2 Deficiency Accelerates Aortic Root Enlargement in Marfan Syndrome Mice via Exacerbating Collagen Deposition. Circulation 2024, 150, A4143962. [Google Scholar] [CrossRef]
- Escopete, S.S.; Ariyasinghe, N.R.; Santos, R.D.S.; Gross, A.; Sareen, D.; Parker, S.J. Uncovering the Effects of Estrogen in an IPSC Derived-Vascular Smooth Muscle Model of Marfan Syndrome. FASEB J. 2022, 36. [Google Scholar] [CrossRef]
- Spitalieri, P.; Marini, M.; Scioli, M.G.; Murdocca, M.; Longo, G.; Orlandi, A.; Novelli, G.; Sangiuolo, F. Effects of Simulated Microgravity on Wild Type and Marfan HiPSCs-Derived Embryoid Bodies. Cell. Mol. Bioeng. 2021, 14, 613–626. [Google Scholar] [CrossRef]
- Dawson, A.; Li, Y.; Li, Y.; Ren, P.; Vasquez, H.G.; Zhang, C.; Rebello, K.R.; Ageedi, W.; Azares, A.R.; Mattar, A.B.; et al. Single-Cell Analysis of Aneurysmal Aortic Tissue in Patients with Marfan Syndrome Reveals Dysfunctional TGF-β Signaling. Genes 2022, 13, 95. [Google Scholar] [CrossRef]
- Asano, K.; Cantalupo, A.; Sedes, L.; Ramirez, F. The Multiple Functions of Fibrillin-1 Microfibrils in Organismal Physiology. Int. J. Mol. Sci. 2022, 23, 1892. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Yan, L.; Stoddard, C.; Wang, X.; Yue, Z.; Crandall, L.; Robinson, T.; Chang, Y.; Denton, K.; Li, E.; et al. Recapitulating and Correcting Marfan Syndrome in a Cellular Model. Int. J. Biol. Sci. 2017, 13, 588–603. [Google Scholar] [CrossRef]
- Cutting, G.R. Cystic Fibrosis Genetics: From Molecular Understanding to Clinical Application. Nat. Rev. Genet. 2015, 16, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Lyczak, J.B.; Cannon, C.L.; Pier, G.B. Lung Infections Associated with Cystic Fibrosis. Clin. Microbiol. Rev. 2002, 15, 194–222. [Google Scholar] [CrossRef]
- Kiedrowski, M.R.; Bomberger, J.M. Viral-Bacterial Co-Infections in the Cystic Fibrosis Respiratory Tract. Front. Immunol. 2018, 9, 3067. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, A.S.; Amato, F.; Gentzsch, M. Patient-Derived Cell Models for Personalized Medicine Approaches in Cystic Fibrosis. J. Cyst. Fibros. 2023, 22, S32–S38. [Google Scholar] [CrossRef]
- Darwish, T.; Al-Khulaifi, A.; Ali, M.; Mowafy, R.; Arredouani, A.; Doi, S.A.; Emara, M.M. Assessing the Consistency of IPSC and Animal Models in Cystic Fibrosis Modelling: A Metaanalysis. PLoS ONE 2022, 17, e0272091. [Google Scholar] [CrossRef]
- Jiang, J.X.; Wellhauser, L.; Laselva, O.; Utkina, I.; Bozoky, Z.; Gunawardena, T.; Ngan, Z.; Xia, S.; Di Paola, M.; Eckford, P.D.W.; et al. A New Platform for High-Throughput Therapy Testing on IPSC-Derived Lung Progenitor Cells from Cystic Fibrosis Patients. Stem Cell Rep. 2021, 16, 2825–2837. [Google Scholar] [CrossRef]
- Berical, A.; Lee, R.E.; Lu, J.; Beermann, M.L.; Le Suer, J.A.; Mithal, A.; Thomas, D.; Ranallo, N.; Peasley, M.; Stuffer, A.; et al. A Multimodal IPSC Platform for Cystic Fibrosis Drug Testing. Nat. Commun. 2022, 13, 4270. [Google Scholar] [CrossRef]
- Wang, R.; Simone-Roach, C.; Lindstrom-Vautrin, J.; Wang, F.; Rollins, S.; Bawa, P.S.; Lu, J.; Tang, Y.; Beermann, M.L.; Schlaeger, T.; et al. De Novo Generation of Pulmonary Ionocytes from Normal and Cystic Fibrosis Human Induced Pluripotent Stem Cells. Am. J. Respir. Crit. Care Med. 2023, 207, 1249–1253. [Google Scholar] [CrossRef]
- Vonk, A.M.; van Mourik, P.; Ramalho, A.S.; Silva, I.A.L.; Statia, M.; Kruisselbrink, E.; Suen, S.W.F.; Dekkers, J.F.; Vleggaar, F.P.; Houwen, R.H.J.; et al. Protocol for Application, Standardization and Validation of the Forskolin-Induced Swelling Assay in Cystic Fibrosis Human Colon Organoids. STAR Protoc. 2020, 1, 100019. [Google Scholar] [CrossRef] [PubMed]
- Daoud, A.; Xia, S.; Laselva, O.; Jiang, J.; Bear, C.E. Testing Organ-Specific Responses to Therapies in Tissues Differentiated from Cystic Fibrosis Patient Derived IPSCs. Stem Cell Res. 2025, 83, 103653. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.A.L.; Laselva, O.; Lopes-Pacheco, M. Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J. Pers. Med. 2022, 12, 1321. [Google Scholar] [CrossRef]
- Roesch, E.A.; Bonfield, T.L.; Lazarus, H.M.; Reese, J.; Hilliard, K.; Hilliard, J.; Khan, U.; Heltshe, S.; Gluvna, A.; Dasenbrook, E.; et al. A Phase I Study Assessing the Safety and Tolerability of Allogeneic Mesenchymal Stem Cell Infusion in Adults with Cystic Fibrosis. J. Cyst. Fibros. 2023, 22, 407–413. [Google Scholar] [CrossRef]
- Weiss, D.J.; Rolandsson Enes, S. MSCs Interaction with the Host Lung Microenvironment: An Overlooked Aspect? Front. Immunol. 2022, 13, 1072257. [Google Scholar] [CrossRef] [PubMed]
- Beccia, E.; Daniello, V.; Laselva, O.; Leccese, G.; Mangiacotti, M.; Di Gioia, S.; La Bella, G.; Guerra, L.; Matteo, M.; Angiolillo, A.; et al. Human Amniotic Mesenchymal Stem Cells and Fibroblasts Accelerate Wound Repair of Cystic Fibrosis Epithelium. Life 2022, 12, 756. [Google Scholar] [CrossRef]
- Wang, G.; Bunnell, B.A.; Painter, R.G.; Quiniones, B.C.; Tom, S.; Lanson, N.A.; Spees, J.L.; Bertucci, D.; Peister, A.; Weiss, D.J.; et al. Adult Stem Cells from Bone Marrow Stroma Differentiate into Airway Epithelial Cells: Potential Therapy for Cystic Fibrosis. Proc. Natl. Acad. Sci. USA 2005, 102, 186–191. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Gong, X.; Su, H.; Han, X. Secretion of Rat Tracheal Epithelial Cells Induces Mesenchymal Stem Cells to Differentiate into Epithelial Cells. Cell Biol. Int. 2012, 36, 169–175. [Google Scholar] [CrossRef]
- Hu, J.; Liang, R.; Li, M.; Zhang, X.; Li, M.; Qu, H.; Wang, Z. Differentiation of Human Umbilical Cord Mesenchymal Stem Cells into Functional Intestinal Epithelial Cells via Conditioned Medium Co-Culture. Gene 2025, 934, 149008. [Google Scholar] [CrossRef]
- Mercuri, E.; Bönnemann, C.G.; Muntoni, F. Muscular Dystrophies. Lancet 2019, 394, 2025–2038. [Google Scholar] [CrossRef]
- Abati, E.; Sclarandi, E.; Comi, G.P.; Parente, V.; Corti, S. Perspectives on HiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. Int. J. Mol. Sci. 2021, 22, 9630. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.I.; Ito, T.; Miya, F.; Shimojo, D.; Arimoto, K.; Onodera, K.; Okada, R.; Nagashima, T.; Yamamoto, K.; Khatun, Z.; et al. Simple and Efficient Differentiation of Human IPSCs into Contractible Skeletal Muscles for Muscular Disease Modeling. Sci. Rep. 2023, 13, 8146. [Google Scholar] [CrossRef] [PubMed]
- in ‘t Groen, S.L.M.; Franken, M.; Bock, T.; Krüger, M.; de Greef, J.C.; Pijnappel, W.W.M.P. A Knock down Strategy for Rapid, Generic, and Versatile Modelling of Muscular Dystrophies in 3D-Tissue-Engineered-Skeletal Muscle. Skelet. Muscle 2024, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Serra, C.; Kalicharan, B.H.; Harding, J.; Rao, M. Challenges and Considerations of Preclinical Development for IPSC-Based Myogenic Cell Therapy. Cells 2024, 13, 596. [Google Scholar] [CrossRef]
- Eguchi, A.; Gonzalez, A.F.G.S.; Torres-Bigio, S.I.; Koleckar, K.; Birnbaum, F.; Zhang, J.Z.; Wang, V.Y.; Wu, J.C.; Artandi, S.E.; Blau, H.M. TRF2 Rescues Telomere Attrition and Prolongs Cell Survival in Duchenne Muscular Dystrophy Cardiomyocytes Derived from Human IPSCs. Proc. Natl. Acad. Sci. USA 2023, 120, e2209967120. [Google Scholar] [CrossRef]
- Dhoke, N.R.; Kim, H.; Azzag, K.; Crist, S.B.; Kiley, J.; Perlingeiro, R.C.R. A Novel CRISPR-Cas9 Strategy to Target DYSTROPHIN Mutations Downstream of Exon 44 in Patient-Specific DMD IPSCs. Cells 2024, 13, 972. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Zhu, M.; Han, R.Y.; Guo, S.; Han, R. Correction of DMD in Human IPSC-Derived Cardiomyocytes by Base-Editing-Induced Exon Skipping. Mol. Ther. Methods Clin. Dev. 2023, 28, 40–50. [Google Scholar] [CrossRef]
- Miura, Y.; Sato, M.; Kuwahara, T.; Ebata, T.; Tabata, Y.; Sakurai, H. Transplantation of Human IPSC-Derived Muscle Stem Cells in the Diaphragm of Duchenne Muscular Dystrophy Model Mice. PLoS ONE 2022, 17, e0266391. [Google Scholar] [CrossRef]
- Crist, S.B.; Azzag, K.; Kiley, J.; Coleman, I.; Magli, A.; Perlingeiro, R.C.R. The Adult Environment Promotes the Transcriptional Maturation of Human IPSC-Derived Muscle Grafts. NPJ Regen. Med. 2024, 9, 16. [Google Scholar] [CrossRef]
- Cen, H.; Fan, P.; Ding, Y.; Luo, B.; Luo, H.; Chen, M.; Zhang, Y. IPSCs Ameliorate Hypoxia-Induced Autophagy and Atrophy in C2C12 Myotubes via the AMPK/ULK1 Pathway. Biol. Res. 2023, 56, 29. [Google Scholar] [CrossRef]
- Lisowska, M.; Rowińska, M.; Suszyńska, A.; Bearzi, C.; Łaczmańska, I.; Hanusek, J.; Kunik, A.; Dzianisava, V.; Rzepecki, R.; Machowska, M.; et al. Human IPSC-Derived Muscle Cells as a New Model for Investigation of EDMD1 Pathogenesis. Int. J. Mol. Sci. 2025, 26, 1539. [Google Scholar] [CrossRef] [PubMed]
- Kameda, S.; Higo, S.; Shiba, M.; Kondo, T.; Li, J.; Liu, L.; Tabata, T.; Inoue, H.; Okuno, S.; Ogawa, S.; et al. Modeling Reduced Contractility and Stiffness Using IPSC-Derived Cardiomyocytes Generated From Female Becker Muscular Dystrophy Carrier. JACC Basic Transl. Sci. 2023, 8, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Uchimura, T.; Asano, T.; Nakata, T.; Hotta, A.; Sakurai, H. A Muscle Fatigue-like Contractile Decline Was Recapitulated Using Skeletal Myotubes from Duchenne Muscular Dystrophy Patient-Derived IPSCs. Cell Rep. Med. 2021, 2, 100298. [Google Scholar] [CrossRef]
- Yasutake, H.; Lee, J.K.; Hashimoto, A.; Masuyama, K.; Li, J.; Kuramoto, Y.; Higo, S.; Hikoso, S.; Hidaka, K.; Naito, A.T.; et al. Decreased YAP Activity Reduces Proliferative Ability in Human Induced Pluripotent Stem Cell of Duchenne Muscular Dystrophy Derived Cardiomyocytes. Sci. Rep. 2021, 11, 10351. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, F.; Eguchi, A.; Pardon, G.; Chang, A.C.Y.; Blau, H.M. Tamoxifen Treatment Ameliorates Contractile Dysfunction of Duchenne Muscular Dystrophy Stem Cell-Derived Cardiomyocytes on Bioengineered Substrates. NPJ Regen. Med. 2022, 7, 19. [Google Scholar] [CrossRef]
- Giammarino, L.; Santini, L.; Palandri, C.; Musumeci, M.; Langione, M.; Pioner, J.; Ferrantini, C.; Coppini, R.; Cerbai, E.; Poggesi, C. Extracellular Stiffness as a Determinant of Cardiac Dysfunction in Duchenne Muscular Distrophy: A Study on Human IPSC Derived Cardiomyocytes. Cardiovasc. Res. 2022, 118, cvac066-132. [Google Scholar] [CrossRef]
- Jimenez-Vazquez, E.N.; Arad, M.; Macías, Á.; Vera-Pedrosa, M.L.; Cruz, F.M.; Gutierrez, L.K.; Cuttita, A.J.; da Rocha, A.M.; Herron, T.J.; Ponce-Balbuena, D.; et al. SNTA1 Gene Rescues Ion Channel Function and Is Antiarrhythmic in Cardiomyocytes Derived from Induced Pluripotent Stem Cells from Muscular Dystrophy Patients. Elife 2022, 11, e76576. [Google Scholar] [CrossRef] [PubMed]
- Soussi, S.; Savchenko, L.; Rovina, D.; Iacovoni, J.S.; Gottinger, A.; Viallettes, M.; Pioner, J.M.; Farini, A.; Mallia, S.; Rabino, M.; et al. IPSC Derived Cardiac Fibroblasts of DMD Patients Show Compromised Actin Microfilaments, Metabolic Shift and pro-Fibrotic Phenotype. Biol. Direct 2023, 18, 41. [Google Scholar] [CrossRef]
- Duelen, R.; Costamagna, D.; Gilbert, G.; Waele, L.D.; Goemans, N.; Desloovere, K.; Verfaillie, C.M.; Sipido, K.R.; Buyse, G.M.; Sampaolesi, M. Human IPSC Model Reveals a Central Role for NOX4 and Oxidative Stress in Duchenne Cardiomyopathy. Stem Cell Rep. 2022, 17, 352–368. [Google Scholar] [CrossRef]
- Akat, A.; Karaöz, E. Cell Therapy Strategies on Duchenne Muscular Dystrophy: A Systematic Review of Clinical Applications. Stem Cell Rev. Rep. 2024, 20, 138–158. [Google Scholar] [CrossRef]
- Park, S.E.; Jeong, J.B.; Oh, S.J.; Kim, S.J.; Kim, H.; Choi, A.; Choi, S.; Oh, S.; Ryu, G.H.; Lee, J.; et al. Wharton’s Jelly-Derived Mesenchymal Stem Cells Reduce Fibrosis in a Mouse Model of Duchenne Muscular Dystrophy by Upregulating MicroRNA 499. Biomedicines 2021, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Świątkowska-Flis, B.; Zdolińska-Malinowska, I.; Sługocka, D.; Boruczkowski, D. The Use of Umbilical Cord-Derived Mesenchymal Stem Cells in Patients with Muscular Dystrophies: Results from Compassionate Use in Real-Life Settings. Stem Cells Transl. Med. 2021, 10, 1372–1383. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, S.E.; Kim, M.; Kim, H.; Kwon, J.-Y.; Jeon, H.B.; Chang, J.W.; Lee, J. Safety and Tolerability of Wharton’s Jelly-Derived Mesenchymal Stem Cells for Patients With Duchenne Muscular Dystrophy: A Phase 1 Clinical Study. J. Clin. Neurol. 2025, 21, 40. [Google Scholar] [CrossRef] [PubMed]
- Yokomizo-Goto, M.; Takenaka-Ninagawa, N.; Zhao, C.; Bourgeois Yoshioka, C.K.; Miki, M.; Motoike, S.; Inada, Y.; Zujur, D.; Theoputra, W.; Jin, Y.; et al. Distinct Muscle Regenerative Capacity of Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells in Ullrich Congenital Muscular Dystrophy Model Mice. Stem Cell Res. Ther. 2024, 15, 340. [Google Scholar] [CrossRef]
- Sakurai, H.; Goto, M.; Takenaka-Ninagawa, N.; Harada, A.; Ikeya, M. 07P Development of Cell Therapy for Ullrich Congenital Muscular Dystrophy by IPSC-Derived Mesenchymal Stromal Cell. Neuromuscul. Disord. 2024, 43, 104441.205. [Google Scholar] [CrossRef]
- Shen, O.Y.-J.; Chen, Y.-F.; Xu, H.-T.; Lee, C.-W. The Efficacy of Naïve versus Modified Mesenchymal Stem Cells in Improving Muscle Function in Duchenne Muscular Dystrophy: A Systematic Review. Biomedicines 2021, 9, 1097. [Google Scholar] [CrossRef]
- Nitahara-Kasahara, Y.; Kuraoka, M.; Oda, Y.; Hayashita-Kinoh, H.; Takeda, S.; Okada, T. Enhanced Cell Survival and Therapeutic Benefits of IL-10-Expressing Multipotent Mesenchymal Stromal Cells for Muscular Dystrophy. Stem Cell Res. Ther. 2021, 12, 105. [Google Scholar] [CrossRef]
- Kiseleva, E.; Serbina, O.; Karpukhina, A.; Mouly, V.; Vassetzky, Y.S. Interaction between Mesenchymal Stem Cells and Myoblasts in the Context of Facioscapulohumeral Muscular Dystrophy Contributes to the Disease Phenotype. J. Cell. Physiol. 2022, 237, 3328–3337. [Google Scholar] [CrossRef]
- Budzynska, K.; Siemionow, M.; Stawarz, K.; Chambily, L.; Siemionow, K. Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration. Biomolecules 2024, 14, 575. [Google Scholar] [CrossRef]
- Siemionow, M.; Bocian, K.; Bozyk, K.T.; Ziemiecka, A.; Siemionow, K. Chimeric Cell Therapy Transfers Healthy Donor Mitochondria in Duchenne Muscular Dystrophy. Stem Cell Rev. Rep. 2024, 20, 1819–1829. [Google Scholar] [CrossRef]
- Siemionow, M.; Biegański, G.; Niezgoda, A.; Wachowiak, J.; Czarnota, J.; Siemionow, K.; Ziemiecka, A.; Sikorska, M.H.; Bożyk, K.; Heydemann, A. Safety and Efficacy of DT-DEC01 Therapy in Duchenne Muscular Dystrophy Patients: A 12—Month Follow-Up Study After Systemic Intraosseous Administration. Stem Cell Rev. Rep. 2023, 19, 2724–2740. [Google Scholar] [CrossRef] [PubMed]
- Forlino, A.; Marini, J.C. Osteogenesis Imperfecta. Lancet 2016, 387, 1657–1671. [Google Scholar] [CrossRef]
- Horton, W.A.; Hall, J.G.; Hecht, J.T. Achondroplasia. Lancet 2007, 370, 162–172. [Google Scholar] [CrossRef]
- Hojo, H.; Tani, S.; Ohba, S. Modeling of Skeletal Development and Diseases Using Human Pluripotent Stem Cells. J. Bone Miner. Res. 2024, 40, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ou, M.; Dai, G.; Zhu, P.; Luo, Q.; Chen, J.; Shah, Z.; Samokhvalov, I.M.; Yin, L.; Sun, G.; et al. Genotypic Characterization of a Chinese Family with Osteogenesis Imperfecta and Generation of Disease-Specific Induced Pluripotent Stem Cells. Front. Biosci. 2023, 28, 336. [Google Scholar] [CrossRef]
- Srivastava, A.; Siwach, I.; Rockman-Greenberg, C.; Dhingra, S. Reprogramming of Hypophosphatasia Patient Cells to Generate a New Human IPSC Cell Line (UOMi009-A). Stem Cell Res. 2022, 64, 102921. [Google Scholar] [CrossRef] [PubMed]
- Pretemer, Y.; Kawai, S.; Nagata, S.; Nishio, M.; Watanabe, M.; Tamaki, S.; Alev, C.; Yamanaka, Y.; Xue, J.Y.; Wang, Z.; et al. Differentiation of Hypertrophic Chondrocytes from Human IPSCs for the In Vitro Modeling of Chondrodysplasias. Stem Cell Rep. 2021, 16, 610–625. [Google Scholar] [CrossRef]
- Jung, H.; Rim, Y.A.; Park, N.; Nam, Y.; Ju, J.H. Restoration of Osteogenesis by CRISPR/Cas9 Genome Editing of the Mutated COL1A1 Gene in Osteogenesis Imperfecta. J. Clin. Med. 2021, 10, 3141. [Google Scholar] [CrossRef]
- Zou, H.; Guan, M.; Li, Y.; Luo, F.; Wang, W.; Qin, Y. Targeted Gene Correction and Functional Recovery in Achondroplasia Patient-Derived IPSCs. Stem Cell Res. Ther. 2021, 12, 485. [Google Scholar] [CrossRef]
- Kondo, T.; Thaweesapphithak, S.; Ambo, S.; Otake, K.; Ohori-Morita, Y.; Mori, S.; Vinaikosol, N.; Porntaveetus, T.; Egusa, H. Fabrication of Hard Tissue Constructs from Induced Pluripotent Stem Cells for Exploring Mechanisms of Hereditary Tooth/Skeletal Dysplasia. Int. J. Mol. Sci. 2025, 26, 804. [Google Scholar] [CrossRef]
- Ali, E.A.M.; Smaida, R.; Meyer, M.; Ou, W.; Li, Z.; Han, Z.; Benkirane-Jessel, N.; Gottenberg, J.E.; Hua, G. IPSCs Chondrogenic Differentiation for Personalized Regenerative Medicine: A Literature Review. Stem Cell Res. Ther. 2024, 15, 185. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Liu, J.; Liu, S.; Xiao, P.; Chen, Z.; Chen, H.; Huang, W.; Lei, Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. Small Methods 2024, 8, 2400436. [Google Scholar] [CrossRef] [PubMed]
- Lang, E.; Semon, J.A. Mesenchymal Stem Cells in the Treatment of Osteogenesis Imperfecta. Cell Regen. 2023, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Lach, M.S.; Rosochowicz, M.A.; Richter, M.; Jagiełło, I.; Suchorska, W.M.; Trzeciak, T. The Induced Pluripotent Stem Cells in Articular Cartilage Regeneration and Disease Modelling: Are We Ready for Their Clinical Use? Cells 2022, 11, 529. [Google Scholar] [CrossRef]
- Mollentze, J.; Durandt, C.; Pepper, M.S. An in Vitro and in Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int. 2021, 2021, 9919361. [Google Scholar] [CrossRef]
- Infante, A.; Alcorta-Sevillano, N.; Macías, I.; Cabodevilla, L.; Medhat, D.; Lafaver, B.; Crawford, T.K.; Phillips, C.L.; Bueno, A.M.; Sagastizabal, B.; et al. Galunisertib Downregulates Mutant Type I Collagen Expression and Promotes MSCs Osteogenesis in Pediatric Osteogenesis Imperfecta. Biomed. Pharmacother. 2024, 175, 116725. [Google Scholar] [CrossRef]
- Duangchan, T.; Tawonsawatruk, T.; Angsanuntsukh, C.; Trachoo, O.; Hongeng, S.; Kitiyanant, N.; Supokawej, A. Amelioration of Osteogenesis in IPSC-Derived Mesenchymal Stem Cells from Osteogenesis Imperfecta Patients by Endoplasmic Reticulum Stress Inhibitor. Life Sci. 2021, 278, 119628. [Google Scholar] [CrossRef]
- Claeys, L.; Zhytnik, L.; Ventura, L.; Wisse, L.E.; Eekhoff, E.M.W.; Pals, G.; Bravenboer, N.; Heine, V.M.; Micha, D. In Vitro Modelling of Osteogenesis Imperfecta with Patient-Derived Induced Mesenchymal Stem Cells. Int. J. Mol. Sci. 2024, 25, 3417. [Google Scholar] [CrossRef]
- Escribá, R.; Ferrer-Lorente, R.; Raya, Á. Inborn Errors of Metabolism: Lessons from IPSC Models. Rev. Endocr. Metab. Disord. 2021, 22, 1189–1200. [Google Scholar] [CrossRef]
- Blau, N.; Van Spronsen, F.J.; Levy, H.L. Phenylketonuria. Lancet 2010, 376, 1417–1427. [Google Scholar] [CrossRef]
- Veleva, D.; Ay, M.; Ovchinnikov, D.A.; Prowse, A.B.J.; Menezes, M.J.; Nafisinia, M. Generation of Two Lymphoblastoid-Derived Induced Pluripotent Stem Cell (IPSC) Lines from Patients with Phenylketonuria. Stem Cell Res. 2024, 77, 103407. [Google Scholar] [CrossRef] [PubMed]
- Veleva, D.; Ay, M.; Ovchinnikov, D.A.; Prowse, A.B.J.; Menezes, M.J.; Nafisinia, M. Generation of Fibroblast-Derived Induced Pluripotent Stem Cell (IPSC) Lines from Two Paediatric Patients with Phenylketonuria. Stem Cell Res. 2024, 77, 103405. [Google Scholar] [CrossRef]
- Borges, A.C.; Broersen, K.; Leandro, P.; Fernandes, T.G. Engineering Organoids for in Vitro Modeling of Phenylketonuria. Front. Mol. Neurosci. 2022, 14, 787242. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Lee, J.; Park, J.C.; Kim, K.H.; Ko, J.M.; Park, S.H.; Kim, S.K.; Mook-Jung, I.; Lee, J.Y. Neurotoxicity of Phenylalanine on Human IPSC-Derived Cerebral Organoids. Mol. Genet. Metab. 2022, 136, 132–144. [Google Scholar] [CrossRef]
- Nelson, M.T.; Charbonneau, M.R.; Coia, H.G.; Castillo, M.J.; Holt, C.; Greenwood, E.S.; Robinson, P.J.; Merrill, E.A.; Lubkowicz, D.; Mauzy, C.A. Characterization of an Engineered Live Bacterial Therapeutic for the Treatment of Phenylketonuria in a Human Gut-on-a-Chip. Nat. Commun. 2021, 12, 2805. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, S.F.; Tourkova, I.L.; Sudano, C.R.; Larrouture, Q.C.; Blair, H.C. A New View of Bone Loss in Phenylketonuria. Organogenesis 2021, 17, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, S.F.; Sudano, C.; Phua, Y.L.; Tourkova, I.L.; Spridik, K.; Goetzman, E.S.; Vockley, J.; Blair, H.C. Mesenchymal Stem Cell Energy Deficit and Oxidative Stress Contribute to Osteopenia in the Pahenu2 Classical PKU Mouse. Mol. Genet. Metab. 2021, 132, 173–179. [Google Scholar] [CrossRef]
- Dobrowolski, S.F.; Phua, Y.L.; Tourkova, I.L.; Sudano, C.; Vockley, J.; Larrouture, Q.C.; Blair, H.C. Glutamine Energy Substrate Anaplerosis Increases Bone Density in the Pahenu2 Classical PKU Mouse in the Absence of Phenylalanine Restriction. JIMD Rep. 2022, 63, 446–452. [Google Scholar] [CrossRef]
- Crippa, S.; Bernardo, M.E. Mesenchymal Stromal Cells: Role in the BM Niche and in the Support of Hematopoietic Stem Cell Transplantation. HemaSphere 2018, 2, e151. [Google Scholar] [CrossRef]
- Boissel, L.; Tuncer, H.H.; Betancur, M.; Wolfberg, A.; Klingemann, H. Umbilical Cord Mesenchymal Stem Cells Increase Expansion of Cord Blood Natural Killer Cells. Biol. Blood Marrow Transplant. 2008, 14, 1031–1038. [Google Scholar] [CrossRef]
- Yoshihara, M.; Hayashizaki, Y.; Murakawa, Y. Genomic Instability of IPSCs: Challenges Towards Their Clinical Applications. Stem Cell Rev. Rep. 2017, 13, 7–16. [Google Scholar] [CrossRef]
- Turinetto, V.; Orlando, L.; Giachino, C. Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process. Int. J. Mol. Sci. 2017, 18, 1952. [Google Scholar] [CrossRef]
- Binato, R.; de Souza Fernandez, T.; Lazzarotto-Silva, C.; Du Rocher, B.; Mencalha, A.; Pizzatti, L.; Bouzas, L.F.; Abdelhay, E. Stability of Human Mesenchymal Stem Cells during in Vitro Culture: Considerations for Cell Therapy. Cell Prolif. 2013, 46, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Madrid, M.; Lakshmipathy, U.; Zhang, X.; Bharti, K.; Wall, D.M.; Sato, Y.; Muschler, G.; Ting, A.; Smith, N.; Deguchi, S.; et al. Considerations for the Development of IPSC-Derived Cell Therapies: A Review of Key Challenges by the JSRM-ISCT IPSC Committee. Cytotherapy 2024, 26, 1382–1399. [Google Scholar] [CrossRef]
- Steeg, R.; Mueller, S.C.; Mah, N.; Holst, B.; Cabrera-Socorro, A.; Stacey, G.N.; De Sousa, P.A.; Courtney, A.; Zimmermann, H. EBiSC Best Practice: How to Ensure Optimal Generation, Qualification, and Distribution of IPSC Lines. Stem Cell Rep. 2021, 16, 1853–1867. [Google Scholar] [CrossRef] [PubMed]
- Raposo, A.C.; Caldas, P.; Jeremias, J.; Arez, M.; Cazaux Mateus, F.; Barbosa, P.; Sousa-Luís, R.; Água, F.; Oxley, D.; Mupo, A.; et al. Gene Reactivation upon Erosion of X Chromosome Inactivation in Female HiPSCs Is Predictable yet Variable and Persists through Differentiation. Stem Cell Rep. 2025, 20, 102472. [Google Scholar] [CrossRef]
- Wilson, A.J.; Rand, E.; Webster, A.J.; Genever, P.G. Characterisation of Mesenchymal Stromal Cells in Clinical Trial Reports: Analysis of Published Descriptors. Stem Cell Res. Ther. 2021, 12, 360. [Google Scholar] [CrossRef] [PubMed]
- Stroncek, D.F.; Jin, P.; McKenna, D.H.; Takanashi, M.; Fontaine, M.J.; Pati, S.; Schäfer, R.; Peterson, E.; Benedetti, E.; Reems, J.A. Human Mesenchymal Stromal Cell (MSC) Characteristics Vary Among Laboratories When Manufactured From the Same Source Material: A Report by the Cellular Therapy Team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Front. Cell Dev. Biol. 2020, 8, 458. [Google Scholar] [CrossRef]
- García-Muñoz, E.; Vives, J. Towards the Standardization of Methods of Tissue Processing for the Isolation of Mesenchymal Stromal Cells for Clinical Use. Cytotechnology 2021, 73, 513–522. [Google Scholar] [CrossRef]
- Lechanteur, C.; Briquet, A.; Bettonville, V.; Baudoux, E.; Beguin, Y. MSC Manufacturing for Academic Clinical Trials: From a Clinical-Grade to a Full GMP-Compliant Process. Cells 2021, 10, 1320. [Google Scholar] [CrossRef]
- Smolinska, A.; Bzinkowska, A.; Rybkowska, P.; Chodkowska, M.; Sarnowska, A. Promising Markers in the Context of Mesenchymal Stem/Stromal Cells Subpopulations with Unique Properties. Stem Cells Int. 2023, 2023, 1842958. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Huang, Z.; Wu, D.; Kou, X.; Mao, X.; Shi, S. CD146 Controls the Quality of Clinical Grade Mesenchymal Stem Cells from Human Dental Pulp. Stem Cell Res. Ther. 2021, 12, 488. [Google Scholar] [CrossRef] [PubMed]
- Kunimatsu, R.; Rikitake, K.; Yoshimi, Y.; Putranti, N.A.R.; Hayashi, Y.; Tanimoto, K. Bone Differentiation Ability of CD146-Positive Stem Cells from Human Exfoliated Deciduous Teeth. Int. J. Mol. Sci. 2023, 24, 4048. [Google Scholar] [CrossRef]
- Tran, A.N.-T.; Kim, H.Y.; Oh, S.-Y.; Kim, H.S. CD49f and CD146: A Possible Crosstalk Modulates Adipogenic Differentiation Potential of Mesenchymal Stem Cells. Cells 2023, 13, 55. [Google Scholar] [CrossRef]
- Herrmann, M.; Stanić, B.; Hildebrand, M.; Alini, M.; Verrier, S. In Vitro Simulation of the Early Proinflammatory Phase in Fracture Healing Reveals Strong Immunomodulatory Effects of CD146-positive Mesenchymal Stromal Cells. J. Tissue Eng. Regen. Med. 2019, 13, 1466–1481. [Google Scholar] [CrossRef]
- Bikorimana, J.-P.; Saad, W.; Abusarah, J.; Lahrichi, M.; Talbot, S.; Shammaa, R.; Rafei, M. CD146 Defines a Mesenchymal Stromal Cell Subpopulation with Enhanced Suppressive Properties. Cells 2022, 11, 2263. [Google Scholar] [CrossRef]
- Kouroupis, D.; Bowles, A.; Willman, M.A.; Kaplan, L.; Correa, D. Enhanced Immunomodulatory Profile of Infrapatellar Fat Pad (IFP)-Derived MSC after Inflammatory Priming, 3D Spheroid Culture and CD146 Selection: A Cellular Alternative for Bone Marrow (BM) in Orthopedics. Cytotherapy 2019, 21, S66–S67. [Google Scholar] [CrossRef]
- Wu, C.C.; Liu, F.L.; Sytwu, H.K.; Tsai, C.Y.; Chang, D.M. CD146+ Mesenchymal Stem Cells Display Greater Therapeutic Potential than CD146- Cells for Treating Collagen-Induced Arthritis in Mice. Stem Cell Res. Ther. 2016, 7, 23. [Google Scholar] [CrossRef]
- Dalby, M.J.; Gadegaard, N.; Oreffo, R.O.C. Harnessing Nanotopography and Integrin-Matrix Interactions to Influence Stem Cell Fate. Nat. Mater. 2014, 13, 558–569. [Google Scholar] [CrossRef]
- Dalby, M.J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M.O.; Herzyk, P.; Wilkinson, C.D.W.; Oreffo, R.O.C. The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder. Nat. Mater. 2007, 6, 997–1003. [Google Scholar] [CrossRef]
- Ramaswamy, Y.; Roohani, I.; No, Y.J.; Madafiglio, G.; Chang, F.; Zhang, F.; Lu, Z.; Zreiqat, H. Nature-Inspired Topographies on Hydroxyapatite Surfaces Regulate Stem Cells Behaviour. Bioact. Mater. 2021, 6, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Walker, M.; Xiao, Y.; Donnelly, H.; Dalby, M.J.; Salmeron-Sanchez, M. The Influence of Nanotopography on Cell Behaviour through Interactions with the Extracellular Matrix—A Review. Bioact. Mater. 2022, 15, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, M.; Wang, P.; Zheng, K.; Wang, X.; Xie, W.; Pan, X.; Shen, R.; Liu, R.; Ding, J.; et al. Nanoscale Distribution of Bioactive Ligands on Biomaterials Regulates Cell Mechanosensing through Translocation of Actin into the Nucleus. Proc. Natl. Acad. Sci. USA 2025, 122, e2501264122. [Google Scholar] [CrossRef]
- McMurray, R.J.; Gadegaard, N.; Tsimbouri, P.M.; Burgess, K.V.; McNamara, L.E.; Tare, R.; Murawski, K.; Kingham, E.; Oreffo, R.O.C.; Dalby, M.J. Nanoscale Surfaces for the Long-Term Maintenance of Mesenchymal Stem Cell Phenotype and Multipotency. Nat. Mater. 2011, 10, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Klausen, L.H.; Zhang, W.; Jahed, Z.; Tsai, C.T.; Li, T.L.; Cui, B. Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis. Nano Lett. 2021, 21, 8518–8526. [Google Scholar] [CrossRef]
- Ross, E.A.; Turner, L.A.; Donnelly, H.; Saeed, A.; Tsimbouri, M.P.; Burgess, K.V.; Blackburn, G.; Jayawarna, V.; Xiao, Y.; Oliva, M.A.G.; et al. Nanotopography Reveals Metabolites That Maintain the Immunomodulatory Phenotype of Mesenchymal Stromal Cells. Nat. Commun. 2023, 14, 753. [Google Scholar] [CrossRef]
- Anderson, H.J.; Sahoo, J.K.; Wells, J.; van Nuffel, S.; Dhowre, H.S.; Oreffo, R.O.C.; Zelzer, M.; Ulijn, R.V.; Dalby, M.J. Cell-Controlled Dynamic Surfaces for Skeletal Stem Cell Growth and Differentiation. Sci. Rep. 2022, 12, 8165. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Xiong, Y.; Dong, L.; Li, X. Development of Hierarchical Porous Bioceramic Scaffolds with Controlled Micro/Nano Surface Topography for Accelerating Bone Regeneration. Mater. Sci. Eng. C 2021, 130, 112437. [Google Scholar] [CrossRef]
- He, L.; Sun, Z.; Li, J.; Zhu, R.; Niu, B.; Tam, K.L.; Xiao, Q.; Li, J.; Wang, W.; Tsui, C.Y.; et al. Electrical Stimulation at Nanoscale Topography Boosts Neural Stem Cell Neurogenesis through the Enhancement of Autophagy Signaling. Biomaterials 2021, 268, 120585. [Google Scholar] [CrossRef]
- Rodrigo-Navarro, A.; Sankaran, S.; Dalby, M.J.; del Campo, A.; Salmeron-Sanchez, M. Engineered Living Biomaterials. Nat. Rev. Mater. 2021, 6, 1175–1190. [Google Scholar] [CrossRef]
- Parra-Torrejón, B.; Jayawarna, V.; Rodrigo-Navarro, A.; Gonzalez-Valdivieso, J.; Dobre, O.; Ramírez-Rodríguez, G.B.; Salmeron-Sanchez, M.; Delgado-López, J.M. Bioinspired Mineralization of Engineered Living Materials to Promote Osteogenic Differentiation. Biomater. Adv. 2023, 154, 213587. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Zhang, X.; Yuan, J.; Chen, Y.; Ding, H.; Cao, X.; Huang, A. Biomaterial-Supported MSC Transplantation Enhances Cell–Cell Communication for Spinal Cord Injury. Stem Cell Res. Ther. 2021, 12, 36. [Google Scholar] [CrossRef]
- Yao, X.; Zhan, L.; Yan, Z.; Li, J.; Kong, L.; Wang, X.; Xiao, H.; Jiang, H.; Huang, C.; Ouyang, Y.; et al. Non-Electric Bioelectrical Analog Strategy by a Biophysical-Driven Nano-Micro Spatial Anisotropic Scaffold for Regulating Stem Cell Niche and Tissue Regeneration in a Neuronal Therapy. Bioact. Mater. 2023, 20, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xi, K.; Tang, J.; Wang, J.; Tang, Y.; Wu, L.; Xu, Y.; Xu, Z.; Chen, L.; Cui, W.; et al. Engineered Living Oriented Electrospun Fibers Regulate Stem Cell Para-Secretion and Differentiation to Promote Spinal Cord Repair. Adv. Healthc. Mater. 2023, 12, 2202785. [Google Scholar] [CrossRef]
- Kim, C.D.; Koo, K.M.; Kim, H.J.; Kim, T.H. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications. Biosensors 2024, 14, 407. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Zhang, C.; Thein-Han, W.; Hu, K.; Reynolds, M.A.; Bao, C.; Wang, P.; Zhao, L.; Xu, H.H.K. Co-Seeding Human Endothelial Cells with Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells on Calcium Phosphate Scaffold Enhances Osteogenesis and Vascularization in Rats. Tissue Eng. Part A 2017, 23, 546–555. [Google Scholar] [CrossRef]
- Roux, B.M.; Vaicik, M.K.; Shreshta, B.; Montelongo, S.; Stojkova, K.; Yang, F.; Guda, T.; Cinar, A.; Brey, E.M. In Vitro and in Vivo Evaluation of Vascular Networks Generated from IPSC-Derived Endothelial Cells. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Varzideh, F.; Pahlavan, S.; Ansari, H.; Halvaei, M.; Kostin, S.; Feiz, M.S.; Latifi, H.; Aghdami, N.; Braun, T.; Baharvand, H. Human Cardiomyocytes Undergo Enhanced Maturation in Embryonic Stem Cell-Derived Organoid Transplants. Biomaterials 2019, 192, 537–550. [Google Scholar] [CrossRef]
- Lee, C. Advanced Animal Replacement Testing Strategies Using Stem Cell and Organoids. Int. J. Stem Cells 2025, 18, 107. [Google Scholar] [CrossRef]
- Franzen, N.; van Harten, W.H.; Retèl, V.P.; Loskill, P.; van den Eijnden-van Raaij, J.; IJzerman, M. Impact of Organ-on-a-Chip Technology on Pharmaceutical R&D Costs. Drug Discov. Today 2019, 24, 1720–1724. [Google Scholar] [CrossRef]
- Zushin, P.J.H.; Mukherjee, S.; Wu, J.C. FDA Modernization Act 2.0: Transitioning beyond Animal Models with Human Cells, Organoids, and AI/ML-Based Approaches. J. Clin. Investig. 2023, 133, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Galipeau, J.; Sensébé, L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell 2018, 22, 824–833. [Google Scholar] [CrossRef]
- Beskow, L.M. Lessons from HeLa Cells: The Ethics and Policy of Biospecimens. Annu. Rev. Genom. Hum. Genet. 2016, 17, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Attwood, S.W.; Edel, M.J. IPS-Cell Technology and the Problem of Genetic Instability—Can It Ever Be Safe for Clinical Use? J. Clin. Med. 2019, 8, 288. [Google Scholar] [CrossRef] [PubMed]
- Nori, S.; Okada, Y.; Nishimura, S.; Sasaki, T.; Itakura, G.; Kobayashi, Y.; Renault-Mihara, F.; Shimizu, A.; Koya, I.; Yoshida, R.; et al. Long-Term Safety Issues of IPSC-Based Cell Therapy in a Spinal Cord Injury Model: Oncogenic Transformation with Epithelial-Mesenchymal Transition. Stem Cell Rep. 2015, 4, 360–373. [Google Scholar] [CrossRef]
- Marei, H.E. Stem Cell Therapy: A Revolutionary Cure or a Pandora’s Box. Stem Cell Res. Ther. 2025, 16, 255. [Google Scholar] [CrossRef]
- Langford, L.; Foong, P. Unproven Stem Cell Therapies: An Evaluation of Patients’ Capacity to Give Informed Consent. Griffith Law Rev. 2024, 33, 58–88. [Google Scholar] [CrossRef]
- Martins, F.; Ribeiro, M.H.L. Quality and Regulatory Requirements for the Manufacture of Master Cell Banks of Clinical Grade IPSCs: The EU and USA Perspectives. Stem Cell Rev. Rep. 2025, 21, 645–679. [Google Scholar] [CrossRef]
- Matiukhova, M.; Ryapolova, A.; Andriianov, V.; Reshetnikov, V.; Zhuravleva, S.; Ivanov, R.; Karabelsky, A.; Minskaia, E. A Comprehensive Analysis of Induced Pluripotent Stem Cell (IPSC) Production and Applications. Front. Cell Dev. Biol. 2025, 13, 1593207. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.N.; Rong, Z.; Xu, Y. Immunogenicity of Induced Pluripotent Stem Cells. Nature 2011, 474, 212–216. [Google Scholar] [CrossRef]
- Hong, Z.; Zhao, Y.; Pahlavan, S.; Wang, X.; Han, S.; Wang, X.; Wang, K. IPSC Modification Strategies to Induce Immune Tolerance. Life Med. 2025, 4, lnaf016. [Google Scholar] [CrossRef] [PubMed]
- Escribá, R.; Querol, S.; Beksae, M.; Griscelli, A.B.; Koskela, S. Current Landscape of IPSC Haplobanks Main. Stem Cell Rev. Rep. 2024, 20, 2155–2164. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, T.; Sipp, D.; Murry, C.E.; Daley, G.Q.; Kimmelman, J. Confronting Stem Cell Hype. Science 2016, 352, 776–777. [Google Scholar] [CrossRef]
- Kamenova, K.; Caulfield, T. Stem Cell Hype: Media Portrayal of Therapy Translation. Sci. Transl. Med. 2015, 7, 2–5. [Google Scholar] [CrossRef]
- Robert, C. Microarray Analysis of Gene Expression during Early Development: A Cautionary Overview. Reproduction 2010, 140, 787–801. [Google Scholar] [CrossRef]
- Schrijver, I.; Galli, S.J. Between Hype and Hope: Whole-Genome Sequencing in Clinical Medicine. Per. Med. 2012, 9, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Capps, B.; Chadwick, R.; Joly, Y.; Mulvihill, J.J.; Lysaght, T.; Zwart, H. Falling Giants and the Rise of Gene Editing: Ethics, Private Interests and the Public Good Ruth Chadwick. Hum. Genom. 2017, 11, 20. [Google Scholar] [CrossRef]
- Cui, W.; Yuan, S. Will the Hype of Automated Drug Discovery Finally Be Realized? Expert Opin. Drug Discov. 2024, 19, 259–262. [Google Scholar] [CrossRef]
- Jurisica, I. Explainable Biology for Improved Therapies in Precision Medicine: AI Is Not Enough. Best Pract. Res. Clin. Rheumatol. 2024, 38, 102006. [Google Scholar] [CrossRef]
ClinicalTrials.gov ID | Title | Cell Type | Status | Conditions | Study Types | Phase | |
---|---|---|---|---|---|---|---|
Inherited retinal diseases | NCT06891885 | A Study to Investigate the Safety of DSP-3077 After a Unilateral Eye Injection in Male and Female Participants 18 Years of Age or Older with RP | iPSC | Not yet recruiting | RP | Interventional | Phase 1 Phase 2 |
NCT06789445 | A Study to Investigate the Safety of OpCT-001 in Adults Who Have Primary Photoreceptor Disease (CLARICO) | iPSC | Completed | Primary Photoreceptor Disease RP (RP) US | Interventional | Phase 1 Phase 2 | |
NCT01432847 | Cell Collection to Study Eye Diseases | iPSC | Recruiting | Retinal Disease AMD Retinal Degeneration | Observational | *n/a | |
NCT05800301 | Management of RP Via Combination of Wharton’s Jelly-derived Mesenchymal Stem Cells and Magnovision | MSC | Completed | RP | Interventional | Phase 3 | |
NCT01531348 | Intravitreal Injection of MSCs in RP | MSC | Completed | RP | Interventional | Phase 1 | |
NCT05909488 | Role of UC-MSC and CM to Inhibit Vision Loss in RP Phase I/II | MSC | Recruiting | RP | Interventional | Phase 2 Phase 3 | |
NCT03011541 | Stem Cell Ophthalmology Treatment Study II (SCOTS2) | MSC | Recruiting | Retinal Disease ARD RP | Interventional | n/a | |
NDevDs & NDDs | NCT03635294 | Multi-Omics and IPSCs to Improve Diagnosis of Rare Intellectual Disabilities | iPSC | Completed | Rare Intellectual Disabilities | Interventional | n/a |
NCT02980302 | Development of the Tool “iPSC” for the Functional Study of Mutations Responsible for Mental Retardation | iPSC | Completed | Intellectual Deficiency | Interventional | n/a | |
NCT02720939 | ASD-specific Induced Pluripotent Stem Cells for Disease Modeling | iPSC | Completed | ASD | Observational | n/a | |
NCT06821529 | Stereotactic Intracerebral Injection of IPSC-DAPs in Patients with Parkinson’s Disease | iPSC | Not yet recruiting | PD | Interventional | Phase 1 | |
NCT06778265 | An Exploratory Clinical Study of UX-DA001 in Subjects with Idiopathic Parkinson’s Disease | iPSC | Enrolling by invitation | PD, Idiopathic | Interventional | Phase 1 | |
NCT06765564 | Clinical Study of Induced Pluripotent Stem Cells Derived Motor Neuron Precursor Cell Therapy for Amyotrophic Lateral Sclerosis (ALS) | iPSC | Recruiting | ALS | Interventional | n/a | |
NCT06687837 | Treating Parkinson’s Disease Through Transplantation of Autologous Stem Cell-Derived Dopaminergic Neurons | iPSC | Recruiting | PD | Interventional | Phase 1 | |
NCT06482268 | Transplantation of Human iPS Cell-derived Dopaminergic Progenitors (CT1-DAP001) for Parkinson’s Disease (Phase I/II) | iPSC | Recruiting | PD | Interventional | Phase 1 | |
NCT06422208 | Autologous iPSC-Derived Dopamine Neuron Transplantation for Parkinson’s Disease | iPSC | Enrolling by invitation | PD | Interventional | Phase 1 | |
NCT06344026 | Phase 1/2a Study of ANPD001 in Parkinson’s Disease | iPSC | Enrolling by invitation | PD | Interventional | Phase 1 | |
NCT06145711 | A Clinical Trial of Parkinson’s Disease Treatment by HiPSCs-Derived Dopaminergic Neural Precursor Cells | iPSC | Recruiting | PD | Interventional | n/a | |
NCT03322306 | Establishment of Genetic Basis for Neurological Disease by Genetic Screening | iPSC | Enrolling by invitation | Neurodegenerative Disease | Observational | n/a | |
NCT00874783 | Development of IPS from Donated Somatic Cells of Patients with Neurological Diseases | iPSC | Recruiting | Neurodegenerative Disorders | Observational | n/a | |
NCT03550183 | Umbilical Cord-Derived Mesenchymal Stem Cells Therapy in Parkinson’s Disease | MSC | Unknown status | PD | Interventional | Phase 1 | |
NCT04821479 | Repeated Mesenchymal Stem Cell Injections in ALS | MSC | Completed | ALS | Interventional | Phase 1 Phase 2 | |
NCT06910384 | A Study of STRO4 in Patients with Amyotrophic Lateral Sclerosis (ALS) | MSC | Not yet recruiting | ALS | Interventional | Phase 2 | |
Skin | NCT02579369 | Study to Evaluate the Safety of ALLO-ASC-DFU in Subjects with Dystrophic Epidermolysis Bullosa | MSC | Completed | Dystrophic EB | Interventional | Phase 1 Phase 2 |
NCT03529877 | Allogeneic ABCB5-positive Stem Cells for Treatment of Epidermolysis Bullosa | MSC | Completed | Recessive Dystrophic EB | Interventional | Phase 1 Phase 2 | |
Hemophilia | NCT02108132 | Allogenic Bone Marrow-Derived Mesenchymal Stem Cell Therapy in Cases of Hemophilia | MSC | Unknown status | Hemophilia | Interventional | Phase 1 |
NCT05187936 | Preclinical Models for Mesenchymal Stem Cell Therapy in Hemophilic Arthropathy | MSC | Unknown status | Hemophilia A Hemophilia B Arthropathy | Observational | n/a | |
Marfan Syndrome | NCT02815072 | Generation of Marfan Syndrome and Fontan Cardiovascular Models Using Patient-specific Induced Pluripotent Stem Cells | iPSC | Unknown status | MS | Observational | n/a |
Cystic Fibrosis | NCT03754088 | In Vitro Model of the Cystic Fibrosis Bronchial Epithelium Via iPS Technology | iPSC | Completed | CF | Observational | n/a |
NCT02866721 | Safety and Tolerability Study of Allogeneic Mesenchymal Stem Cell Infusion in Adults with Cystic Fibrosis | MSC | Completed with results | CF | Interventional | Phase 1 | |
NCT03058068 | Human Mesenchymal Stem Cells Infusion in Patients with Cystic Fibrosis | MSC | Withdrawn | CF | Interventional | Phase 1 | |
Muscular dystrophies | NCT02413450 | Derivation of Human-Induced Pluripotent Stem (iPS) Cells to Heritable Cardiac Arrhythmias | iPSC | Enrolling by invitation | Inherited Cardiac Arrhythmias Long QT Syndrome (LQTS) Brugada Syndrome (BrS) | Observational | n/a |
NCT02285673 | Efficacy of Umbilical Cord Mesenchymal Stem Cells in Duchenne Muscular Dystrophy | MSC | Unknown status | DMD | Interventional | Phase 1 Phase 2 | |
NCT02235844 | Allogeneic Human Umbilical Cord Mesenchymal Stem Cells for a Single Male Patient with Duchenne Muscular Dystrophy (DMD) | MSC | Completed | DMD | Interventional | Phase 1 | |
NCT01610440 | Safety and Efficacy of Umbilical Cord Mesenchymal Stem Cell Therapy for Patients with Duchenne Muscular Dystrophy | MSC | Unknown status | DMD | Interventional | Phase 1 Phase 2 | |
NCT06328725 | Evaluate the Efficacy and Safety of EN001 in Patients with Duchenne Muscular Dystrophy | MSC | Not yet recruiting | DMD | Interventional | Phase 1 Phase 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panferov, E.; Dodina, M.; Reshetnikov, V.; Ryapolova, A.; Ivanov, R.; Karabelsky, A.; Minskaia, E. Induced Pluripotent (iPSC) and Mesenchymal (MSC) Stem Cells for In Vitro Disease Modeling and Regenerative Medicine. Int. J. Mol. Sci. 2025, 26, 5617. https://doi.org/10.3390/ijms26125617
Panferov E, Dodina M, Reshetnikov V, Ryapolova A, Ivanov R, Karabelsky A, Minskaia E. Induced Pluripotent (iPSC) and Mesenchymal (MSC) Stem Cells for In Vitro Disease Modeling and Regenerative Medicine. International Journal of Molecular Sciences. 2025; 26(12):5617. https://doi.org/10.3390/ijms26125617
Chicago/Turabian StylePanferov, Egor, Maria Dodina, Vasiliy Reshetnikov, Anastasia Ryapolova, Roman Ivanov, Alexander Karabelsky, and Ekaterina Minskaia. 2025. "Induced Pluripotent (iPSC) and Mesenchymal (MSC) Stem Cells for In Vitro Disease Modeling and Regenerative Medicine" International Journal of Molecular Sciences 26, no. 12: 5617. https://doi.org/10.3390/ijms26125617
APA StylePanferov, E., Dodina, M., Reshetnikov, V., Ryapolova, A., Ivanov, R., Karabelsky, A., & Minskaia, E. (2025). Induced Pluripotent (iPSC) and Mesenchymal (MSC) Stem Cells for In Vitro Disease Modeling and Regenerative Medicine. International Journal of Molecular Sciences, 26(12), 5617. https://doi.org/10.3390/ijms26125617