ALDH2 Enzyme Deficiency in Diabetic Cardiomyopathy
Abstract
:1. Introduction
2. Pathophysiology and Progression of DCM
3. ALDH2*2 Variant: Impaired Aldehyde Detoxification and Its Role in DCM
4. Clinical Implications of ALDH2*2 Deficiency on Cardiovascular and Metabolic Health
5. ALDH2 Deficiency and Diabetic Cardiomyopathy: Insights from Animal and Cellular Models
6. Therapeutic Directions for ALDH2*2 Carriers with DCM
7. Discussion
8. Future Directions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, C.; Zhao, Y.; Bian, Y.; Shang, R.; Wang, J.L.; Xue, L.; Wei, S.J.; Zhang, H.; Chen, Y.G.; Xu, F. Aldehyde dehydrogenase 2 Glu504Lys variant predicts a worse prognosis of acute coronary syndrome patients. J. Cell Mol. Med. 2018, 22, 2518–2522. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Dillmann, W.H. Diabetic Cardiomyopathy. Circ. Res. 2019, 124, 1160–1162. [Google Scholar] [CrossRef]
- Bugger, H.; Abel, E.D. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014, 57, 660–671. [Google Scholar] [CrossRef]
- Tao, L.C.; Wang, T.T.; Zheng, L.; Hua, F.; Li, J.J. The Role of Mitochondrial Biogenesis Dysfunction in Diabetic Cardiomyopathy. Biomol. Ther. 2022, 30, 399–408. [Google Scholar] [CrossRef]
- Seferović, P.M.; Paulus, W.J. Clinical diabetic cardiomyopathy: A two-faced disease with restrictive and dilated phenotypes. Eur. Heart J. 2015, 36, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, R.H. Evidence for a Causal Role of Oxidative Stress in the Myocardial Complications of Insulin Resistance. Heart Lung Circ. 2009, 18, 11–18. [Google Scholar] [CrossRef]
- Shah, M.S.; Brownlee, M. Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes. Circ. Res. 2016, 118, 1808–1829. [Google Scholar] [CrossRef]
- Chen, C.H.; Ferreira, J.C.; Gross, E.R.; Mochly-Rosen, D. Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol. Rev. 2014, 94, 1–34. [Google Scholar] [CrossRef]
- Liu, B.; Wang, J.; Li, M.; Yuan, Q.; Xue, M.; Xu, F.; Chen, Y. Inhibition of ALDH2 by O-GlcNAcylation contributes to the hyperglycemic exacerbation of myocardial ischemia/reperfusion injury. Oncotarget 2017, 8, 19413–19426. [Google Scholar] [CrossRef]
- Guo, H.; Yu, X.; Liu, Y.; Paik, D.T.; Justesen, J.M.; Chandy, M.; Jahng, J.W.S.; Zhang, T.; Wu, W.; Rwere, F.; et al. SGLT2 inhibitor ameliorates endothelial dysfunction associated with the common ALDH2 alcohol flushing variant. Sci. Transl. Med. 2023, 15, eabp9952. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Budas, G.R.; Churchill, E.N.; Disatnik, M.H.; Hurley, T.D.; Mochly-Rosen, D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 2008, 321, 1493–1495. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, J. ALDH2 in alcoholic heart diseases: Molecular mechanism and clinical implications. Pharmacol. Ther. 2011, 132, 86–95. [Google Scholar] [CrossRef]
- Pan, G.; Munukutla, S.; Kar, A.; Gardinier, J.; Thandavarayan, R.A.; Palaniyandi, S.S. Type-2 diabetic aldehyde dehydrogenase 2 mutant mice (ALDH 2*2) exhibiting heart failure with preserved ejection fraction phenotype can be determined by exercise stress echocardiography. PLoS ONE 2018, 13, e0195796, Erratum in PLoS ONE 2018, 13, e0203581. [Google Scholar]
- Harada, S.; Agarwal, D.P.; Goedde, H.W.; Ishikawa, B. Aldehyde dehydrogenase isozyme variation and alcoholism in Japan. Pharmacol. Biochem. Behav. 1983, 18, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, Y.; Zhao, X.; Pang, J.; Pan, C.; Wang, J.; Wei, S.; Yu, X.; Zhang, C.; Chen, Y.; et al. The role of aldehyde dehydrogenase 2 in cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Eng, M.Y.; Luczak, S.E.; Wall, T.L. ALDH2, ADH1B, and ADH1C genotypes in Asians: A literature review. Alcohol. Res. Health 2007, 30, 22–27. [Google Scholar]
- Chen, C.H.; Ferreira, J.C.B.; Joshi, A.U.; Stevens, M.C.; Li, S.J.; Hsu, J.H.; Maclean, R.; Ferreira, N.D.; Cervantes, P.R.; Martinez, D.D.; et al. Novel and prevalent non-East Asian ALDH2 variants; Implications for global susceptibility to aldehydes’ toxicity. EBioMedicine 2020, 55, 102753. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wang, W.-L.; Hsu, M.-H.; Mochly-Rosen, D. Alcohol Consumption, ALDH2 Polymorphism as Risk Factors for Upper Aerodigestive Tract Cancer Progression and Prognosis. Life 2022, 12, 348. [Google Scholar] [CrossRef]
- Xu, F.; Chen, Y.G.; Xue, L.; Li, R.J.; Zhang, H.; Bian, Y.; Zhang, C.; Lv, R.J.; Feng, J.B.; Zhang, Y. Role of aldehyde dehydrogenase 2 Glu504lys polymorphism in acute coronary syndrome. J. Cell Mol. Med. 2011, 15, 1955–1962. [Google Scholar] [CrossRef]
- Yang, K.; Ren, J.; Li, X.; Wang, Z.; Xue, L.; Cui, S.; Sang, W.; Xu, T.; Zhang, J.; Yu, J.; et al. Prevention of aortic dissection and aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype. Eur. Heart J. 2020, 41, 2442–2453. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Gao, R.; Chen, H.; Hu, J.; Zhang, P.; Wei, X.; Shi, J.; Chen, Y.; Zhang, L.; Chen, J.; et al. Myocardial reperfusion injury exacerbation due to ALDH2 deficiency is mediated by neutrophil extracellular traps and prevented by leukotriene C4 inhibition. Eur. Heart J. 2024, 45, 1662–1680. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Hao, P.; Xue, L.; Wei, S.; Zhang, Y.; Chen, Y. Inhibition of Aldehyde Dehydrogenase 2 by Oxidative Stress Is Associated with Cardiac Dysfunction in Diabetic Rats. Mol. Med. 2011, 17, 172–179. [Google Scholar] [CrossRef]
- Bell, D.S.H. Diabetic Cardiomyopathy. Diabetes Care 2003, 26, 2949–2951. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Wang, X.; Chen, Y.; Pang, P.; Yang, Q.; Lin, J.; Deng, S.; Wu, S.; Fan, G.; et al. Diabetic cardiomyopathy: Clinical phenotype and practice. Front. Endocrinol. 2022, 13, 1032268. [Google Scholar] [CrossRef]
- Falcão-Pires, I.; Leite-Moreira, A.F. Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail. Rev. 2012, 17, 325–344. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Kitzman, D.W. Obesity-Related Heart Failure with a Preserved Ejection Fraction: The Mechanistic Rationale for Combining Inhibitors of Aldosterone, Neprilysin, and Sodium-Glucose Cotransporter-2. JACC Heart Fail. 2018, 6, 633–639. [Google Scholar] [CrossRef]
- Hu, R.; Huang, L.; Liang, Y.; Zhou, R. Insight into the Pathogenesis, Diagnosis, and Current Strategies of Diabetic Cardiomyopathy. Highlights Sci. Eng. Technol. 2023, 36, 747–754. [Google Scholar] [CrossRef]
- Mohan, M.; Dihoum, A.; Mordi, I.R.; Choy, A.-M.; Rena, G.; Lang, C.C. Left Ventricular Hypertrophy in Diabetic Cardiomyopathy: A Target for Intervention. Front. Cardiovasc. Med. 2021, 8, 746382. [Google Scholar] [CrossRef]
- Oota, H.; Pakstis, A.J.; Bonne-Tamir, B.; Goldman, D.; Grigorenko, E.; Kajuna, S.L.B.; Karoma, N.J.; Kungulilo, S.; Lu, R.-B.; Odunsi, K.; et al. The evolution and population genetics of the ALDH2 locus: Random genetic drift, selection, and low levels of recombination. Ann. Hum. Genet. 2004, 68, 93–109. [Google Scholar] [CrossRef]
- Li, H.; Borinskaya, S.; Yoshimura, K.; Kal’ina, N.; Marusin, A.; Stepanov, V.A.; Qin, Z.; Khaliq, S.; Lee, M.Y.; Yang, Y.; et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann. Hum. Genet. 2009, 73, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Crabb, D.W.; Matsumoto, M.; Chang, D.; You, M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc. Nutr. Soc. 2004, 63, 49–63. [Google Scholar] [CrossRef]
- Brooks, P.J.; Enoch, M.A.; Goldman, D.; Li, T.K.; Yokoyama, A. The alcohol flushing response: An unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med. 2009, 6, e50. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-L.; Sung, K.-T.; Chang, S.-C.; Liu, Y.-Y.; Kuo, J.-Y.; Huang, W.-H.; Su, C.-H.; Liu, C.-C.; Tsai, S.-Y.; Liu, C.-Y.; et al. Variant Aldehyde Dehydrogenase 2 (ALDH2*2) as a Risk Factor for Mechanical LA Substrate Formation and Atrial Fibrillation with Modest Alcohol Consumption in Ethnic Asians. Biomolecules 2021, 11, 1559. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; Sung, Y.L.; Pan, S.H.; Sung, K.T.; Su, C.H.; Ding, S.L.; Lu, Y.J.; Hsieh, C.L.; Chen, Y.F.; Liu, C.C.; et al. A Common East Asian aldehyde dehydrogenase 2*2 variant promotes ventricular arrhythmia with chronic light-to-moderate alcohol use in mice. Commun. Biol. 2023, 6, 610. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Ferreira, J.C.B.; Mochly-Rosen, D. ALDH2 and Cardiovascular Disease. Adv. Exp. Med. Biol. 2019, 1193, 53–67. [Google Scholar] [CrossRef]
- Tan, X.; Chen, Y.-F.; Zou, S.-Y.; Wang, W.-J.; Zhang, N.-N.; Sun, Z.-Y.; Xian, W.; Li, X.-R.; Tang, B.; Wang, H.-J.; et al. ALDH2 attenuates ischemia and reperfusion injury through regulation of mitochondrial fusion and fission by PI3K/AKT/mTOR pathway in diabetic cardiomyopathy. Free. Radic. Biol. Med. 2023, 195, 219–230. [Google Scholar] [CrossRef]
- Jannapureddy, S.; Sharma, M.; Yepuri, G.; Schmidt, A.M.; Ramasamy, R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front. Endocrinol. 2021, 12, 636267. [Google Scholar] [CrossRef]
- Nie, X.; Fan, J.; Dai, B.; Wen, Z.; Li, H.; Chen, C.; Wang, D.W. LncRNA CHKB-DT Downregulation Enhances Dilated Cardiomyopathy Through ALDH2. Circ. Res. 2024, 134, 425–441. [Google Scholar] [CrossRef]
- Pan, X.; Hao, E.; Zhang, F.; Wei, W.; Du, Z.; Yan, G.; Wang, X.; Deng, J.; Hou, X. Diabetes cardiomyopathy: Targeted regulation of mitochondrial dysfunction and therapeutic potential of plant secondary metabolites. Front. Pharmacol. 2024, 15, 1401961. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, R.; Abudureyimu, M.; Liu, Q.; Ma, J.; Xu, H.; Yu, W.; Yang, J.; Jia, J.; Qian, S.; et al. Mitochondrial aldehyde dehydrogenase rescues against diabetic cardiomyopathy through GSK3β-mediated preservation of mitochondrial integrity and Parkin-mediated mitophagy. J. Mol. Cell Biol. 2023, 15, mjad056. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Sun, Y.; Shang, R.; Li, M.; Cui, L.; Cui, Z.; Chen, Y. The Glu504Lys polymorphism of aldehyde dehydrogenase 2 contributes to development of coronary artery disease. Tohoku J. Exp. Med. 2014, 234, 143–150. [Google Scholar] [CrossRef]
- Cao, R.; Fang, D.; Wang, J.; Yu, Y.; Ye, H.; Kang, P.; Li, Z.; Wang, H.; Gao, Q. ALDH2 Overexpression Alleviates High Glucose-Induced Cardiotoxicity by Inhibiting NLRP3 Inflammasome Activation. J. Diabetes Res. 2019, 2019, 4857921. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Kraemer, B.R.; Mochly-Rosen, D. ALDH2 variance in disease and populations. Dis. Model. Mech. 2022, 15, dmm049601. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Hu, J.; Dong, Z.; Liu, Y.; Sun, X.; Sun, A. ALDH2 mutation results in excessive basal nitric oxide production and a delayed response to nitroglycerin. Cardiol. Plus 2022, 7, 85–91. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Xu, F.; Zhang, H.; Jiang, C.; Zhang, Y. Correlation between Aldehyde dehydrogenase-2 gene polymorphisms and myocardial infarction in Chinese Han patients with coronary heart disease. J. Shandong Univ. (Health Sci.) 2007, 45, 808–812. [Google Scholar]
- Xia, C.L.; Chu, P.; Liu, Y.X.; Qu, X.L.; Gao, X.F.; Wang, Z.M.; Dong, J.; Chen, S.L.; Zhang, J.X. ALDH2 rs671 polymorphism and the risk of heart failure with preserved ejection fraction (HFpEF) in patients with cardiovascular diseases. J. Hum. Hypertens. 2020, 34, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Naito, M.; Wakai, K.; Morita, E.; Kawai, S.; Hamajima, N.; Suzuki, S.; Kita, Y.; Takezaki, T.; Tanaka, K.; et al. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men. Nagoya J. Med. Sci. 2016, 78, 183–193. [Google Scholar]
- Ishida, T.; Arima, Y.; Mizuno, Y.; Harada, E.; Yamashita, T.; Sueta, D.; Sakamoto, K.; Suzuki, S.; Kaikita, K.; Yamada, Y.; et al. East Asian variant aldehyde dehydrogenase type 2 genotype exacerbates ischemia/reperfusion injury with ST-elevation myocardial infarction in men: Possible sex differences. Heart Vessels 2022, 37, 184–193. [Google Scholar] [CrossRef]
- Idewaki, Y.; Iwase, M.; Fujii, H.; Ohkuma, T.; Ide, H.; Kaizu, S.; Jodai, T.; Kikuchi, Y.; Hirano, A.; Nakamura, U.; et al. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry. PLoS ONE 2015, 10, e0143288. [Google Scholar] [CrossRef]
- Zhu, L.P.; Yin, W.L.; Peng, L.; Zhou, X.H.; Zhou, P.; Xuan, S.X.; Luo, Y.; Chen, C.; Cheng, B.; Lin, J.D.; et al. Association of Aldehyde Dehydrogenase 2 Gene Polymorphism with Myocardial Infarction. J. Inflamm. Res. 2021, 14, 3039–3047. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Pan, J.; Wang, L.; Fang, Y.; Hu, R. Prospective study: Aldehyde dehydrogenase 2 gene is associated with cardio-cerebrovascular complications in type 2 diabetes patients. J. Diabetes Investig. 2021, 12, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Hokimoto, S.; Harada, E.; Kinoshita, K.; Nakagawa, K.; Yoshimura, M.; Ogawa, H.; Yasue, H. Variant Aldehyde Dehydrogenase 2 (ALDH2*2) Is a Risk Factor for Coronary Spasm and ST-Segment Elevation Myocardial Infarction. J. Am. Heart Assoc. 2016, 5, e003247. [Google Scholar] [CrossRef]
- Min, K.D.; Kitakaze, M. Nitroglycerin Tolerance in Patients with ALDH2 Variant. Circ. J. 2020, 84, 384–385. [Google Scholar] [CrossRef]
- Murata, C.; Suzuki, Y.; Muramatsu, T.; Taniyama, M.; Atsumi, Y.; Matsuoka, K.; Watanabe, T.; Okazaki, I. Inactive aldehyde dehydrogenase 2 worsens glycemic control in patients with type 2 diabetes mellitus who drink low to moderate amounts of alcohol. Alcohol. Clin. Exp. Res. 2000, 24, 5S–11S. [Google Scholar] [CrossRef] [PubMed]
- Okura, T.; Nakamura, R.; Anno, M.; Ito, Y.; Kitao, S.; Endo, S.; Taneda, N.; Matsumoto, K.; Shoji, K.; Okura, H.; et al. Aldehyde dehydrogenase 2 polymorphism is an important gene for insulin resistance in Japanese patients with type 2 diabetes. Metabolism Open 2023, 18, 100242. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases. Biomed. Res. Int. 2015, 2015, 174050. [Google Scholar] [CrossRef]
- Liao, J.; Sun, A.; Xie, Y.; Isse, T.; Kawamoto, T.; Zou, Y.; Ge, J. Aldehyde dehydrogenase-2 deficiency aggravates cardiac dysfunction elicited by endoplasmic reticulum stress induction. Mol. Med. 2012, 18, 785–793. [Google Scholar] [CrossRef]
- Kang, P.; Wang, J.; Fang, D.; Fang, T.; Yu, Y.; Zhang, W.; Shen, L.; Li, Z.; Wang, H.; Ye, H.; et al. Activation of ALDH2 attenuates high glucose induced rat cardiomyocyte fibrosis and necroptosis. Free Radic Biol. Med. 2020, 146, 198–210. [Google Scholar] [CrossRef]
- Wang, C.; Fan, F.; Cao, Q.; Shen, C.; Zhu, H.; Wang, P.; Zhao, X.; Sun, X.; Dong, Z.; Ma, X.; et al. Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice. J. Mol. Med. 2016, 94, 1229–1240. [Google Scholar] [CrossRef]
- Kang, P.F.; Wu, W.J.; Tang, Y.; Xuan, L.; Guan, S.D.; Tang, B.; Zhang, H.; Gao, Q.; Wang, H.J. Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model. Oxid. Med. Cell Longev. 2016, 2016, 6190504. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiang, H.; Zhu, H.; Dong, Z.; Zhang, S.; Zou, Y.; Sun, A.; Ge, J. Mitochondrial ALDH2 Deficiency Promotes Fibrosis and Reactive Oxygen Species Formation in the Myocardium of Aged Mice. Cardiol. Plus 2017, 2, 1–7. [Google Scholar] [CrossRef]
- Ueta, C.B.; Campos, J.C.; Albuquerque, R.P.E.; Lima, V.M.; Disatnik, M.H.; Sanchez, A.B.; Chen, C.H.; de Medeiros, M.H.G.; Yang, W.; Mochly-Rosen, D.; et al. Cardioprotection induced by a brief exposure to acetaldehyde: Role of aldehyde dehydrogenase 2. Cardiovasc. Res. 2018, 114, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.S.; Chen, Y.H.; Hu, J.T.; Chiu, C.F.; Hung, S.W.; Chang, Y.C.; Chiu, C.C.; Chuang, H.L. Aldehyde Dehydrogenase Mutation Exacerbated High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease with Gut Microbiota Remodeling in Male Mice. Biology 2021, 10, 737. [Google Scholar] [CrossRef]
- Lee, H.L.; Hee, S.W.; Hsuan, C.F.; Yang, W.; Huang, J.Y.; Lin, Y.L.; Hsu, C.N.; Hwang, J.J.; Chen, S.M.; Ding, Z.Z.; et al. A Novel ALDH2 Activator AD-9308 Improves Diastolic and Systolic Myocardial Functions in Streptozotocin-Induced Diabetic Mice. Antioxidants 2021, 10, 450. [Google Scholar] [CrossRef]
- Maiuolo, J.; Oppedisano, F.; Carresi, C.; Gliozzi, M.; Musolino, V.; Macrì, R.; Scarano, F.; Coppoletta, A.; Cardamone, A.; Bosco, F.; et al. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int. J. Mol. Sci. 2022, 23, 15454. [Google Scholar] [CrossRef]
- Hua, Y.; Chen, H.; Zhao, X.; Liu, M.; Jin, W.; Yan, W.; Wu, Y.; Tan, Z.; Fan, H.; Wu, Y.; et al. Alda-1, an aldehyde dehydrogenase-2 agonist, improves long-term survival in rats with chronic heart failure following myocardial infarction. Mol. Med. Rep. 2018, 18, 3159–3166. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, Z.; Zheng, C.; Wintergerst, K.A.; Keller, B.B.; Cai, L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat. Rev. Cardiol. 2020, 17, 585–607. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hokimoto, S.; Harada, E.; Kinoshita, K.; Yoshimura, M.; Yasue, H. Variant Aldehyde Dehydrogenase 2 (ALDH2*2) in East Asians Interactively Exacerbates Tobacco Smoking Risk for Coronary Spasm―Possible Role of Reactive Aldehydes―. Circ. J. 2017, 81, 96–102. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Lee, H.-L.; Yang, W.; Hsieh, M.-L.; Liu, C.-C.; Lee, T.-Y.; Huang, J.-Y.; Nong, J.-Y.; Li, F.-A.; Chuang, H.-L.; et al. A common East-Asian ALDH2 mutation causes metabolic disorders and the therapeutic effect of ALDH2 activators. Nat. Commun. 2023, 14, 5971. [Google Scholar] [CrossRef]
- Kowalska, K.; Wilczopolski, P.; Buławska, D.; Młynarska, E.; Rysz, J.; Franczyk, B. The Importance of SGLT-2 Inhibitors as Both the Prevention and the Treatment of Diabetic Cardiomyopathy. Antioxidants 2022, 11, 2500. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Shi, H.; Xiong, L.; Wang, P.; Shi, Y. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front. Endocrinol. 2022, 13, 1011669. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, B.; Hua, R.; Liu, X.; Qiao, B.; Zhang, X.; Liu, X.; Wang, W.; Yuan, Q.; Wang, B.; et al. ALDH2 mediates the effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) on improving cardiac remodeling. Cardiovasc. Diabetol. 2024, 23, 380. [Google Scholar] [CrossRef]
- Li, W.; Yin, L.; Sun, X.; Wu, J.; Dong, Z.; Hu, K.; Sun, A.; Ge, J. Alpha-lipoic acid protects against pressure overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1 signaling. Cell Death Dis. 2020, 11, 599. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Qin, X.; Turdi, S.; Sun, D.; Culver, B.; Reiter, R.J.; Wang, X.; Zhou, H.; Ren, J. ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy. Signal Transduct. Target. Ther. 2020, 5, 119. [Google Scholar] [CrossRef]
- Rahmani, S.; Roohbakhsh, A.; Pourbarkhordar, V.; Hayes, A.W.; Karimi, G. Melatonin regulates mitochondrial dynamics and mitophagy: Cardiovascular protection. J. Cell. Mol. Med. 2024, 28, e70074. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, B.; Zhang, J.; He, D.; Zhang, Q.; Pan, C.; Yuan, Q.; Shi, Y.; Tang, H.; Xu, F.; et al. ALDH2 (Aldehyde Dehydrogenase 2) Protects Against Hypoxia-Induced Pulmonary Hypertension. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2303–2319. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Q.; Ren, K.; Wu, P.; Wang, Y.; Lv, C. ALDH2 mitigates LPS-induced cardiac dysfunction, inflammation, and apoptosis through the cGAS/STING pathway. Mol. Med. 2023, 29, 171. [Google Scholar] [CrossRef] [PubMed]
- Hsuan, C.F.; Teng, S.I.F.; Hsu, C.N.; Liao, D.; Chang, A.J.; Lee, H.L.; Hee, S.W.; Chang, Y.C.; Chuang, L.M. Emerging Therapy for Diabetic Cardiomyopathy: From Molecular Mechanism to Clinical Practice. Biomedicines 2023, 11, 662. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Y.; Chen, R.; Shen, J.; Zhang, S.; Gu, Y.; Shi, J.; Meng, G. Dihydromyricetin Attenuates Diabetic Cardiomyopathy by Inhibiting Oxidative Stress, Inflammation and Necroptosis via Sirtuin 3 Activation. Antioxidants 2023, 12, 200. [Google Scholar] [CrossRef]
Genotype | ALDH2 Enzyme Activity | Impact on Aldehyde Detoxification | Associated Health Risks |
---|---|---|---|
ALDH2*1/*1 (Wild-type) | High | Efficient detoxification of aldehydes (e.g., acetaldehyde, 4-HNE) | Lower risk of oxidative stress-related diseases |
ALDH2*1/*2 (Heterozygous) | Moderate (~10–20% activity) | Reduced detoxification efficiency, leading to elevated aldehyde accumulation | Increased risk of oxidative stress, moderate vulnerability to DCM |
ALDH2*2/*2 (Homozygous) | Low (<2% activity) | High aldehyde accumulation due to insufficient detoxification | High risk of DCM, coronary artery disease, and other cardiovascular diseases |
Mechanism | Impact of ALDH2 Deficiency | Representative Findings | Consequence in DCM | References |
---|---|---|---|---|
Oxidative Stress | ↑ 4-HNE and ROS accumulation, promoting lipid peroxidation | In diabetic ALDH2-deficient mice, increased 4-HNE levels and promoted cardiac apoptosis and fibrosis | Induces cardiomyocyte injury, enhances fibrosis, and impairs contractility | (Chen et al., 2020; Chen, et al., 2014; Guo et al., 2023; Liu et al., 2017; Wang et al., 2011) [9,10,11,18,23]. |
Mitochondrial Dysfunction | ↓ mitochondrial membrane potential and ATP synthesis | ALDH2-deficient models showed mitochondrial swelling and reduced mitophagy under hyperglycemia | ↑ myocardial energy deficiency and diastolic dysfunction | Bugger and Abel 2014; Pan et al., 2018; Tao et al., 2022; Wang et al., 2011; Zhang et al., 2023) [4,5,14,23,41] |
Inflammation | Increases inflammatory cytokines (e.g., IL-6, TNF-α) and activates NLRP3 inflammasome | Cardiomyocytes under high glucose with ALDH2 inhibition displayed elevated IL-6 and NLRP3 expression | ↑ chronic inflammation and myocardial remodeling | (Bugger and Abel 2014; Cao et al., 2019; Xu et al., 2014) [4,42,43] |
Nitric Oxide (NO) Dysregulation | ↓ NO bioavailability, ↑ NOS uncoupling, and endothelial dysfunction | ALDH2*2 variant reduced GTN efficacy and increased basal NO production via NOS uncoupling | Contributes to vascular dysfunction and left ventricular remodeling | (Chen et al., 2022; Zhu et al., 2022) [44,45] |
Population/ Genotype | Condition or Endpoint | Key Findings | Alcohol Interaction | References |
---|---|---|---|---|
Ethnic Asians/ALDH2*2 | Atrial fibrillation (AF), left atrial strain | ↑ AF risk due to alcohol-related LA dysfunction in ALDH2*2 carriers | Yes | (Hung, et al., 2021) [34] |
CVD patients/ALDH2*2 carriers | Heart failure with preserved ejection fraction (HFpEF) | ↑ HFpEF prevalence associated with ALDH2 rs671 polymorphism | N/A | (Tan, et al., 2020) [68] |
East Asian STEMI patients | Myocardial Infarction severity, coronary Spasm | ↑ ischemia/reperfusion injury and ↑ coronary spasm in ALDH2*2 carriers | N/A | (Ishida, et al., 2022) [49] |
Japanese STEMI patients | STEMI, coronary spasm | ↑ coronary spasms and ↑ myocardial injury in ALDH2*2 patients with STEMI | N/A | (Mizuno, et al., 2017) [69] |
East Asians with ACS | GTN responsiveness, ACS prognosis | ↓ nitroglycerin efficacy and ↑ adverse events in ALDH2*2 carriers | Yes | (Min and Kitakaze 2020) [54] |
Japanese T2DM patients | Insulin resistance and metabolic indicators | ↑ insulin resistance and obesity correlated with ALDH2*2 genotype | N/A | (Okura, et al., 2023) [56] |
Japanese T2DM drinkers | Fasting glucose and HbA1c | ↑ fasting glucose and HbA1c in ALDH2*2 carriers with alcohol intake | Yes | (Murata, et al., 2000) [55] |
T2DM cohort/ALDH2*2 carriers | Cardio-cerebrovascular complications | ↑ risk of stroke and cardiovascular events in diabetic ALDH2*2 carriers | N/A | (He, et al., 2021) [52] |
East Asians/ALDH2*2 carriers | Cancer, Alzheimer’s risk | ↑ long-term risk of cancer and Alzheimer’s disease; alcohol-modulated | Alcohol-modulated | (Zhao and Wang 2015) [57] |
Chinese CVD patients | Myocardial infarction | ↑ MI incidence in ALDH2*2 carriers in CVD cohort | N/A | (Zhu et al., 2021) [51] |
Therapeutic Agent | Mechanism of Action | Proposed Cardioprotective Effect | Current Research Status | References |
---|---|---|---|---|
ALDH2 Activator Alda-1 AD-9308 AD-5591 | Enhances ALDH2 activity | Reduces oxidative stress, improves cardiac function | Preclinical efficacy; early-phase trials ongoing | (Hua, et al., 2018) [67] (Lee et al., 2021) [65] (Chang et al., 2023) [70] |
SGLT2 Inhibitor Empagliflozin Canagliflozin | Lowers glucose levels, improves endothelial function | Ameliorates hyperglycemia-induced stress, reduces CAD risk | Approved for diabetes and HF; ALDH2-specific effects under study | (Guo et al., 2023) [11] (Liu et al., 2024) [73] (Kowalska et al., 2022) [71] |
Antioxidants Alpha-Lipoic Acid (α-LA) Dihydromyricetin (DHM) N-Acetylcysteine (NAC) Melatonin | Neutralizes ROS and reduces oxidative damage | Prevents cardiac cell apoptosis and fibrosis | Variable clinical results; more evidence needed in DCM context | (Li, et al., 2020) [74] (Chen et al., 2023) [80] (Wang et al., 2011) [23] (Rahmani et al., 2024) [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, Y.-W.; Lee, A.-S.; Sung, K.-T.; Chen, X.-R.; Lai, H.-H.; Chen, Y.-F.; Chien, C.-Y.; Yeh, H.-I.; Chen, C.-H.; Hung, C.-L. ALDH2 Enzyme Deficiency in Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2025, 26, 5516. https://doi.org/10.3390/ijms26125516
Hsieh Y-W, Lee A-S, Sung K-T, Chen X-R, Lai H-H, Chen Y-F, Chien C-Y, Yeh H-I, Chen C-H, Hung C-L. ALDH2 Enzyme Deficiency in Diabetic Cardiomyopathy. International Journal of Molecular Sciences. 2025; 26(12):5516. https://doi.org/10.3390/ijms26125516
Chicago/Turabian StyleHsieh, Yang-Wen, An-Sheng Lee, Kuo-Tzu Sung, Xuan-Ren Chen, Hsin-Hung Lai, Yun-Fang Chen, Chen-Yen Chien, Hung-I Yeh, Che-Hong Chen, and Chung-Lieh Hung. 2025. "ALDH2 Enzyme Deficiency in Diabetic Cardiomyopathy" International Journal of Molecular Sciences 26, no. 12: 5516. https://doi.org/10.3390/ijms26125516
APA StyleHsieh, Y.-W., Lee, A.-S., Sung, K.-T., Chen, X.-R., Lai, H.-H., Chen, Y.-F., Chien, C.-Y., Yeh, H.-I., Chen, C.-H., & Hung, C.-L. (2025). ALDH2 Enzyme Deficiency in Diabetic Cardiomyopathy. International Journal of Molecular Sciences, 26(12), 5516. https://doi.org/10.3390/ijms26125516