Montelukast Improves Urinary Bladder Function After Complete Spinal Cord Injury in Rats
Abstract
1. Introduction
2. Results
2.1. Post-SCI Montelukast Concentrations in Plasma and Cerebrospinal Fluid (CSF) Are Clinically Relevant
2.2. Montelukast Has No Influence on Locomotor Function During Four Weeks of Complete SCI
2.3. Montelukast Reduces Signs of DSD After a Complete SCI
2.4. Impact of Montelukast on Smooth Muscle Alignment and Uroepithelial Integrity Are Not Seen at This Early SCI Time Point
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Permanent Bladder Catheter Implantation
4.3. Spinal Cord Transection
4.4. Montelukast Administration
4.5. Awake Cystometric Analyses
4.6. Locomotor Scoring
4.7. Fluid Analyses
4.8. Euthanasia and Histology
4.9. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.; Danforth, T.; Ginsberg, D.A. Urologic Management and Complications in Spinal Cord Injury Patients: A 40- to 50-year Follow-up Study. Urology 2017, 104, 52–58. [Google Scholar] [CrossRef]
- Cruz, C.D.; Cruz, F. Spinal cord injury and bladder dysfunction: New ideas about an old problem. Sci. World J. 2011, 11, 214–234. [Google Scholar] [CrossRef]
- Sievert, K.D.; Amend, B.; Gakis, G.; Toomey, P.; Badke, A.; Kaps, H.P.; Stenzl, A. Early sacral neuromodulation prevents urinary incontinence after complete spinal cord injury. Ann. Neurol. 2010, 67, 74–84. [Google Scholar] [CrossRef]
- Schneider, M.P.; Hughes, F.M., Jr.; Engmann, A.K.; Purves, J.T.; Kasper, H.; Tedaldi, M.; Spruill, L.S.; Gullo, M.; Schwab, M.E.; Kessler, T.M. A novel urodynamic model for lower urinary tract assessment in awake rats. BJU Int. 2015, 115 (Suppl. S6), 8–15. [Google Scholar] [CrossRef]
- Stohrer, M.; Blok, B.; Castro-Diaz, D.; Chartier-Kastler, E.; Del Popolo, G.; Kramer, G.; Pannek, J.; Radziszewski, P.; Wyndaele, J.J. EAU guidelines on neurogenic lower urinary tract dysfunction. Eur. Urol. 2009, 56, 81–88. [Google Scholar] [CrossRef]
- Panicker, J.N. Neurogenic Bladder: Epidemiology, Diagnosis, and Management. Semin. Neurol. 2020, 40, 569–579. [Google Scholar] [CrossRef]
- Trivedi, A.; Olivas, A.D.; Noble-Haeusslein, L.J. Inflammation and Spinal Cord Injury: Infiltrating Leukocytes as Determinants of Injury and Repair Processes. Clin. Neurosci. Res. 2006, 6, 283–292. [Google Scholar] [CrossRef]
- Kwiecien, J.M.; Dabrowski, W.; Dabrowska-Bouta, B.; Sulkowski, G.; Oakden, W.; Kwiecien-Delaney, C.J.; Yaron, J.R.; Zhang, L.; Schutz, L.; Marzec-Kotarska, B.; et al. Prolonged inflammation leads to ongoing damage after spinal cord injury. PLoS ONE 2020, 15, e0226584. [Google Scholar] [CrossRef]
- Raffaele, S.; Nguyen, N.; Milanese, M.; Mannella, F.C.; Boccazzi, M.; Frumento, G.; Bonanno, G.; Abbracchio, M.P.; Bonifacino, T.; Fumagalli, M. Montelukast improves disease outcome in SOD1(G93A) female mice by counteracting oligodendrocyte dysfunction and aberrant glial reactivity. Br. J. Pharmacol. 2024, 181, 3303–3326. [Google Scholar] [CrossRef] [PubMed]
- Wognum, S.; Lagoa, C.E.; Nagatomi, J.; Sacks, M.S.; Vodovotz, Y. An exploratory pathways analysis of temporal changes induced by spinal cord injury in the rat bladder wall: Insights on remodeling and inflammation. PLoS ONE 2009, 4, e5852. [Google Scholar] [CrossRef] [PubMed]
- Birder, L.A.; Kullmann, F.A. Role of neurogenic inflammation in local communication in the visceral mucosa. Semin. Immunopathol. 2018, 40, 261–279. [Google Scholar] [CrossRef]
- Sun, X.; Jones, Z.B.; Chen, X.M.; Zhou, L.; So, K.F.; Ren, Y. Multiple organ dysfunction and systemic inflammation after spinal cord injury: A complex relationship. J. Neuroinflamm. 2016, 13, 260. [Google Scholar] [CrossRef]
- Shunmugavel, A.; Khan, M.; Hughes, F.M., Jr.; Purves, J.T.; Singh, A.; Singh, I. S-Nitrosoglutathione protects the spinal bladder: Novel therapeutic approach to post-spinal cord injury bladder remodeling. Neurourol. Urodyn. 2014, 34, 519–526. [Google Scholar] [CrossRef]
- Shunmugavel, A.; Khan, M.; Te Chou, P.C.; Dhindsa, R.K.; Martin, M.M.; Copay, A.G.; Subach, B.R.; Schuler, T.C.; Bilgen, M.; Orak, J.K.; et al. Simvastatin protects bladder and renal functions following spinal cord injury in rats. J. Inflamm. 2010, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Torres, B.; Serakides, R.; Caldeira, F.; Gomes, M.; Melo, E. The ameliorating effect of dantrolene on the morphology of urinary bladder in spinal cord injured rats. Pathol. Res. Pract. 2011, 207, 775–779. [Google Scholar] [CrossRef]
- Cevik, O.; Ersahin, M.; Sener, T.E.; Tinay, I.; Tarcan, T.; Cetinel, S.; Sener, A.; Toklu, H.Z.; Sener, G. Beneficial effects of quercetin on rat urinary bladder after spinal cord injury. J. Surg. Res. 2013, 183, 695–703. [Google Scholar] [CrossRef]
- Kanaoka, Y.; Boyce, J.A. Cysteinyl leukotrienes and their receptors: Cellular distribution and function in immune and inflammatory responses. J. Immunol. 2004, 173, 1503–1510. [Google Scholar] [CrossRef]
- Gelosa, P.; Colazzo, F.; Tremoli, E.; Sironi, L.; Castiglioni, L. Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases. Mediat. Inflamm. 2017, 2017, 3454212. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Chen, F.; Thakur, A.; Hong, H. Cysteinyl Leukotrienes and Their Receptors: Emerging Therapeutic Targets in Central Nervous System Disorders. CNS Neurosci. Ther. 2016, 22, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Bouchelouche, K.; Bouchelouche, P. Cysteinyl leukotriene D4 increases human detrusor muscle responsiveness to histamine. J. Urol. 2006, 176, 361–366. [Google Scholar] [CrossRef]
- Bouchelouche, K.; Horn, T.; Nordling, J.; Larsen, S.; Hald, T. The action of cysteinyl-leukotrienes on intracellular calcium mobilization in human detrusor myocytes. BJU Int. 2001, 87, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Reiss, T.F.; Altman, L.C.; Chervinsky, P.; Bewtra, A.; Stricker, W.E.; Noonan, G.P.; Kundu, S.; Zhang, J. Effects of montelukast (MK-0476), a new potent cysteinyl leukotriene (LTD4) receptor antagonist, in patients with chronic asthma. J. Allergy Clin. Immunol. 1996, 98, 528–534. [Google Scholar] [CrossRef]
- Bouchelouche, K.; Nordling, J.; Hald, T.; Bouchelouche, P. The cysteinyl leukotriene D4 receptor antagonist montelukast for the treatment of interstitial cystitis. J. Urol. 2001, 166, 1734–1737. [Google Scholar] [CrossRef] [PubMed]
- Traut, J.L.; Macdonald, E.S.; Spangler, M.L.; Saxena, S. Montelukast for symptom control of interstitial cystitis. Ann. Pharmacother. 2011, 45, e49. [Google Scholar] [CrossRef]
- Ersahin, M.; Cevik, O.; Akakin, D.; Sener, A.; Ozbay, L.; Yegen, B.C.; Sener, G. Montelukast inhibits caspase-3 activity and ameliorates oxidative damage in the spinal cord and urinary bladder of rats with spinal cord injury. Prostaglandins Other Lipid Mediat. 2012, 99, 131–139. [Google Scholar] [CrossRef]
- Freyermuth-Trujillo, X.; Segura-Uribe, J.J.; Salgado-Ceballos, H.; Orozco-Barrios, C.E.; Coyoy-Salgado, A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells 2022, 11, 2692. [Google Scholar] [CrossRef]
- Mitsuhashi, T.; Ikata, T.; Morimoto, K.; Tonai, T.; Katoh, S. Increased production of eicosanoids, TXA2, PGI2 and LTC4 in experimental spinal cord injuries. Paraplegia 1994, 32, 524–530. [Google Scholar] [CrossRef]
- Nishisho, T.; Tonai, T.; Tamura, Y.; Ikata, T. Experimental and clinical studies of eicosanoids in cerebrospinal fluid after spinal cord injury. Neurosurgery 1996, 39, 950–956, discussion 956–957. [Google Scholar]
- Genovese, T.; Rossi, A.; Mazzon, E.; Di Paola, R.; Muia, C.; Caminiti, R.; Bramanti, P.; Sautebin, L.; Cuzzocrea, S. Effects of zileuton and montelukast in mouse experimental spinal cord injury. Br. J. Pharmacol. 2008, 153, 568–582. [Google Scholar] [CrossRef] [PubMed]
- Marschallinger, J.; Schaffner, I.; Klein, B.; Gelfert, R.; Rivera, F.J.; Illes, S.; Grassner, L.; Janssen, M.; Rotheneichner, P.; Schmuckermair, C.; et al. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat. Commun. 2015, 6, 8466. [Google Scholar] [CrossRef]
- Michael, J.; Bessa de Sousa, D.; Conway, J.; Gonzalez-Labrada, E.; Obeid, R.; Tevini, J.; Felder, T.; Hutter-Paier, B.; Zerbe, H.; Paiement, N.; et al. Improved Bioavailability of Montelukast through a Novel Oral Mucoadhesive Film in Humans and Mice. Pharmaceutics 2020, 13, 12. [Google Scholar] [CrossRef]
- Foditsch, E.E.; Roider, K.; Sartori, A.M.; Kessler, T.M.; Kayastha, S.R.; Aigner, L.; Schneider, M.P. Cystometric and External Urethral Sphincter Measurements in Awake Rats with Implanted Catheter and Electrodes Allowing for Repeated Measurements. J. Vis. Exp. JoVE 2018, 131, e56506. [Google Scholar] [CrossRef]
- Basso, D.M.; Beattie, M.S.; Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 1995, 12, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Muppavarapu, R.; Guttikar, S.; Rajappan, M.; Kamarajan, K.; Mullangi, R. Sensitive LC-MS/MS-ESI method for simultaneous determination of montelukast and fexofenadine in human plasma: Application to a bioequivalence study. Biomed. Chromatogr. 2014, 28, 1048–1056. [Google Scholar] [CrossRef]
- Challa, B.R.; Awen, B.Z.; Chandu, B.R.; Khagga, M.; Kotthapalli, C.B. Method development and validation of montelukast in human plasma by HPLC coupled with ESI-MS/MS: Application to a bioequivalence study. Sci. Pharm. 2010, 78, 411–422. [Google Scholar] [CrossRef]
Urodynamic Parameter | CTRL, Treated | SCI, Treated | p-Value |
---|---|---|---|
Maximum intravesical pressure (cmH2O) | 36.60 ± 7.99 | 35.07 ± 17.55 | 0.745 |
Minimum intravesical pressure (cmH2O) | 4.82 ± 2.45 | 4.76 ± 2.60 | 0.937 |
Threshold intravesical pressure (cmH2O) | 12.26 ± 2.24 | 11.25 ± 7.78 | 0.622 |
Average intravesical pressure (cmH2O) | 11.93 ± 4.40 | 13.70 ± 7.59 | 0.388 |
Voided volume (ml) | 0.50 ± 0.32 | 0.34 ± 0.32 | 0.099 |
Voiding time (s) | 4.43 ± 2.48 | 7.62 ± 6.52 | 0.156 |
Average flow (µL/s) | 109.90 ± 64.36 | 72.06 ± 83.03 | 0.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keller, E.E.; Bauer, S.; Roider, K.; Kleindorfer, M.; Törzsök, P.; Tevini, J.; Felder, T.; Aigner, L.; Lusuardi, L. Montelukast Improves Urinary Bladder Function After Complete Spinal Cord Injury in Rats. Int. J. Mol. Sci. 2025, 26, 5606. https://doi.org/10.3390/ijms26125606
Keller EE, Bauer S, Roider K, Kleindorfer M, Törzsök P, Tevini J, Felder T, Aigner L, Lusuardi L. Montelukast Improves Urinary Bladder Function After Complete Spinal Cord Injury in Rats. International Journal of Molecular Sciences. 2025; 26(12):5606. https://doi.org/10.3390/ijms26125606
Chicago/Turabian StyleKeller, Elena E., Sophina Bauer, Karin Roider, Michael Kleindorfer, Peter Törzsök, Julia Tevini, Thomas Felder, Ludwig Aigner, and Lukas Lusuardi. 2025. "Montelukast Improves Urinary Bladder Function After Complete Spinal Cord Injury in Rats" International Journal of Molecular Sciences 26, no. 12: 5606. https://doi.org/10.3390/ijms26125606
APA StyleKeller, E. E., Bauer, S., Roider, K., Kleindorfer, M., Törzsök, P., Tevini, J., Felder, T., Aigner, L., & Lusuardi, L. (2025). Montelukast Improves Urinary Bladder Function After Complete Spinal Cord Injury in Rats. International Journal of Molecular Sciences, 26(12), 5606. https://doi.org/10.3390/ijms26125606