Effects of Elevated Glucose on Bacterial Respiratory Infections in Cystic Fibrosis and Chronic Airway Diseases
Abstract
1. Introduction
2. Regulation of Airway Glucose Homeostasis
Disease State | Sampling Method | Glucose [mM] Measured |
---|---|---|
No disease | Breath Condensate [26] Sputum [34] | 0.40 ± 0.24 ≤0.50 |
Diabetes | Breath Condensate [26] | 1.20 ± 0.69 |
Cystic Fibrosis | Breath Condensate [26] Sputum [35] Sputum [36] | 2.04 ± 1.14 0–65.00 3.0 |
CFRD | Breath Condensate [26] Sputum [35] | 4.00 ± 2.07 0–15.00 |
COPD | Sputum [34] | Average 0.75 Up to 2.50 |
3. Measurement of Airway Glucose
4. Hyperglycemia and Acute Airway Infections
4.1. Pneumonia and Hyperglycemia
4.2. Associations Between Airway Pathogens and Hyperglycemia in Pneumonia
Pathogen | Population/Disease Comparison | Outcome |
---|---|---|
Pseudomonas aeruginosa | Diabetic vs. non-diabetic | Equal prevalence in diabetic vs. non-diabetic [41] |
Diabetic only | Third most isolated bacterial pathogen [43] | |
Glucose detected in bronchial aspirates vs. not detected | No difference [37] | |
Elevated blood glucose | Increase in positive cultures [45] | |
Diabetes + COPD vs. COPD alone | Equal prevalence [19] | |
CFRD vs. CF | Increased risk of chronic infection [16] | |
Increased risk of multi-antibiotic resistance [52] | ||
Increased prevalence [53] | ||
Uncontrolled CFRD | Increase in colonization [54] | |
Staphylococcus aureus | Diabetic vs. non-diabetic | Equal prevalence [9,41] |
More likely to be co-isolated with A. baumannii [14] | ||
Diabetic only | Second most isolated bacterial pathogen [43] | |
Glucose detected in bronchial aspirates vs. not detected | Increased prevalence [37] | |
Elevated blood glucose | Second most isolated bacterial pathogen [45] | |
Diabetes + COPD vs. COPD alone | Increased prevalence [19] | |
CFRD vs. CF | Increased risk of persistent infection [55] | |
Decreased prevalence [56] | ||
Controlled CFRD | Increase in colonization [53] | |
Streptococcus pneumoniae | Diabetic vs. non-diabetic | Equal prevalence in diabetic and non-diabetic groups [9,41] |
Diabetic only | Sixth most isolated bacterial pathogen [43] | |
Uncontrolled vs. controlled diabetes | Increased risk in uncontrolled group [42] | |
Klebsiella pneumoniae | Diabetic only | Most isolated bacterial pathogen [43] |
Elevated blood glucose | Third most isolated bacterial pathogen [45] | |
Haemophilus influenzae | Diabetic vs. non-diabetic | Equal prevalence [9,41] |
Diabetes + COPD vs. COPD alone | Equal prevalence [19] | |
Legionella pneumophila | Diabetic vs. non-diabetic | Equal prevalence [41] |
Escherichia coli | Diabetic only | Fifth most isolated bacterial pathogen [43] |
Elevated blood glucose | Fourth most isolated bacterial pathogen [45] | |
Acinetobacter | Diabetic only | Fourth most isolated bacterial pathogen [43] |
Glucose detected in bronchial aspirates vs. not detected | No difference [37] | |
Elevated blood glucose | Tenth most isolated bacterial pathogen [45] | |
Enterococcus | Glucose detected in bronchial aspirates vs. not detected | No difference [37] |
Stenotrophomonas maltophilia | Elevated blood glucose | Sixth most isolated bacterial pathogen [45] |
CFRD vs. CF | Increased risk [16] | |
Moraxella catarrhalis | Diabetes + COPD vs. COPD alone | Equal prevalence [19] |
Burkholderia cepacia | CFRD vs. CF | Increased risk [16] |
5. Chronic Airway Disease and Hyperglycemia
5.1. Chronic Obstructive Pulmonary Disease (COPD)
5.2. Cystic Fibrosis
5.3. Infections in CFRD
6. Models for Evaluating the Role of Glucose in the Airway
6.1. Airway Cell Culture Models
6.2. Animal Models
6.3. Artificial Sputum Medium
7. The New Era of Highly Effective Modulator Therapies: What We Know About CFTR Modulators, Glucose, and Infection
8. Conclusions
Funding
Conflicts of Interest
References
- Walter, R.E.; Beiser, A.; Givelber, R.J.; O’Connor, G.T.; Gottlieb, D.J. Association Between Glycemic State and Lung Function: The Framingham Heart Study. Am. J. Respir. Crit. Care Med. 2003, 167, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-H.; Zhou, J.-B.; Cai, Y.-H.; Shu, L.-P.; Simó, R.; Lecube, A. Non-linear association between diabetes mellitus and pulmonary function: A population-based study. Respir. Res. 2020, 21, 292. [Google Scholar] [CrossRef] [PubMed]
- Díez-Manglano, J.; Asìn Samper, U. Pulmonary function tests in type 2 diabetes: A meta-analysis. ERJ Open Res. 2021, 7, 00371–02020. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Jabbar, A.; Haque, A.S.; Awan, S.; Hussain, S.F. Pulmonary functions in patients with diabetes mellitus. Lung India 2011, 28, 89–92. [Google Scholar] [CrossRef]
- Choi, W.; Moon, J.H.; Choi, H.; Lee, H.; Kim, H.K.; Kang, H.; Cho, N.H. Trajectory of lung function in diabetic adults: A 16-year follow-up study of community-based prospective cohorts. Respirology 2024, 29, 413–420. [Google Scholar] [CrossRef]
- Burrack, A.L.; Martinov, T.; Fife, B.T. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front. Endocrinol. 2017, 8, 343. [Google Scholar] [CrossRef]
- Rizza, R.A. Pathogenesis of Fasting and Postprandial Hyperglycemia in Type 2 Diabetes: Implications for Therapy. Diabetes 2010, 59, 2697–2707. [Google Scholar] [CrossRef]
- Martins, M.; Boavida, J.M.; Raposo, J.F.; Froes, F.; Nunes, B.; Ribeiro, R.T.; Macedo, M.P.; Penha-Gonçalves, C. Diabetes hinders community-acquired pneumonia outcomes in hospitalized patients. BMJ Open Diabetes Res. Care 2016, 4, e000181. [Google Scholar] [CrossRef]
- Falguera, M.; Pifarre, R.; Martin, A.; Sheikh, A.; Moreno, A. Etiology and Outcome of Community-Acquired Pneumonia in Patients with Diabetes Mellitus. Chest 2005, 128, 3233–3239. [Google Scholar] [CrossRef]
- Kornum, J.B.; Thomsen, R.W.; Riis, A.; Lervang, H.-H.; Schønheyder, H.C.; Sørensen, H.T. Diabetes, Glycemic Control, and Risk of Hospitalization with Pneumonia. Diabetes Care 2008, 31, 1541–1545. [Google Scholar] [CrossRef]
- Muller, L.M.A.J.; Gorter, K.J.; Hak, E.; Goudzwaard, W.L.; Schellevis, F.G.; Hoepelman, A.I.M.; Rutten, G.E.H.M. Increased Risk of Common Infections in Patients with Type 1 and Type 2 Diabetes Mellitus. Clin. Infect. Dis. 2005, 41, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Benfield, T.; Jensen, J.S.; Nordestgaard, B.G. Influence of diabetes and hyperglycaemia on infectious disease hospitalisation and outcome. Diabetologia 2007, 50, 549–554. [Google Scholar] [CrossRef]
- Haque, N.Z.; Arshad, S.; Peyrani, P.; Ford, K.D.; Perri, M.B.; Jacobsen, G.; Reyes, K.; Scerpella, E.G.; Ramirez, J.A.; Zervos, M.J. Analysis of Pathogen and Host Factors Related to Clinical Outcomes in Patients with Hospital-Acquired Pneumonia Due to Methicillin-Resistant Staphylococcus aureus. J. Clin. Microbiol. 2012, 50, 1640–1644. [Google Scholar] [CrossRef]
- Zhang, Q.-R.; Chen, H.; Liu, B.; Zhou, M. Methicillin-resistant Staphylococcus aureus pneumonia in diabetics: A single-center, retrospective analysis. Chin. Med. J. 2019, 132, 1429–1434. [Google Scholar] [CrossRef]
- Hamilton, E.J.; Martin, N.; Makepeace, A.; Sillars, B.A.; Davis, W.A.; Davis, T.M.E. Incidence and Predictors of Hospitalization for Bacterial Infection in Community-Based Patients with Type 2 Diabetes: The Fremantle Diabetes Study. PLoS ONE 2013, 8, e60502. [Google Scholar] [CrossRef] [PubMed]
- Olesen, H.V.; Drevinek, P.; Gulmans, V.A.; Hatziagorou, E.; Jung, A.; Mei-Zahav, M.; Stojnic, N.; Thomas, M.; Zolin, A. Cystic fibrosis related diabetes in Europe: Prevalence, risk factors and outcome; Olesen et al. J. Cyst. Fibros. 2020, 19, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.; Dunitz, J.; Nathan, B.; Saeed, A.; Holme, B.; Thomas, W. Cystic Fibrosis-Related Diabetes: Current Trends in Prevalence, Incidence, and Mortality. Diabetes Care 2009, 32, 1626–1631. [Google Scholar] [CrossRef]
- Milla, C.E.; Billings, J.; Moran, A. Diabetes Is Associated with Dramatically Decreased Survival in Female but Not Male Subjects with Cystic Fibrosis. Diabetes Care 2005, 28, 2141–2144. [Google Scholar] [CrossRef]
- Baker, E.H. Hyperglycaemia is associated with poor outcomes in patients admitted to hospital with acute exacerbations of chronic obstructive pulmonary disease. Thorax 2006, 61, 284–289. [Google Scholar] [CrossRef]
- Gudmundsson, G.; Gislason, T.; Lindberg, E.; Hallin, R.; Ulrik, S.C.; Brøndum, E.; Nieminen, M.M.; Aine, T.; Bakke, P.; Janson, C. Mortality in COPD patients discharged from hospital: The role of treatment and co-morbidity. Respir. Res. 2006, 7, 109. [Google Scholar] [CrossRef]
- Parappil, A.; Depczynski, B.; Collett, P.; Marks, G.B. Effect of comorbid diabetes on length of stay and risk of death in patients admitted with acute exacerbations of COPD: Length of stay in AECOPD with DM. Respirology 2010, 15, 918–922. [Google Scholar] [CrossRef]
- Küpeli, E.; Ulubay, G.; Ulasli, S.S.; Sahin, T.; Erayman, Z.; Gürsoy, A. Metabolic Syndrome is associated with increased risk of acute exacerbation of COPD: A preliminary study. Endocrine 2010, 38, 76–82. [Google Scholar] [CrossRef]
- Marshall, B.C.; Butler, S.M.; Stoddard, M.; Moran, A.M.; Liou, T.G.; Morgan, W.J. Epidemiology of cystic fibrosis-related diabetes. J. Pediatr. 2005, 146, 681–687. [Google Scholar] [CrossRef]
- Hart, N.J.; Aramandla, R.; Poffenberger, G.; Fayolle, C.; Thames, A.H.; Bautista, A.; Spigelman, A.F.; Babon, J.A.B.; DeNicola, M.E.; Dadi, P.K.; et al. Cystic fibrosis–related diabetes is caused by islet loss and inflammation. JCI Insight 2018, 3, e98240. [Google Scholar] [CrossRef] [PubMed]
- Khare, S. Cystic fibrosis-related diabetes: Prevalence, screening, and diagnosis. J. Clin. Transl. Endocrinol. 2022, 27, 100290. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.H.; Clark, N.; Brennan, A.L.; Fisher, D.A.; Gyi, K.M.; Hodson, M.E.; Philips, B.J.; Baines, D.L.; Wood, D.M. Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. J. Appl. Physiol. 2007, 102, 1969–1975. [Google Scholar] [CrossRef]
- Pezzulo, A.A.; Gutiérrez, J.; Duschner, K.S.; McConnell, K.S.; Taft, P.J.; Ernst, S.E.; Yahr, T.L.; Rahmouni, K.; Klesney-Tait, J.; Stoltz, D.A.; et al. Glucose Depletion in the Airway Surface Liquid Is Essential for Sterility of the Airways. PLoS ONE 2011, 6, e16166. [Google Scholar] [CrossRef]
- Garnett, J.P.; Nguyen, T.T.; Moffatt, J.D.; Pelham, E.R.; Kalsi, K.K.; Baker, E.H.; Baines, D.L. Proinflammatory Mediators Disrupt Glucose Homeostasis in Airway Surface Liquid. J. Immunol. 2012, 189, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Coyne, C.B.; Vanhook, M.K.; Gambling, T.M.; Carson, J.L.; Boucher, R.C.; Johnson, L.G. Regulation of Airway Tight Junctions by Proinflammatory Cytokines. Mol. Biol. Cell 2002, 13, 3218–3234. [Google Scholar] [CrossRef]
- Eutamene, H.; Theodorou, V.; Schmidlin, F.; Tondereau, V.; Garcia-Villar, R.; Salvador-Cartier, C.; Chovet, M.; Bertrand, C.; Bueno, L. LPS-induced lung inflammation is linked to increased epithelial permeability: Role of MLCK. Eur. Respir. J. 2005, 25, 789–796. [Google Scholar] [CrossRef]
- Baines, D.L.; Vasiljevs, S.; Kalsi, K.K. Getting sweeter: New evidence for glucose transporters in specific cell types of the airway? Am. J. Physiol.-Cell Physiol. 2023, 324, C153–C166. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.L.; Candeia-Medeiros, N.; Cavalcante-Araújo, P.M.; Melo, I.S.; Fávaro-Pípi, E.; Fátima, L.A.; Rocha, A.A.; Goulart, L.R.; Machado, U.F.; Campos, R.R.; et al. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation. Sci. Rep. 2016, 6, 21752. [Google Scholar] [CrossRef] [PubMed]
- Campolo, A.; Maria, Z.; Lacombe, V.A. Diabetes Causes Significant Alterations in Pulmonary Glucose Transporter Expression. Metabolites 2024, 14, 267. [Google Scholar] [CrossRef]
- Mallia, P.; Webber, J.; Gill, S.K.; Trujillo-Torralbo, M.-B.; Calderazzo, M.A.; Finney, L.; Bakhsoliani, E.; Farne, H.; Singanayagam, A.; Footitt, J.; et al. Role of airway glucose in bacterial infections in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2018, 142, 815–823.e6. [Google Scholar] [CrossRef]
- Van Sambeek, L.; Cowley, E.S.; Newman, D.K.; Kato, R. Sputum Glucose and Glycemic Control in Cystic Fibrosis-Related Diabetes: A Cross-Sectional Study. PLoS ONE 2015, 10, e0119938. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.L.; Aye, L.M.; Whiteley, M. Nutritional Cues Control Pseudomonas aeruginosa Multicellular Behavior in Cystic Fibrosis Sputum. J. Bacteriol. 2007, 189, 8079–8087. [Google Scholar] [CrossRef]
- Philips, B.J. Glucose in bronchial aspirates increases the risk of respiratory MRSA in intubated patients. Thorax 2005, 60, 761–764. [Google Scholar] [CrossRef]
- Caverly, L.J.; Riquelme, S.A.; Hisert, K.B. The Impact of Highly Effective Modulator Therapy on Cystic Fibrosis Microbiology and Inflammation. Clin. Chest Med. 2022, 43, 647–665. [Google Scholar] [CrossRef]
- Åstrand, A.; Wingren, C.; Benjamin, A.; Tregoning, J.S.; Garnett, J.P.; Groves, H.; Gill, S.; Orogo-Wenn, M.; Lundqvist, A.J.; Walters, D.; et al. Dapagliflozin-lowered blood glucose reduces respiratory Pseudomonas aeruginosa infection in diabetic mice: Dapagliflozin reduces P. aeruginosa infection. Br. J. Pharmacol. 2017, 174, 836–847. [Google Scholar] [CrossRef]
- Yen, F.-S.; Wei, J.C.-C.; Shih, Y.-H.; Hsu, C.-C.; Hwu, C.-M. Metformin use and the risk of bacterial pneumonia in patients with type 2 diabetes. Sci. Rep. 2022, 12, 3270. [Google Scholar] [CrossRef]
- Di Yacovo, S.; Garcia-Vidal, C.; Viasus, D.; Adamuz, J.; Oriol, I.; Gili, F.; Vilarrasa, N.; García-Somoza, M.D.; Dorca, J.; Carratalà, J. Clinical Features, Etiology, and Outcomes of Community-Acquired Pneumonia in Patients with Diabetes Mellitus. Medicine 2013, 92, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Rueda, A.M.; Ormond, M.; Gore, M.; Matloobi, M.; Giordano, T.P.; Musher, D.M. Hyperglycemia in diabetics and non-diabetics: Effect on the risk for and severity of pneumococcal pneumonia. J. Infect. 2010, 60, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Ju, A.; Ma, R. Bacterial Etiology and Antibiotic Sensitivity Pattern of Community Acquired Pneumonia in Diabetic Patients: Experience in a Tertiary Care Hospital in Bangladesh. Birdem Med. J. 2017, 7, 5. [Google Scholar]
- Pahal, P.; Rajasurya, V.; Nguyen, A.D. Typical Bacterial Pneumonia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Gill, S.K.; Hui, K.; Farne, H.; Garnett, J.P.; Baines, D.L.; Moore, L.S.P.; Holmes, A.H.; Filloux, A.; Tregoning, J.S. Increased airway glucose increases airway bacterial load in hyperglycaemia. Sci. Rep. 2016, 6, 27636. [Google Scholar] [CrossRef]
- Gedefie, A.; Demsiss, W.; Belete, M.A.; Kassa, Y.; Tesfaye, M.; Tilahun, M.; Bisetegn, H.; Sahle, Z. Acinetobacter baumannii Biofilm Formation and Its Role in Disease Pathogenesis: A Review. Infect. Drug Resist. 2021, 14, 3711–3719. [Google Scholar] [CrossRef]
- Shorr, A.F.; Myers, D.E.; Huang, D.B.; Nathanson, B.H.; Emons, M.F.; Kollef, M.H. A risk score for identifying methicillin-resistant Staphylococcus aureus in patients presenting to the hospital with pneumonia. BMC Infect. Dis. 2013, 13, 268. [Google Scholar] [CrossRef]
- Equils, O.; da Costa, C.; Wible, M.; Lipsky, B.A. The effect of diabetes mellitus on outcomes of patients with nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus: Data from a prospective double-blind clinical trial comparing treatment with linezolid versus vancomycin. BMC Infect. Dis. 2016, 16, 476. [Google Scholar] [CrossRef]
- Kiselar, J.G.; Wang, X.; Dubyak, G.R.; El Sanadi, C.; Ghosh, S.K.; Lundberg, K.; Williams, W.M. Modification of β-Defensin-2 by Dicarbonyls Methylglyoxal and Glyoxal Inhibits Antibacterial and Chemotactic Function In Vitro. PLoS ONE 2015, 10, e0130533. [Google Scholar] [CrossRef]
- Ilyas, R.; Wallis, R.; Soilleux, E.J.; Townsend, P.; Zehnder, D.; Tan, B.K.; Sim, R.B.; Lehnert, H.; Randeva, H.S.; Mitchell, D.A. High glucose disrupts oligosaccharide recognition function via competitive inhibition: A potential mechanism for immune dysregulation in diabetes mellitus. Immunobiology 2011, 216, 126–131. [Google Scholar] [CrossRef]
- Fernández-Grajera, M.; Pacha-Olivenza, M.A.; Gallardo-Moreno, A.M.; González-Martín, M.L.; Pérez-Giraldo, C.; Fernández-Calderón, M.C. Modification of physico-chemical surface properties and growth of Staphylococcus aureus under hyperglycemia and ketoacidosis conditions. Colloids Surf. B Biointerfaces 2022, 209, 112137. [Google Scholar] [CrossRef]
- Merlo, C.A.; Boyle, M.P.; Diener-West, M.; Marshall, B.C.; Goss, C.H.; Lechtzin, N. Incidence and Risk Factors for Multiple Antibiotic-Resistant Pseudomonas aeruginosa in Cystic Fibrosis. Chest 2007, 132, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, A.; Gauthier, B.; Rosner, V.; Weiss, L.; Moreau, F.; Constantinescu, A.A.; Kessler, R.; Kessler, L. Early assessment of glucose abnormalities during continuous glucose monitoring associated with lung function impairment in cystic fibrosis patients. J. Cyst. Fibros. 2014, 13, 478–484. [Google Scholar] [CrossRef]
- Vizza, C.D.; Yusen, R.D.; Lynch, J.P.; Fedele, F.; Patterson, G.A.; Trulock, E.P. Outcome of Patients with Cystic Fibrosis Awaiting Lung Transplantation. Am. J. Respir. Crit. Care Med. 2000, 162, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.T.; Dasenbrook, E.C.; Lechtzin, N.; Boyle, M.P.; Merlo, C.A. Risk factors for persistent methicillin-resistant Staphylococcus aureus infection in cystic fibrosis. J. Cyst. Fibros. 2017, 16, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Vasiljevs, S.; Witney, A.A.; Baines, D.L. The presence of cystic fibrosis-related diabetes modifies the sputum microbiome in cystic fibrosis disease. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2024, 326, L125–L134. [Google Scholar] [CrossRef]
- Granados, A.; Chan, C.L.; Ode, K.L.; Moheet, A.; Moran, A.; Holl, R. Cystic fibrosis related diabetes: Pathophysiology, screening and diagnosis. J. Cyst. Fibros. 2019, 18, S3–S9. [Google Scholar] [CrossRef]
- van den Berg, J.M.W.; Kouwenberg, J.M.; Heijerman, H.G.M. Demographics of glucose metabolism in cystic fibrosis. J. Cyst. Fibros. 2009, 8, 276–279. [Google Scholar] [CrossRef]
- Lewis, C.; Blackman, S.M.; Nelson, A.; Oberdorfer, E.; Wells, D.; Dunitz, J.; Thomas, W.; Moran, A. Diabetes-Related Mortality in Adults with Cystic Fibrosis. Role of Genotype and Sex. Am. J. Respir. Crit. Care Med. 2015, 191, 194–200. [Google Scholar] [CrossRef]
- Adler, A.I.; Shine, B.S.F.; Chamnan, P.; Haworth, C.S.; Bilton, D. Genetic Determinants and Epidemiology of Cystic Fibrosis–Related Diabetes. Diabetes Care 2008, 31, 1789–1794. [Google Scholar] [CrossRef]
- Koch, C.; Cuppens, H.; Rainisio, M.; Madessani, U.; Harms, H.K.; Hodson, M.E.; Mastella, G.; Navarro, J.; Strandvik, B.; McKenzie, S.G.; et al. European Epidemiologic Registry of Cystic Fibrosis (ERCF): Comparison of Major Disease Manifestations Between Patients with Different Classes of Mutations. Pediatr. Pulmonol. 2001, 31, 1–12. [Google Scholar] [CrossRef]
- Brennan, A.L.; Gyi, K.M.; Wood, D.M.; Johnson, J.; Holliman, R.; Baines, D.L.; Philips, B.J.; Geddes, D.M.; Hodson, M.E.; Baker, E.H. Airway glucose concentrations and effect on growth of respiratory pathogens in cystic fibrosis. J. Cyst. Fibros. 2007, 6, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Onady, G.M.; Stolfi, A. Drug treatments for managing cystic fibrosis-related diabetes. Cochrane Database Syst. Rev. 2020, 2020, CD004730. [Google Scholar]
- Ode, K.L.; Chan, C.L.; Granados, A.; Moheet, A.; Moran, A.; Brennan, A.L. Cystic fibrosis related diabetes: Medical management. J. Cyst. Fibros. 2019, 18, S10–S18. [Google Scholar] [CrossRef] [PubMed]
- Zemke, A.C.; Nouraie, S.M.; Moore, J.; Gaston, J.R.; Rowan, N.R.; Pilewski, J.M.; Bomberger, J.M.; Lee, S.E. Clinical predictors of cystic fibrosis chronic rhinosinusitis severity. Int. Forum Allergy Rhinol. 2019, 9, 759–765. [Google Scholar] [CrossRef]
- Milla, C.E.; Warwick, W.J.; Moran, A. Trends in Pulmonary Function in Patients with Cystic Fibrosis Correlate with the Degree of Glucose Intolerance at Baseline. Am. J. Respir. Crit. Care Med. 2000, 162, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Sims, E.J.; Green, M.W.; Mehta, A. Decreased Lung Function in Female but not Male Subjects with Established Cystic Fibrosis–Related Diabetes. Diabetes Care 2005, 28, 1581–1587. [Google Scholar] [CrossRef]
- Tanner, K.T.; Daniel, R.M.; Bilton, D.; Simmonds, N.J.; Sharples, L.D.; Keogh, R.H. Mediation of the Total Effect of Cystic Fibrosis-Related Diabetes on Mortality: A UK Cystic Fibrosis Registry Cohort Study. Diabet. Med. 2022, 39, e14958. [Google Scholar] [CrossRef]
- Sc, N.N.M.; Shoseyov, D.; Kerem, E.; Zangen, D.H. Patients with cystic fibrosis and normoglycemia exhibit diabetic glucose tolerance during pulmonary exacerbation. J. Cyst. Fibros. 2010, 9, 199–204. [Google Scholar] [CrossRef]
- Hackman, K.L.; Bailey, M.J.; Snell, G.I.; Bach, L.A. Diabetes Is a Major Risk Factor for Mortality After Lung Transplantation: DM the Major Risk for Mortality After Lung Tx. Am. J. Transplant. 2014, 14, 438–445. [Google Scholar] [CrossRef]
- Belle-van Meerkerk, G.; Van De Graaf, E.A.; Kwakkel-van Erp, J.M.; Van Kessel, D.A.; Lammers, J.W.; Biesma, D.H.; De Valk, H.W. Diabetes before and after lung transplantation in patients with cystic fibrosis and other lung diseases. Diabet. Med. 2012, 29, e159–e162. [Google Scholar] [CrossRef]
- Bilodeau, C.; Bardou, O.; Maillé, É.; Berthiaume, Y.; Brochiero, E. Deleterious impact of hyperglycemia on cystic fibrosis airway ion transport and epithelial repair. J. Cyst. Fibros. 2016, 15, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Miller, H.; Dyce, P.; Grainger, R.; Hughes, R.; Vora, J.; Ledson, M.; Walshaw, M. Mechanisms of glucose intolerance in cystic fibrosis. Diabet. Med. 2009, 26, 582–588. [Google Scholar] [CrossRef]
- Lieber, M.; Todaro, G.; Smith, B.; Szakal, A.; Nelson-Rees, W. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int. J. Cancer 1976, 17, 62–70. [Google Scholar] [CrossRef]
- Sporty, J.L.; Horálková, L.; Ehrhardt, C. In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opin. Drug Metab. Toxicol. 2008, 4, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER Measurement Techniques for In Vitro Barrier Model Systems. J. Lab. Autom. 2015, 20, 107–126. [Google Scholar] [CrossRef]
- Brower, M.; Carney, D.N.; Oie, H.K.; Gazdar, A.F.; Minna, J.D. Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium. Lung Cancer 1987, 3, 19. [Google Scholar]
- Hermanns, M.I.; Unger, R.E.; Kehe, K.; Peters, K.; Kirkpatrick, C.J. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: Development of an alveolo-capillary barrier in vitro. Lab. Investig. 2004, 84, 736–752. [Google Scholar] [CrossRef]
- Garnett, J.P.; Baker, E.H.; Naik, S.; Lindsay, J.A.; Knight, G.M.; Gill, S.; Tregoning, J.S.; Baines, D.L. Metformin reduces airway glucose permeability and hyperglycaemia-induced Staphylococcus aureus load independently of effects on blood glucose. Thorax 2013, 68, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Garnett, J.P.; Braun, D.; McCarthy, A.J.; Farrant, M.R.; Baker, E.H.; Lindsay, J.A.; Baines, D.L. Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid. Cell. Mol. Life Sci. 2014, 71, 4665–4673. [Google Scholar] [CrossRef]
- Kalsi, K.K.; Garnett, J.P.; Patkee, W.; Weekes, A.; Dockrell, M.E.; Baker, E.H.; Baines, D.L. Metformin attenuates the effect of Staphylococcus aureus on airway tight junctions by increasing PKCζ-mediated phosphorylation of occludin. J. Cell. Mol. Med. 2019, 23, 317–327. [Google Scholar] [CrossRef]
- Shen, B.Q.; Finkbeiner, W.E.; Wine, J.J.; Mrsny, R.J.; Widdicombe, J.H. Calu-3: A human airway epithelial cell line that shows cAMP-dependent Cl- secretion. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1994, 266, L493–L501. [Google Scholar] [CrossRef] [PubMed]
- Patkee, W.R.A.; Carr, G.; Baker, E.H.; Baines, D.L.; Garnett, J.P. Metformin prevents the effects of Pseudomonas aeruginosa on airway epithelial tight junctions and restricts hyperglycaemia-induced bacterial growth. J. Cell. Mol. Med. 2016, 20, 758–764. [Google Scholar] [CrossRef]
- Cozens, A.L.; Yezzi, M.J.; Kunzelmann, K.; Ohrui, T.; Chin, L.; Eng, K.; Finkbeiner, W.E.; Widdicombe, J.H.; Gruenert, D.C. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 1994, 10, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Vazquez Cegla, A.J.; Jones, K.T.; Cui, G.; Cottrill, K.A.; Koval, M.; McCarty, N.A. Effects of hyperglycemia on airway epithelial barrier function in WT and CF 16HBE cells. Sci. Rep. 2024, 14, 25095. [Google Scholar] [CrossRef]
- Kunzelmann, K.; Schwiebert, E.M.; Zeitlin, P.L.; Kuo, W.-L.; Stanton, B.A.; Gruenert, D.C. An Immortalized Cystic Fibrosis Tracheal Epithelial Cell Line Homozygous for the ΔF508 CFTR Mutation. Am. J. Respir. Cell Mol. Biol. 1993, 8, 522–529. [Google Scholar] [CrossRef]
- Bebok, Z.; Collawn, J.F.; Wakefield, J.; Parker, W.; Li, Y.; Varga, K.; Sorscher, E.J.; Clancy, J.P. Failure of cAMP agonists to activate rescued ΔF508 CFTR in CFBE41o– airway epithelial monolayers. J. Physiol. 2005, 569, 601–615. [Google Scholar] [CrossRef]
- Wu, T.; Wrennall, J.A.; Dang, H.; Baines, D.L.; Tarran, R. Passaging Primary Human Bronchial Epithelia Reduces CFTR-Mediated Fluid Transport and Alters mRNA Expression. Cells 2023, 12, 997. [Google Scholar] [CrossRef]
- Bengtson, C.D.; Kim, M.D.; Anabtawi, A.; He, J.; Dennis, J.S.; Miller, S.; Yoshida, M.; Baumlin, N.; Salathe, M. Hyperglycaemia in CF adversely affects BK channel function critical for mucus clearance. Eur. Respir. J. 2020, 57, 2000509. [Google Scholar] [CrossRef] [PubMed]
- Vazquez Cegla, A.J.; Hedden, C.; Imhoff, B.R.; Cui, G.; McCarty, N.A. Development of a Programmable Automated Cell Culture System to Study the Lung Pathophysiology of Cystic Fibrosis-Related Diabetes. Heliyon 2024, 10, e37977. [Google Scholar] [CrossRef]
- Plebani, R.; Potla, R.; Soong, M.; Bai, H.; Izadifar, Z.; Jiang, A.; Travis, R.N.; Belgur, C.; Dinis, A.; Cartwright, M.J.; et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J. Cyst. Fibros. 2022, 21, 606–615. [Google Scholar] [CrossRef]
- Demchenko, A.; Kondrateva, E.; Tabakov, V.; Efremova, A.; Salikhova, D.; Bukharova, T.; Goldshtein, D.; Balyasin, M.; Bulatenko, N.; Amelina, E.; et al. Airway and Lung Organoids from Human-Induced Pluripotent Stem Cells Can Be Used to Assess CFTR Conductance. Int. J. Mol. Sci. 2023, 24, 6293. [Google Scholar] [CrossRef] [PubMed]
- Montoro, D.T.; Haber, A.L.; Biton, M.; Vinarsky, V.; Lin, B.; Birket, S.; Yuan, F.; Chen, S.; Leung, H.M.; Villoria, J.; et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 2018, 560, 319–324. [Google Scholar] [CrossRef]
- Lei, L.; Traore, S.; Romano Ibarra, G.S.; Karp, P.H.; Rehman, T.; Meyerholz, D.K.; Zabner, J.; Stoltz, D.A.; Sinn, P.L.; Welsh, M.J.; et al. CFTR-rich ionocytes mediate chloride absorption across airway epithelia. J. Clin. Investig. 2023, 133, e171268. [Google Scholar] [CrossRef]
- Reading, P.C.; Allison, J.; Crouch, E.C.; Anders, E.M. Increased Susceptibility of Diabetic Mice to Influenza Virus Infection: Compromise of Collectin-Mediated Host Defense of the Lung by Glucose? J. Virol. 1998, 72, 6884–6887. [Google Scholar] [CrossRef] [PubMed]
- Hunt, W.R.; Zughaier, S.M.; Guentert, D.E.; Shenep, M.A.; Koval, M.; McCarty, N.A.; Hansen, J.M. Hyperglycemia impedes lung bacterial clearance in a murine model of cystic fibrosis-related diabetes. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014, 306, L43–L49. [Google Scholar] [CrossRef]
- Cui, G.; Moustafa, D.A.; Zhao, S.; Cegla, A.V.; Lyles, J.T.; Goldberg, J.B.; Chandler, J.D.; McCarty, N.A. Chronic hyperglycemia aggravates lung function in a Scnn1b-Tg murine model. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2024, 327, L473–L486. [Google Scholar] [CrossRef] [PubMed]
- Neve, R.L.; Carrillo, B.D.; Phelan, V.V. Impact of Artificial Sputum Medium Formulation on Pseudomonas aeruginosa Secondary Metabolite Production. J. Bacteriol. 2021, 203, e00250-21. [Google Scholar] [CrossRef]
- Ruhluel, D.; O’Brien, S.; Fothergill, J.L.; Neill, D.R. Development of liquid culture media mimicking the conditions of sinuses and lungs in cystic fibrosis and health. F1000Research 2022, 11, 1007. [Google Scholar] [CrossRef]
- Kirchner, S.; Fothergill, J.L.; Wright, E.A.; James, C.E.; Mowat, E.; Winstanley, C. Use of Artificial Sputum Medium to Test Antibiotic Efficacy Against Pseudomonas aeruginosa in Conditions More Relevant to the Cystic Fibrosis Lung. J. Vis. Exp. 2012, 64, 3857. [Google Scholar] [CrossRef]
- Fung, C.; Naughton, S.; Turnbull, L.; Tingpej, P.; Rose, B.; Arthur, J.; Hu, H.; Harmer, C.; Harbour, C.; Hassett, D.J.; et al. Gene espression of Pseudomonas aeruginosa in a mucin containing syntheitc growth medium mimicking CF lung sputum. J. Clin. Microbiol. 2010, 59, 1089–1100. [Google Scholar]
- Sriramulu, D.D.; Lünsdorf, H.; Lam, J.S.; Römling, U. Microcolony formation: A novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J. Med. Microbiol. 2005, 54, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Turner, K.H.; Wessel, A.K.; Palmer, G.C.; Murray, J.L.; Whiteley, M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc. Natl. Acad. Sci. USA 2015, 112, 4110–4115. [Google Scholar] [CrossRef] [PubMed]
- Ibberson, C.B.; Whiteley, M. The Staphylococcus aureus Transcriptome During Cystic Fibrosis Lung Infection. mBio 2019, 10, e02774-19. [Google Scholar] [CrossRef] [PubMed]
- Vasiljevs, S.; Gupta, A.; Baines, D. Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium. Heliyon 2023, 9, e21469. [Google Scholar] [CrossRef]
- Burgener, E.B.; Moss, R.B. Cystic fibrosis transmembrane conductance regulator modulators: Precision medicine in cystic fibrosis. Curr. Opin. Pediatr. 2018, 30, 372–377. [Google Scholar] [CrossRef]
- Volkova, N.; Moy, K.; Evans, J.; Campbell, D.; Tian, S.; Simard, C.; Higgins, M.; Konstan, M.W.; Sawicki, G.S.; Elbert, A.; et al. Disease progression in patients with cystic fibrosis treated with ivacaftor: Data from national US and UK registries. J. Cyst. Fibros. 2020, 19, 68–79. [Google Scholar] [CrossRef]
- Bengtson, C.D.; He, J.; Kim, M.D.; Salathe, M.A. Cystic Fibrosis–Related Diabetes Is Associated with Worse Lung Function Trajectory despite Ivacaftor Use. Am. J. Respir. Crit. Care Med. 2021, 204, 1343–1345. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.L.; Shirley Bezerra, M.; Stefanovski, D.; Gallop, R.J.; Walega, R.; Donaldson, S.H.; Frederick, C.A.; Freedman, S.D.; Gelfond, D.; Hoffman, L.R.; et al. Glycemia and Insulin Secretion in Cystic Fibrosis 2 Years After Elexacaftor/Tezacaftor/Ivacaftor: PROMISE-ENDO. J. Clin. Endocrinol. Metab. 2024, 1–11. [Google Scholar] [CrossRef]
- Heltshe, S.L.; Mayer-Hamblett, N.; Burns, J.L.; Khan, U.; Baines, A.; Ramsey, B.W.; Rowe, S.M. Pseudomonas aeruginosa in Cystic Fibrosis Patients with G551D-CFTR Treated with Ivacaftor. Clin. Infect. Dis. 2015, 60, 703–712. [Google Scholar] [CrossRef]
- Morgan, S.J.; Coulter, E.; Betts, H.L.; Solomon, G.M.; Clancy, J.P.; Rowe, S.M.; Nichols, D.P.; Singh, P.K. Elexacaftor/tezacaftor/ivacaftor’s effects on cystic fibrosis infections are maintained, but not increased, after 3.5 years of treatment. J. Clin. Investig. 2024, 134, e184171. [Google Scholar] [CrossRef]
Study Location | Study Size | Pneumonia Diagnostic Criteria | Major Outcomes |
---|---|---|---|
Portugal [8] | Total: 74,175 Diabetes: 19,212 | Chart code with CAP the main reason for admission (ICD-9-CM 480–486, 487) | Age Sex Length of hospital stay Mortality |
Spain [9] | Total: 660 Diabetes: 106 | Acute lower respiratory tract infection with radiological consolidation in chest | Hospitalization Age Comorbidities Pleural effusion Mortality Etiologic agents |
Denmark [10] | * Total: 349,854 Diabetes: 32,975 T1D: 288 T2D: 32,687 | Discharge diagnosis of pneumonia, legionellosis, or ornithosis (ICD-10 J12.x-J18.x; A481x; A70.x) | Hospitalization Time since diabetes diagnosis A1C levels Comorbidities |
Netherlands [11] | Total: 26,328 Diabetes: 7417 T1D: 705 T2D: 6712 | ICPC code R81 | Incidences of infection |
Denmark [12] | Total: 10,063 Diabetes: 353 | Danish National Hospital Discharge Register (ICD-8 and ICD-10 480–486, A48.1, J18) | Hospitalization Type of infection Plasma glucose levels Mortality after hospitalization |
Australia [15] | Total: 5156 T2D: 1289 | Chart admission code for pneumonia (ICD-9-CM 480.1, 480.2 480.8, 480.9, 481, 482.0–482.9, 483.0, 485, 486; ICD-10-AM J12.1, J12.2, J12.8, J12.9, J13, J14, J15.0, J15.1, J15.3, J15.4, J15.5, J15.6, J15.7, J15.8, J15.9, J18.0, J18.8, J18.9) | Hospitalization Incidence of infection Systolic blood pressure Serum triglycerides Ischemic heart disease Aboriginal racial background Prior hospitalization for any infection |
Taiwan [40] | T2D: 98,024 Metformin: 49,012 | Chart review based on the Taiwan Bureau of National Health Insurance (ICD-9-CM pneumonia 480–486 or bacterial pneumonia 481, 482.41, 482.8, 486) | Hospitalization Noninvasive ventilation Invasive ventilation Respiratory cause of death |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hughes, E.M.; Kiedrowski, M.R. Effects of Elevated Glucose on Bacterial Respiratory Infections in Cystic Fibrosis and Chronic Airway Diseases. Int. J. Mol. Sci. 2025, 26, 5597. https://doi.org/10.3390/ijms26125597
Hughes EM, Kiedrowski MR. Effects of Elevated Glucose on Bacterial Respiratory Infections in Cystic Fibrosis and Chronic Airway Diseases. International Journal of Molecular Sciences. 2025; 26(12):5597. https://doi.org/10.3390/ijms26125597
Chicago/Turabian StyleHughes, Emily M., and Megan R. Kiedrowski. 2025. "Effects of Elevated Glucose on Bacterial Respiratory Infections in Cystic Fibrosis and Chronic Airway Diseases" International Journal of Molecular Sciences 26, no. 12: 5597. https://doi.org/10.3390/ijms26125597
APA StyleHughes, E. M., & Kiedrowski, M. R. (2025). Effects of Elevated Glucose on Bacterial Respiratory Infections in Cystic Fibrosis and Chronic Airway Diseases. International Journal of Molecular Sciences, 26(12), 5597. https://doi.org/10.3390/ijms26125597