Sex-Based Differences in Asthma: Pathophysiology, Hormonal Influence, and Genetic Mechanisms
Abstract
1. Introduction
2. Epidemiology
3. Pathophysiology
4. Hormones and Asthma
5. Sex-Related Differences in Terms of Genetic and Epigenetic Factors
6. Clinical Implications and Treatment Considerations
Author Contributions
Funding
Conflicts of Interest
References
- Louis, R.; Satia, I.; Ojanguren, I.; Schleich, F.; Bonini, M.; Tonia, T.; Rigau, D.; Brinke, A.T.; Buhl, R.; Loukides, S.; et al. European Respiratory Society guidelines for the diagnosis of asthma in adults. Eur. Respir. J. 2022, 60, 2101585. [Google Scholar] [CrossRef] [PubMed]
- Rajvanshi, N.; Kumar, P.; Goyal, J.P. Global Initiative for Asthma Guidelines 2024: An Update. Indian Pediatr. 2024, 61, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Tao, J.; Wang, J.; She, W.; Zou, Y.; Li, R.; Ma, Y.; Sun, C.; Bi, S.; Wei, S.; et al. Global, regional, national burden of asthma from 1990 to 2021, with projections of incidence to 2050: A systematic analysis of the global burden of disease study 2021. eClinicalMedicine 2025, 80, 103051. [Google Scholar] [CrossRef] [PubMed]
- Reale, C.; Invernizzi, F.; Panteghini, C.; Garavaglia, B. Genetics, sex, and gender. J. Neurosci. Res. 2023, 101, 553–562. [Google Scholar] [CrossRef]
- Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of Asthma in Children and Adults. Front. Pediatr. 2019, 7, 246. [Google Scholar] [CrossRef]
- Grant, T.L.; Lavigne, L.C.R.; Pollack, C.E.; Cimbolic, P.; Balcer-Whaley, S.; Peng, R.D.; Matsui, E.C.; Keet, C.A. Moving to lower-poverty neighborhoods offers broad benefits for children with asthma, regardless of sex or other baseline characteristics. J. Allergy Clin. Immunol. Glob. 2025, 4, 100402. [Google Scholar] [CrossRef]
- Lang, D.M. Severe asthma: Epidemiology, burden of illness, and heterogeneity. Allergy Asthma Proc. 2015, 36, 418–424. [Google Scholar] [CrossRef]
- Narasimhan, K. Difficult-to-Treat and Severe Asthma: Management Strategies. Am. Fam. Physician 2021, 103, 286–290. [Google Scholar]
- Ramamurthy, M.B. Asthma Mimickers: Approach to Differential Diagnosis. Indian J. Pediatr. 2017, 85, 667–672. [Google Scholar] [CrossRef]
- Liu, A.H. Revisiting the hygiene hypothesis for allergy and asthma. J. Allergy Clin. Immunol. 2015, 136, 860–865. [Google Scholar] [CrossRef]
- Bronte-Moreno, O.; González-Barcala, F.-J.; Muñoz-Gall, X.; Pueyo-Bastida, A.; Ramos-González, J.; Urrutia-Landa, I. Impact of Air Pollution on Asthma: A Scoping Review. Open Respir. Arch. 2023, 5, 100229. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Cowan, D.C. Obesity, Inflammation, and Severe Asthma: An Update. Curr. Allergy Asthma Rep. 2021, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Peters, U.; Dixon, A.E.; Forno, E. Obesity and asthma. J. Allergy Clin. Immunol. 2018, 141, 1169–1179. [Google Scholar] [CrossRef]
- Fuseini, H.; Newcomb, D.C. Mechanisms Driving Gender Differences in Asthma. Curr. Allergy Asthma Rep. 2017, 17, 19. [Google Scholar] [CrossRef]
- McConnochie, K.M.; Russo, M.J.; McBride, J.T.; Szilagyi, P.G.; Brooks, A.-M.; Roghmann, K.J. Socioeconomic Variation in Asthma Hospitalization: Excess Utilization or Greater Need? Pediatrics 1999, 103, e75. [Google Scholar] [CrossRef]
- Syssoyev, D.; Mussina, K.; Poddighe, D.; Gaipov, A.; Galiyeva, D. All-cause hospital admissions and incidence of asthma in children in Kazakhstan: A population-based retrospective cohort study. Sci. Rep. 2025, 15, 8985. [Google Scholar] [CrossRef]
- Cohen, J.; Douma, W.R.; Ten Hacken, N.H.T.; Oudkerk, M.; Postma, D.S. Physiology of the small airways: A gender difference? Respir. Med. 2008, 102, 1264–1271. [Google Scholar] [CrossRef]
- Hong, C.; Pajak, A.; Teitelbaum, S.L.; Vangeepuram, N.; Galvez, M.; Pinney, S.M.; Windham, G.; Kushi, L.H.; Biro, F.M.; Wolff, M.S.; et al. Younger pubertal age is associated with allergy and other atopic conditions in girls. Pediatr. Allergy Immunol. 2014, 25, 773–780. [Google Scholar] [CrossRef]
- Pignataro, F.; Bonini, M.; Forgione, A.; Melandri, S.; Usmani, O. Asthma and gender: The female lung. Pharmacol. Res. 2017, 119, 384–390. [Google Scholar] [CrossRef]
- Chowdhury, N.U.; Guntur, V.P.; Newcomb, D.C.; Wechsler, M.E. Sex and gender in asthma. Eur. Respir. Rev. 2021, 30, 210067. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.; Tibble, H.; Pillinger, R.; McLean, S.; Ryan, D.; Critchley, H.; Price, D.; Hawrylowicz, C.M.; Simpson, C.R.; Soyiri, I.N.; et al. Hormone replacement therapy and asthma onset in menopausal women: National cohort study. J. Allergy Clin. Immunol. 2021, 147, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- Foschino Barbaro, M.P.; Costa, V.R.; Resta, O.; Prato, R.; Spanevello, A.; Palladino, G.P.; Martinelli, D.; Carpagnano, G.E. Menopausal asthma: A new biological phenotype? Allergy 2010, 65, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Zaibi, H.; Touil, A.; Fessi, R.; Ben Amar, J.; Aouina, H. Asthma in Menopausal Women: Clinical and Functional Particularities. Tanaffos 2020, 19, 216–222. [Google Scholar]
- Miligkos, M.; Oh, J.; Kwon, R.; Konstantinou, G.Ν.; Kim, S.; Yon, D.K.; Papadopoulos, N.G. Epidemiology of asthma across the ages. Ann. Allergy Asthma Immunol. 2024, 134, 376–384.e13. [Google Scholar] [CrossRef]
- Zein, J.G.; Erzurum, S.C. Asthma is Different in Women. Curr. Allergy Asthma Rep. 2015, 15, 28. [Google Scholar] [CrossRef]
- Vrieze, A.; Postma, D.S.; Kerstjens, H.A. Perimenstrual asthma: A syndrome without known cause or cure. J. Allergy Clin. Immunol. 2003, 112, 271–282. [Google Scholar] [CrossRef]
- Padem, N.; Saltoun, C. Classification of asthma. Allergy Asthma Proc. 2019, 40, 385–388. [Google Scholar] [CrossRef]
- Maison, N.; Omony, J.; Illi, S.; Thiele, D.; Skevaki, C.; Dittrich, A.-M.; Bahmer, T.; Rabe, K.F.; Weckmann, M.; Happle, C.; et al. T2-high asthma phenotypes across lifespan. Eur. Respir. J. 2022, 60, 2102288. [Google Scholar] [CrossRef]
- Perkins, C.; Wills-Karp, M.; Finkelman, F.D. IL-4 induces IL-13–independent allergic airway inflammation. J. Allergy Clin. Immunol. 2006, 118, 410–419. [Google Scholar] [CrossRef]
- Owen, C.E. Immunoglobulin E: Role in asthma and allergic disease: Lessons from the clinic. Pharmacol. Ther. 2007, 113, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Kouro, T.; Takatsu, K. IL-5- and eosinophil-mediated inflammation: From discovery to therapy. Int. Immunol. 2009, 21, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Nur Husna, S.M.; Md Shukri, N.; Mohd Ashari, N.S.; Wong, K.K. IL-4/IL-13 axis as therapeutic targets in allergic rhinitis and asthma. PeerJ 2022, 10, e13444. [Google Scholar] [CrossRef] [PubMed]
- Domingo, C.; Maspero, J.F.; Castro, M.; Hanania, N.A.; Ford, L.B.; Halpin, D.M.; Jackson, D.J.; Daizadeh, N.; Djandji, M.; Mitchell, C.P.; et al. Dupilumab Efficacy in Steroid-Dependent Severe Asthma by Baseline Oral Corticosteroid Dose. J. Allergy Clin. Immunol. Pr. 2022, 10, 1835–1843. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, J.; Chen, Y. Efficacy and safety of treatment with benralizumab for eosinophilic asthma. Int. Immunopharmacol. 2022, 111, 109131. [Google Scholar] [CrossRef]
- Emma, R.; Morjaria, J.B.; Fuochi, V.; Polosa, R.; Caruso, M. Mepolizumab in the management of severe eosinophilic asthma in adults: Current evidence and practical experience. Ther. Adv. Respir. Dis. 2018, 12, 1753466618808490. [Google Scholar] [CrossRef]
- Thomson, N.C.; Chaudhuri, R. Omalizumab: Clinical Use for the Management of Asthma. Clin. Med. Insights Circ. Respir. Pulm. Med. 2012, 6, 27–40. [Google Scholar] [CrossRef]
- Niessen, N.M.; Fricker, M.; McDonald, V.M.; Gibson, P.G. T2-low: What do we know? Ann. Allergy Asthma Immunol. 2022, 129, 150–159. [Google Scholar] [CrossRef]
- Ray, A.; Kolls, J.K. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol. 2017, 38, 942–954. [Google Scholar] [CrossRef]
- Peri, F.; Amaddeo, A.; Badina, L.; Maschio, M.; Barbi, E.; Ghirardo, S. T2-Low Asthma: A Discussed but Still Orphan Disease. Biomedicines 2023, 11, 1226. [Google Scholar] [CrossRef]
- Joseph, C.; Tatler, A. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J. Asthma Allergy 2022, 15, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, C.; Tulic, M.K.; Hamid, Q. Airway Remodelling in Asthma: From Benchside to Clinical Practice. Can. Respir. J. 2010, 17, e85–e93. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.T.; Lourenço, J.D.; Righetti, R.F.; Tibério, I.F.; Prado, C.M.; Lopes, F.D. Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells 2019, 8, 342. [Google Scholar] [CrossRef] [PubMed]
- Kraik, K.; Tota, M.; Laska, J.; Łacwik, J.; Paździerz, Ł.; Sędek, Ł.; Gomułka, K. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells 2024, 13, 1271. [Google Scholar] [CrossRef]
- Kardas, G.; Daszyńska-Kardas, A.; Marynowski, M.; Brząkalska, O.; Kuna, P.; Panek, M. Role of Platelet-Derived Growth Factor (PDGF) in Asthma as an Immunoregulatory Factor Mediating Airway Remodeling and Possible Pharmacological Target. Front. Pharmacol. 2020, 11, 47. [Google Scholar] [CrossRef]
- Bonser, L.R.; Erle, D.J. Airway Mucus and Asthma: The Role of MUC5AC and MUC5B. J. Clin. Med. 2017, 6, 112. [Google Scholar] [CrossRef]
- Jesenak, M.; Durdik, P.; Oppova, D.; Franova, S.; Diamant, Z.; Golebski, K.; Banovcin, P.; Vojtkova, J.; Novakova, E. Dysfunctional mucociliary clearance in asthma and airway remodeling—New insights into an old topic. Respir. Med. 2023, 218, 107372. [Google Scholar] [CrossRef]
- Graff, S.; Bricmont, N.; Moermans, C.; Henket, M.; Paulus, V.; Guissard, F.; Louis, R.; Schleich, F. Clinical and biological factors associated with irreversible airway obstruction in adult asthma. Respir. Med. 2020, 175, 106202. [Google Scholar] [CrossRef]
- Bradding, P.; Porsbjerg, C.; Côté, A.; Dahlén, S.-E.; Hallstrand, T.S.; Brightling, C.E. Airway hyperresponsiveness in asthma: The role of the epithelium. J. Allergy Clin. Immunol. 2024, 153, 1181–1193. [Google Scholar] [CrossRef]
- Wills-Karp, M. IL-12/IL-13 axis in allergic asthma. J. Allergy Clin. Immunol. 2001, 107, 9–18. [Google Scholar] [CrossRef]
- Shah, R.; Newcomb, D.C. Sex Bias in Asthma Prevalence and Pathogenesis. Front. Immunol. 2018, 9, 2997. [Google Scholar] [CrossRef] [PubMed]
- Haggerty, C.L.; Ness, R.B.; Kelsey, S.; Waterer, G.W. The impact of estrogen and progesterone on asthma. Ann. Allergy Asthma Immunol. 2003, 90, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Lauzon-Joset, J.F.; Mincham, K.T.; Abad, A.P.; Short, B.P.; Holt, P.G.; Strickland, D.H.; Leffler, J. Oestrogen amplifies pre-existing atopy-associated Th2 bias in an experimental asthma model. Clin. Exp. Allergy 2020, 50, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Radzikowska, U.; Golebski, K. Sex hormones and asthma: The role of estrogen in asthma development and severity. Allergy 2022, 78, 620–622. [Google Scholar] [CrossRef]
- Singh, D.; Ravi, A.; Southworth, T. CRTH2 antagonists in asthma: Current perspectives. Clin. Pharmacol. Adv. Appl. 2017, 9, 165–173. [Google Scholar] [CrossRef]
- Vijeyakumaran, M.; Al Jawhri, M.; Fortunato, J.; Solomon, L.; Palikhe, N.S.; Vliagoftis, H.; Cameron, L. Dual activation of estrogen receptor alpha and glucocorticoid receptor upregulate CRTh2-mediated type 2 inflammation; mechanism driving asthma severity in women? Allergy 2022, 78, 767–779. [Google Scholar] [CrossRef]
- Trivedi, S.; Deering-Rice, C.E.; Aamodt, S.E.; Huecksteadt, T.P.; Myers, E.J.; Sanders, K.A.; Paine, R.; Warren, K.J. Progesterone amplifies allergic inflammation and airway pathology in association with higher lung ILC2 responses. Am. J. Physiol. Cell. Mol. Physiol. 2024, 327, L65–L78. [Google Scholar] [CrossRef]
- Fuseini, H.; Cephus, J.-Y.; Wu, P.; Davis, J.B.; Contreras, D.C.; Gandhi, V.D.; Rathmell, J.C.; Newcomb, D.C. ERα Signaling Increased IL-17A Production in Th17 Cells by Upregulating IL-23R Expression, Mitochondrial Respiration, and Proliferation. Front. Immunol. 2019, 10, 2740. [Google Scholar] [CrossRef]
- Liu, R.; Lauridsen, H.M.; Amezquita, R.A.; Pierce, R.W.; Jane-Wit, D.; Fang, C.; Pellowe, A.S.; Kirkiles-Smith, N.C.; Gonzalez, A.L.; Pober, J.S. IL-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium. J. Immunol. 2016, 197, 2400–2408. [Google Scholar] [CrossRef]
- Graziottin, A.; Serafini, A. Perimenstrual asthma: From pathophysiology to treatment strategies. Multidiscip. Respir. Med. 2016, 11, 30. [Google Scholar] [CrossRef]
- Yuan, T.; Li, Y. The association between free testosterone and current asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 3245. [Google Scholar] [CrossRef] [PubMed]
- Cephus, J.-Y.; Stier, M.T.; Fuseini, H.; Yung, J.A.; Toki, S.; Bloodworth, M.H.; Zhou, W.; Goleniewska, K.; Zhang, J.; Garon, S.L.; et al. Testosterone Attenuates Group 2 Innate Lymphoid Cell-Mediated Airway Inflammation. Cell Rep. 2017, 21, 2487–2499. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, L.; Jiang, S.; Cheng, K.; Wang, D.; Luo, Q.; Wu, X.; Zhu, L. Testosterone attenuates pulmonary epithelial inflammation in male rats of COPD model through preventing NRF1-derived NF-κB signaling. J. Mol. Cell Biol. 2021, 13, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.C.; da Silva, D.T.R.; Hennemann, M.L.; Sarmento, R.A.; Almeida, J.C.; Dalcin, P.d.T.R. Diet effects in the asthma treatment: A systematic review. Crit. Rev. Food Sci. Nutr. 2017, 58, 1878–1887. [Google Scholar] [CrossRef]
- Idborg, H.; Eketjäll, S.; Pettersson, S.; Gustafsson, J.T.; Zickert, A.; Kvarnström, M.; Oke, V.; Jakobsson, P.-J.; Gunnarsson, I.; Svenungsson, E. TNF-α and plasma albumin as biomarkers of disease activity in systemic lupus erythematosus. Lupus Sci. Med. 2018, 5, e000260. [Google Scholar] [CrossRef]
- Rincon, M.; Irvin, C.G. Role of IL-6 in Asthma and Other Inflammatory Pulmonary Diseases. Int. J. Biol. Sci. 2012, 8, 1281–1290. [Google Scholar] [CrossRef]
- Winsa-Lindmark, S.; Stridsman, C.; Sahlin, A.; Hedman, L.; Stenfors, N.; Myrberg, T.; Lindberg, A.; Rönmark, E.; Backman, H. Severity of adult-onset asthma—A matter of blood neutrophils and severe obesity. Respir. Med. 2023, 219, 107418. [Google Scholar] [CrossRef]
- Bartziokas, K.; Papaioannou, A.I.; Drakopanagiotakis, F.; Gouveri, E.; Papanas, N.; Steiropoulos, P. Unraveling the Link between Ιnsulin Resistance and Bronchial Asthma. Biomedicines 2024, 12, 437. [Google Scholar] [CrossRef]
- Youness, A.; Cenac, C.; Faz-López, B.; Grunenwald, S.; Barrat, F.J.; Chaumeil, J.; Mejía, J.E.; Guéry, J.-C. TLR8 escapes X chromosome inactivation in human monocytes and CD4+ T cells. Biol. Sex Differ. 2023, 14, 1–21. [Google Scholar] [CrossRef]
- Murray, L.M.; Yerkovich, S.T.; Ferreira, M.A.; Upham, J.W. Risks for cold frequency vary by sex: Role of asthma, age, TLR7 and leukocyte subsets. Eur. Respir. J. 2020, 56, 1902453. [Google Scholar] [CrossRef]
- Malmhäll, C.; Calvén, J.; Weidner, J.; Johansson, K.; Ramos-Ramírez, P.; Boberg, E.; Ekerljung, L.; Mincheva, R.; Nwaru, B.; Kankaanranta, H.; et al. Sex disparity in adult asthma—A potential immunomodulatory role of let-7 family microRNAs. Clin. Transl. Allergy 2025, 15, e70042. [Google Scholar] [CrossRef] [PubMed]
- James, B.; Milstien, S.; Spiegel, S. ORMDL3 and allergic asthma: From physiology to pathology. J. Allergy Clin. Immunol. 2019, 144, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Sleziak, J.; Gawor, A.; Błażejewska, M.; Antosz, K.; Gomułka, K. ADAM33′s Role in Asthma Pathogenesis: An Overview. Int. J. Mol. Sci. 2024, 25, 2318. [Google Scholar] [CrossRef] [PubMed]
- Malmhäll, C.; Calvén, J.; Weidner, J.; Johansson, K.; Ramos-Ramirez, P.; Boberg, E.; Ekerljung, L.; Mincheva, R.; Nwaru, B.; Kankaanranta, H.; et al. Potential role of Let-7 family microRNAs in sex disparity in asthma. Eur. Respir. J. 2024, 64 (Suppl. S68), OA2004. [Google Scholar] [CrossRef]
- Zeng, S.; Cui, J.; Zhang, Y.; Zheng, Z. MicroRNA-98-5p Inhibits IL-13-Induced Proliferation and Migration of Human Airway Smooth Muscle Cells by Targeting RAC1. Inflammation 2022, 45, 1548–1558. [Google Scholar] [CrossRef]
- Whetstone, C.E.; Ranjbar, M.; Omer, H.; Cusack, R.P.; Gauvreau, G.M. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022, 11, 1105. [Google Scholar] [CrossRef]
- Weaver, A.M.; Fuentez, N.; Steckbeck, R.; Riviera, L.; Nicoleau, M.; Silveyra, P. Sex differences in lung miRNA-712 expression and inflammatory cytokines in a mouse model of asthma and air pollution exposure. FASEB J. 2019, 33, 735.5. [Google Scholar] [CrossRef]
Aspect | Males | Females |
---|---|---|
Childhood Prevalence | Higher | Lower |
Adulthood Prevalence | Lower | Higher |
Hormonal Influence | Protective effect of testosterone | Pro-inflammatory effects of estrogen and progesterone |
Immune Response | Reduced Th2 activation post puberty | Increased Th2 response via IL-13, ILC2, and IL-17A activity |
Genetic Factors | Higher expression of Let-7 family miRNAs | Enhanced expression of TLR7, TLR8, IL-13 |
Epigenetics/miRNA | Suppressed IL-13 via miR-98, Let-7 | Higher IL-13, TSLP, ST2 due to miRNA differences |
Corticosteroid Response | Better responsiveness | Reduced efficacy, especially in severe asthma |
Airway Remodeling | Less prominent | More pronounced due to hormonal and metabolic interactions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrelli, R.; Brussino, L.; Lo Sardo, L.; Quinternetto, A.; Vitali, I.; Bagnasco, D.; Boem, M.; Corradi, F.; Badiu, I.; Negrini, S.; et al. Sex-Based Differences in Asthma: Pathophysiology, Hormonal Influence, and Genetic Mechanisms. Int. J. Mol. Sci. 2025, 26, 5288. https://doi.org/10.3390/ijms26115288
Borrelli R, Brussino L, Lo Sardo L, Quinternetto A, Vitali I, Bagnasco D, Boem M, Corradi F, Badiu I, Negrini S, et al. Sex-Based Differences in Asthma: Pathophysiology, Hormonal Influence, and Genetic Mechanisms. International Journal of Molecular Sciences. 2025; 26(11):5288. https://doi.org/10.3390/ijms26115288
Chicago/Turabian StyleBorrelli, Richard, Luisa Brussino, Luca Lo Sardo, Anna Quinternetto, Ilaria Vitali, Diego Bagnasco, Marzia Boem, Federica Corradi, Iuliana Badiu, Simone Negrini, and et al. 2025. "Sex-Based Differences in Asthma: Pathophysiology, Hormonal Influence, and Genetic Mechanisms" International Journal of Molecular Sciences 26, no. 11: 5288. https://doi.org/10.3390/ijms26115288
APA StyleBorrelli, R., Brussino, L., Lo Sardo, L., Quinternetto, A., Vitali, I., Bagnasco, D., Boem, M., Corradi, F., Badiu, I., Negrini, S., & Nicola, S. (2025). Sex-Based Differences in Asthma: Pathophysiology, Hormonal Influence, and Genetic Mechanisms. International Journal of Molecular Sciences, 26(11), 5288. https://doi.org/10.3390/ijms26115288