Recent Advances in Genetics of Moyamoya Disease: Insights into the Different Pathogenic Pathways
Abstract
1. Introduction
2. Literature Search Strategy
3. RNF213 Gene
4. Specific Mutations Related to MMD
4.1. Angiogenesis-Related Genes
4.2. Vascular Stenosis-Related Genes
4.3. Inflammation and Immune-Related Genes
4.4. Novel Pathways Proposed in Recent Years
5. Mutations Associated with Congenital Diseases Manifesting with MMS
5.1. Ras-Raf-MAPK Signaling Pathway
5.2. Notch Signaling Pathway
5.3. Genomic Stability Signaling Pathway
5.4. Other Unclassified Pathways
6. Discussion and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ihara, M.; Yamamoto, Y.; Hattori, Y.; Liu, W.; Kobayashi, H.; Ishiyama, H.; Yoshimoto, T.; Miyawaki, S.; Clausen, T.; Bang, O.Y.; et al. Moyamoya disease: Diagnosis and interventions. Lancet Neurol. 2022, 21, 747–758. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhou, Z.; Cheng, M.Y.; Hao, X.; Chiang, T.; Wang, Y.; Zhang, J.; Wang, X.; Ye, X.; Wang, R.; et al. Advances in moyamoya disease: Pathogenesis, diagnosis, and therapeutic interventions. MedComm 2025, 6, e70054. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.M.; Smith, E.R. Moyamoya disease and moyamoya syndrome. N. Engl. J. Med. 2009, 360, 1226–1237. [Google Scholar] [CrossRef]
- Mertens, R.; Graupera, M.; Gerhardt, H.; Bersano, A.; Tournier-Lasserve, E.; Mensah, M.A.; Mundlos, S.; Vajkoczy, P. The Genetic Basis of Moyamoya Disease. Transl. Stroke Res. 2022, 13, 25–45. [Google Scholar] [CrossRef]
- Chen, T.; Wei, W.; Yu, J.; Xu, S.; Zhang, J.; Li, X.; Chen, J. The Progression of Pathophysiology of Moyamoya Disease. Neurosurgery 2023, 93, 502–509. [Google Scholar] [CrossRef]
- Dorschel, K.B.; Wanebo, J.E. Genetic and Proteomic Contributions to the Pathophysiology of Moyamoya Angiopathy and Related Vascular Diseases. Appl. Clin. Genet. 2021, 14, 145–171. [Google Scholar] [CrossRef]
- Fox, B.M.; Dorschel, K.B.; Lawton, M.T.; Wanebo, J.E. Pathophysiology of Vascular Stenosis and Remodeling in Moyamoya Disease. Front. Neurol. 2021, 12, 661578. [Google Scholar] [CrossRef]
- Morito, D. Molecular structure and function of mysterin/RNF213. J. Biochem. 2024, 175, 495–505. [Google Scholar] [CrossRef]
- Otten, E.G.; Werner, E.; Crespillo-Casado, A.; Boyle, K.B.; Dharamdasani, V.; Pathe, C.; Santhanam, B.; Randow, F. Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature 2021, 594, 111–116. [Google Scholar] [CrossRef]
- Thery, F.; Martina, L.; Asselman, C.; Zhang, Y.; Vessely, M.; Repo, H.; Sedeyn, K.; Moschonas, G.D.; Bredow, C.; Teo, Q.W.; et al. Ring finger protein 213 assembles into a sensor for ISGylated proteins with antimicrobial activity. Nat. Commun. 2021, 12, 5772. [Google Scholar] [CrossRef]
- Ohkubo, K.; Sakai, Y.; Inoue, H.; Akamine, S.; Ishizaki, Y.; Matsushita, Y.; Sanefuji, M.; Torisu, H.; Ihara, K.; Sardiello, M.; et al. Moyamoya disease susceptibility gene RNF213 links inflammatory and angiogenic signals in endothelial cells. Sci. Rep. 2015, 5, 13191. [Google Scholar] [CrossRef]
- Mineharu, Y.; Miyamoto, S. RNF213 and GUCY1A3 in Moyamoya Disease: Key Regulators of Metabolism, Inflammation, and Vascular Stability. Front. Neurol. 2021, 12, 687088. [Google Scholar] [CrossRef] [PubMed]
- Roy, V.; Brodeur, A.; Touzel Deschênes, L.; Dupré, N.; Gros-Louis, F. RNF213 Loss-of-Function Promotes Angiogenesis of Cerebral Microvascular Endothelial Cells in a Cellular State Dependent Manner. Cells 2022, 12, 78. [Google Scholar] [CrossRef]
- Roy, V.; Ross, J.P.; Pepin, R.; Cortez Ghio, S.; Brodeur, A.; Touzel Deschenes, L.; Le-Bel, G.; Phillips, D.E.; Milot, G.; Dion, P.A.; et al. Moyamoya Disease Susceptibility Gene RNF213 Regulates Endothelial Barrier Function. Stroke 2022, 53, 1263–1275. [Google Scholar] [CrossRef]
- Fang, J.; Yang, X.; Ni, J. RNF213 in moyamoya disease: Genotype-phenotype association and the underlying mechanism. Chin. Med. J. (Engl.) 2024, 137, 2552–2560. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Li, X.; Yang, S.; Feng, S.; Li, G.; Jin, F.; Nie, S. Knockdown the moyamoya disease susceptibility gene, RNF213, upregulates the expression of basic fibroblast growth factor and matrix metalloproteinase-9 in bone marrow derived mesenchymal stem cells. Neurosurg. Rev. 2024, 47, 246. [Google Scholar] [CrossRef]
- Zhang, L.; Rashad, S.; Zhou, Y.; Niizuma, K.; Tominaga, T. RNF213 loss of function reshapes vascular transcriptome and spliceosome leading to disrupted angiogenesis and aggravated vascular inflammatory responses. J. Cereb. Blood Flow Metab. 2022, 42, 2107–2122. [Google Scholar] [CrossRef]
- Takeda, M.; Tezuka, T.; Kim, M.; Choi, J.; Oichi, Y.; Kobayashi, H.; Harada, K.H.; Mizushima, T.; Taketani, S.; Koizumi, A.; et al. Moyamoya disease patient mutations in the RING domain of RNF213 reduce its ubiquitin ligase activity and enhance NFκB activation and apoptosis in an AAA+ domain-dependent manner. Biochem. Biophys. Res. Commun. 2020, 525, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Asselman, C.; Hemelsoet, D.; Eggermont, D.; Dermaut, B.; Impens, F. Moyamoya disease emerging as an immune-related angiopathy. Trends Mol. Med. 2022, 28, 939–950. [Google Scholar] [CrossRef]
- Tashiro, R.; Niizuma, K.; Kasamatsu, J.; Okuyama, Y.; Rashad, S.; Kikuchi, A.; Fujimura, M.; Kure, S.; Ishii, N.; Tominaga, T. Dysregulation of Rnf 213 gene contributes to T cell response via antigen uptake, processing, and presentation. J. Cell. Physiol. 2021, 236, 7554–7564. [Google Scholar] [CrossRef]
- Liu, W.; Morito, D.; Takashima, S.; Mineharu, Y.; Kobayashi, H.; Hitomi, T.; Hashikata, H.; Matsuura, N.; Yamazaki, S.; Toyoda, A.; et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS ONE 2011, 6, e22542. [Google Scholar] [CrossRef]
- Tan, B.Y.Q.; Kok, C.H.P.; Ng, M.B.J.; Loong, S.; Jou, E.; Yeo, L.L.L.; Han, W.; Anderson, C.D.; Khor, C.C.; Lai, P.S. Exploring RNF213 in Ischemic Stroke and Moyamoya Disease: From Cellular Models to Clinical Insights. Biomedicines 2024, 13, 17. [Google Scholar] [CrossRef]
- Hitomi, T.; Habu, T.; Kobayashi, H.; Okuda, H.; Harada, K.H.; Osafune, K.; Taura, D.; Sone, M.; Asaka, I.; Ameku, T.; et al. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients. Biochem. Biophys. Res. Commun. 2013, 438, 13–19. [Google Scholar] [CrossRef]
- Hitomi, T.; Habu, T.; Kobayashi, H.; Okuda, H.; Harada, K.H.; Osafune, K.; Taura, D.; Sone, M.; Asaka, I.; Ameku, T.; et al. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality. Biochem. Biophys. Res. Commun. 2013, 439, 419–426. [Google Scholar] [CrossRef]
- Kobayashi, H.; Matsuda, Y.; Hitomi, T.; Okuda, H.; Shioi, H.; Matsuda, T.; Imai, H.; Sone, M.; Taura, D.; Harada, K.H.; et al. Biochemical and Functional Characterization of RNF213 (Mysterin) R4810K, a Susceptibility Mutation of Moyamoya Disease, in Angiogenesis In Vitro and In Vivo. J. Am. Heart. Assoc. 2015, 4, e002146. [Google Scholar] [CrossRef]
- Shin, H.S.; Park, G.H.; Choi, E.S.; Park, S.Y.; Kim, D.S.; Chang, J.; Hong, J.M. RNF213 variant and autophagic impairment: A pivotal link to endothelial dysfunction in moyamoya disease. J. Cereb. Blood Flow Metab. 2024, 44, 1801–1815. [Google Scholar] [CrossRef]
- Dorschel, K.B.; Wanebo, J.E. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front. Neurol. 2023, 14, 661611. [Google Scholar] [CrossRef]
- Fang, Y.C.; Wei, L.F.; Hu, C.J.; Tu, Y.K. Pathological Circulating Factors in Moyamoya Disease. Int. J. Mol. Sci. 2021, 22, 1696. [Google Scholar] [CrossRef]
- Achrol, A.S.; Guzman, R.; Lee, M.; Steinberg, G.K. Pathophysiology and genetic factors in moyamoya disease. Neurosurg. Focus 2009, 26, E4. [Google Scholar] [CrossRef]
- Roder, C.; Peters, V.; Kasuya, H.; Nishizawa, T.; Takehara, Y.; Berg, D.; Schulte, C.; Khan, N.; Tatagiba, M.; Krischek, B. Polymorphisms in TGFB1 and PDGFRB are associated with Moyamoya disease in European patients. Acta Neurochir. 2010, 152, 2153–2160. [Google Scholar] [CrossRef]
- Roder, C.; Peters, V.; Kasuya, H.; Nishizawa, T.; Takehara, Y.; Berg, D.; Schulte, C.; Khan, N.; Tatagiba, M.; Krischek, B. Common genetic polymorphisms in moyamoya and atherosclerotic disease in Europeans. Childs Nerv. Syst. 2011, 27, 245–252. [Google Scholar] [CrossRef]
- Park, Y.S.; Jeon, Y.J.; Kim, H.S.; Chae, K.Y.; Oh, S.H.; Han, I.B.; Kim, H.S.; Kim, W.C.; Kim, O.J.; Kim, T.G.; et al. The role of VEGF and KDR polymorphisms in moyamoya disease and collateral revascularization. PLoS ONE 2012, 7, e47158. [Google Scholar] [CrossRef]
- Chung, J.W.; Kim, D.H.; Oh, M.J.; Cho, Y.H.; Kim, E.H.; Moon, G.J.; Ki, C.S.; Cha, J.; Kim, K.H.; Jeon, P.; et al. Cav-1 (Caveolin-1) and Arterial Remodeling in Adult Moyamoya Disease. Stroke 2018, 49, 2597–2604. [Google Scholar] [CrossRef]
- Yokoyama, K.; Maruwaka, M.; Yoshikawa, K.; Araki, Y.; Okamoto, S.; Sumitomo, M.; Kawamura, A.; Sakamoto, Y.; Shimizu, K.; Izumi, T.; et al. Elevation of Proenkephalin 143-183 in Cerebrospinal Fluid in Moyamoya Disease. World Neurosurg. 2018, 109, e446–e459. [Google Scholar] [CrossRef]
- Akwii, R.G.; Sajib, M.S.; Zahra, F.T.; Mikelis, C.M. Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells 2019, 8, 471. [Google Scholar] [CrossRef]
- Chen, T.; Wei, W.; Zhang, J.; Yu, J.; Xu, S.; Wu, D.; Li, X.; Chen, J. Assessment of plasma soluble Tie-2 level to distinguish moyamoya disease from atherosclerotic cerebrovascular disease and predict postoperative neovascularization. J. Neurosurg. 2023, 139, 1705–1714. [Google Scholar] [CrossRef]
- Abhinav, K.; Lee, A.G.; Pendharkar, A.V.; Bigder, M.; Bet, A.; Rosenberg-Hasson, Y.; Cheng, M.Y.; Steinberg, G.K. Comprehensive Profiling of Secreted Factors in the Cerebrospinal Fluid of Moyamoya Disease Patients. Transl. Stroke Res. 2024, 15, 399–408. [Google Scholar] [CrossRef]
- Gorla, G.; Potenza, A.; Carrozzini, T.; Pollaci, G.; Acerbi, F.; Vetrano, I.G.; Ferroli, P.; Canavero, I.; Rifino, N.; Bersano, A.; et al. Angiopoietin-2 associates with poor prognosis in Moyamoya angiopathy. Ann. Clin. Transl. Neurol. 2024, 11, 1590–1603. [Google Scholar] [CrossRef]
- Liu, W.; Hashikata, H.; Inoue, K.; Matsuura, N.; Mineharu, Y.; Kobayashi, H.; Kikuta, K.; Takagi, Y.; Hitomi, T.; Krischek, B.; et al. A rare Asian founder polymorphism of Raptor may explain the high prevalence of Moyamoya disease among East Asians and its low prevalence among Caucasians. Environ. Health Prev. Med. 2010, 15, 94–104. [Google Scholar] [CrossRef]
- Park, Y.S.; Jeon, Y.J.; Kim, H.S.; Han, I.B.; Oh, S.H.; Kim, D.S.; Kim, N.K. The GC + CC genotype at position -418 in TIMP-2 promoter and the -1575GA/-1306CC genotype in MMP-2 is genetic predisposing factors for prevalence of moyamoya disease. BMC Neurol. 2014, 14, 180. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Nie, F.; Li, Q.; Zhang, K.; Liu, M.; Yang, L.; Zhang, Q.; Liu, S.; Zeng, F.; et al. Association of Genetic Variants With Moyamoya Disease in 13 000 Individuals: A Meta-Analysis. Stroke 2020, 51, 1647–1655. [Google Scholar] [CrossRef]
- Kwon, W.K.; Yoo, C.M.; Kim, J.H.; Kim, T.W.; Kim, A.G.; Hwang, M.H.; Choi, H. Role of human dural fibroblasts in the angiogenic responses of human endothelial cells: An in vitro dural model and the application of lab-on-a-chip for EDAS. Bioeng. Transl. Med. 2023, 8, e10589. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, Z.; Yang, Z.; Zhang, Z.; Xu, J.; Hao, F.; Shen, J.; Han, C.; Liu, W.; Duan, L. Whole exome sequencing and functional validation identify CAPN1 variants as a cause of Chinese moyamoya disease. Genes Dis. 2024, 11, 101090. [Google Scholar] [CrossRef] [PubMed]
- Sudhir, B.J.; Keelara, A.G.; Venkat, E.H.; Kazumata, K.; Sundararaman, A. The mechanobiological theory: A unifying hypothesis on the pathogenesis of moyamoya disease based on a systematic review. Neurosurg. Focus 2021, 51, E6. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, W.; Zhang, Q.; Xia, D.; Gao, P.; Su, J.; Yang, H.; Gao, X.; Ni, W.; Lei, Y.; et al. Progression in Moyamoya Disease: Clinical Features, Neuroimaging Evaluation, and Treatment. Curr. Neuropharmacol. 2022, 20, 292–308. [Google Scholar] [CrossRef]
- Shoemaker, L.D.; Clark, M.J.; Patwardhan, A.; Chandratillake, G.; Garcia, S.; Chen, R.; Morgan, A.A.; Leng, N.; Kirk, S.; Chen, R.; et al. Disease Variant Landscape of a Large Multiethnic Population of Moyamoya Patients by Exome Sequencing. G3 Genes Genomes Genet. 2015, 6, 41–49. [Google Scholar] [CrossRef]
- Tschoe, C.; Kim, T.E.; Fargen, K.M.; Wolfe, S.Q. Cerebral arteriopathy in ACTA2 mutations: A spectrum of disease highlighted by a case of variable penetrance in two siblings. J. Neurosurg. Pediatr. 2021, 27, 446–451. [Google Scholar] [CrossRef]
- Kaw, A.; Kaw, K.; Hostetler, E.M.; Beleza-Meireles, A.; Smith-Collins, A.; Armstrong, C.; Scurr, I.; Cotts, T.; Aatre, R.; Bamshad, M.J.; et al. Expanding ACTA2 genotypes with corresponding phenotypes overlapping with smooth muscle dysfunction syndrome. Am. J. Med. Genet. A 2022, 188, 2389–2396. [Google Scholar] [CrossRef]
- Hervé, D.; Philippi, A.; Belbouab, R.; Zerah, M.; Chabrier, S.; Collardeau-Frachon, S.; Bergametti, F.; Essongue, A.; Berrou, E.; Krivosic, V.; et al. Loss of α1β1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am. J. Hum. Genet. 2014, 94, 385–394. [Google Scholar] [CrossRef]
- Sharina, I.; Lezgyieva, K.; Krutsenko, Y.; Martin, E. Higher susceptibility to heme oxidation and lower protein stability of the rare α(1)C517Yβ(1) sGC variant associated with moyamoya syndrome. Biochem. Pharmacol. 2021, 186, 114459. [Google Scholar] [CrossRef]
- Wiedmann, M.K.H.; Steinsvåg, I.V.; Dinh, T.; Vigeland, M.D.; Larsson, P.G.; Hjorthaug, H.; Sheng, Y.; Mero, I.L.; Selmer, K.K. Whole-exome sequencing in moyamoya patients of Northern-European origin identifies gene variants involved in Nitric Oxide metabolism: A pilot study. Brain Spine 2023, 3, 101745. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Liu, W.; Xiong, Y.; Sun, W.; Huang, X.; Jiang, Y.; Ni, G.; Sun, W.; Zhou, L.; et al. Impacts and interactions of PDGFRB, MMP-3, TIMP-2, and RNF213 polymorphisms on the risk of Moyamoya disease in Han Chinese human subjects. Gene 2013, 526, 437–442. [Google Scholar] [CrossRef]
- Li, J.; He, Q.; Liu, C.; Zeng, C.; Zheng, Z.; Zhang, B.; Mou, S.; Liu, W.; Sun, W.; Ge, P.; et al. Association Between Folate Metabolism Risk, Collateral Circulation, and Hemorrhagic Risk in Moyamoya Disease. Transl. Stroke Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Wei, L.; Tian, Y.; Zhang, Z.; Hu, P.; Wei, Q.; Liu, S.; Zhang, J.; Wang, Y.; Li, D.; et al. Novel Susceptibility Loci for Moyamoya Disease Revealed by a Genome-Wide Association Study. Stroke 2018, 49, 11–18. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Zhang, X.; Ma, X.; He, X.; Gan, C.; Zou, X.; Wang, S.; Shu, K.; Lei, T.; et al. CircZXDC Promotes Vascular Smooth Muscle Cell Transdifferentiation via Regulating miRNA-125a-3p/ABCC6 in Moyamoya Disease. Cells 2022, 11, 3792. [Google Scholar] [CrossRef]
- Bellenguez, C.; Bevan, S.; Gschwendtner, A.; Spencer, C.C.; Burgess, A.I.; Pirinen, M.; Jackson, C.A.; Traylor, M.; Strange, A.; Su, Z.; et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat. Genet. 2012, 44, 328–333. [Google Scholar] [CrossRef]
- Li, J.; He, Q.; Zheng, Z.; Liu, C.; Zhang, B.; Mou, S.; Zeng, C.; Sun, W.; Liu, W.; Ge, P.; et al. Comprehensive Analysis and In Vitro Verification of Endothelial-Mesenchymal Transition-Related Genes in Moyamoya Disease. Mol. Neurobiol. 2024, 62, 2515–2529. [Google Scholar] [CrossRef] [PubMed]
- Suo, S.; Fang, C.; Liu, W.; Liu, Q.; Zhang, Z.; Chang, J.; Li, G. FOXM1 c.1205 C > A mutation is associated with unilateral Moyamoya disease and inhibits angiogenesis in human brain endothelial cells. Hum. Genet. 2024, 143, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Mikami, T.; Suzuki, H.; Komatsu, K.; Mikuni, N. Influence of Inflammatory Disease on the Pathophysiology of Moyamoya Disease and Quasi-moyamoya Disease. Neurol. Med. Chir. 2019, 59, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Duan, C. Identification of immune-infiltrated hub genes as potential biomarkers of Moyamoya disease by bioinformatics analysis. Orphanet J. Rare Dis. 2022, 17, 80. [Google Scholar] [CrossRef]
- Lin, R.; Xie, Z.; Zhang, J.; Xu, H.; Su, H.; Tan, X.; Tian, D.; Su, M. Clinical and immunopathological features of Moyamoya disease. PLoS ONE 2012, 7, e36386. [Google Scholar] [CrossRef]
- Sigdel, T.K.; Shoemaker, L.D.; Chen, R.; Li, L.; Butte, A.J.; Sarwal, M.M.; Steinberg, G.K. Immune response profiling identifies autoantibodies specific to Moyamoya patients. Orphanet J. Rare Dis. 2013, 8, 45. [Google Scholar] [CrossRef]
- Wohlrab, F.; Bauknecht, C.; Meisel, C.; Dreier, J.P. A case of neonatal onset multisystem inflammatory disease supporting a role of interleukin-1beta in moyamoya syndrome. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1-3. [Google Scholar] [CrossRef]
- Guo, Q.; Fan, Y.N.; Xie, M.; Wang, Q.N.; Li, J.; Liu, S.; Wang, X.; Yu, D.; Zou, Z.; Gao, G.; et al. Exploring the transcriptomic landscape of moyamoya disease and systemic lupus erythematosus: Insights into crosstalk genes and immune relationships. Front. Immunol. 2024, 15, 1456392. [Google Scholar] [CrossRef]
- Xu, S.; Chen, T.; Yu, J.; Wan, L.; Zhang, J.; Chen, J.; Wei, W.; Li, X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. Mol. Ther. Nucleic Acids 2024, 35, 102281. [Google Scholar] [CrossRef]
- Tokairin, K.; Ito, M.; Lee, A.G.; Teo, M.; He, S.; Cheng, M.Y.; Steinberg, G.K. Genome-Wide DNA Methylation Profiling Reveals Low Methylation Variability in Moyamoya Disease. Transl. Stroke Res. 2024. [Google Scholar] [CrossRef]
- Sung, H.Y.; Lee, J.Y.; Park, A.K.; Moon, Y.J.; Jo, I.; Park, E.M.; Wang, K.C.; Phi, J.H.; Ahn, J.H.; Kim, S.K. Aberrant Promoter Hypomethylation of Sortilin 1: A Moyamoya Disease Biomarker. J. Stroke 2018, 20, 350–361. [Google Scholar] [CrossRef]
- Han, W.; Qiao, Y.; Zhang, H.; Geng, C.; Zhu, X.; Liao, D.; Guo, Y.; Yang, M.; Chen, D.; Jiang, P. Circulating sortilin levels are associated with inflammation in patients with moyamoya disease. Metab. Brain Dis. 2021, 36, 103–109. [Google Scholar] [CrossRef]
- Lee, J.Y.; Moon, Y.J.; Lee, H.O.; Park, A.K.; Choi, S.A.; Wang, K.C.; Han, J.W.; Joung, J.G.; Kang, H.S.; Kim, J.E.; et al. Deregulation of Retinaldehyde Dehydrogenase 2 Leads to Defective Angiogenic Function of Endothelial Colony-Forming Cells in Pediatric Moyamoya Disease. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1670–1677. [Google Scholar] [CrossRef]
- Pinard, A.; Guey, S.; Guo, D.; Cecchi, A.C.; Kharas, N.; Wallace, S.; Regalado, E.S.; Hostetler, E.M.; Sharrief, A.Z.; Bergametti, F.; et al. The pleiotropy associated with de novo variants in CHD4, CNOT3, and SETD5 extends to moyamoya angiopathy. Genet. Med. 2020, 22, 427–431. [Google Scholar] [CrossRef]
- Dai, D.; Lu, Q.; Huang, Q.; Yang, P.; Hong, B.; Xu, Y.; Zhao, W.; Liu, J.; Li, Q. Serum miRNA signature in Moyamoya disease. PLoS ONE 2014, 9, e102382. [Google Scholar] [CrossRef]
- Zhao, S.; Gong, Z.; Zhang, J.; Xu, X.; Liu, P.; Guan, W.; Jing, L.; Peng, T.; Teng, J.; Jia, Y. Elevated Serum MicroRNA Let-7c in Moyamoya Disease. J. Stroke Cerebrovasc. Dis. 2015, 24, 1709–1714. [Google Scholar] [CrossRef]
- He, S.; Ye, X.; Duan, R.; Zhao, Y.; Wei, Y.; Wang, Y.; Liu, Z.; Hao, X.; Chen, X.; Hao, Q.; et al. Epigenome-Wide Association Study Reveals Differential Methylation Sites and Association of Gene Expression Regulation with Ischemic Moyamoya Disease in Adults. Oxidative Med. Cell. Longev. 2022, 2022, 7192060. [Google Scholar] [CrossRef]
- Al-Hosni, R.; Kaye, R.; Choi, C.S.; Tammaro, P. The TMEM16A channel as a potential therapeutic target in vascular disease. Curr. Opin. Nephrol. Hypertens. 2024, 33, 161–169. [Google Scholar] [CrossRef]
- Pinard, A.; Ye, W.; Fraser, S.M.; Rosenfeld, J.A.; Pichurin, P.; Hickey, S.E.; Guo, D.; Cecchi, A.C.; Boerio, M.L.; Guey, S.; et al. Rare variants in ANO1, encoding a calcium-activated chloride channel, predispose to moyamoya disease. Brain 2023, 146, 3616–3623. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, J.; Su, Y.; Zhou, Z.; Wang, Y.; Xu, S.; Zhao, Y.; He, S.; Wang, R. Identification of oxidative phosphorylation-related genes in moyamoya disease by combining bulk RNA-sequencing analysis and machine learning. Front. Genet. 2024, 15, 1417329. [Google Scholar] [CrossRef]
- Nakamura, A.; Nomura, S.; Hara, S.; Thamamongood, T.; Maehara, T.; Nariai, T.; Khairullah, S.; Tan, K.S.; Azuma, K.; Chida-Nagai, A.; et al. Whole-exome sequencing reveals the genetic causes and modifiers of moyamoya syndrome. Sci. Rep. 2024, 14, 22720. [Google Scholar] [CrossRef]
- Phi, J.H.; Choi, J.W.; Seong, M.W.; Kim, T.; Moon, Y.J.; Lee, J.; Koh, E.J.; Ryu, S.K.; Kang, T.H.; Bang, J.S.; et al. Association between moyamoya syndrome and the RNF213 c.14576G>A variant in patients with neurofibromatosis Type 1. J. Neurosurg. Pediatr. 2016, 17, 717–722. [Google Scholar] [CrossRef]
- Barreto-Duarte, B.; Andrade-Gomes, F.H.; Arriaga, M.B.; Araújo-Pereira, M.; Cubillos-Angulo, J.M.; Andrade, B.B. Association between neurofibromatosis type 1 and cerebrovascular diseases in children: A systematic review. PLoS ONE 2021, 16, e0241096. [Google Scholar] [CrossRef]
- Ognibene, M.; Scala, M.; Iacomino, M.; Schiavetti, I.; Madia, F.; Traverso, M.; Guerrisi, S.; Di Duca, M.; Caroli, F.; Baldassari, S.; et al. Moyamoya Vasculopathy in Neurofibromatosis Type 1 Pediatric Patients: The Role of Rare Variants of RNF213. Cancers 2023, 15, 1916. [Google Scholar] [CrossRef]
- Hung, P.C.; Wang, H.S.; Wong, A.M. Moyamoya syndrome in a child with Noonan syndrome. Pediatr. Neurol. 2011, 45, 129–131. [Google Scholar] [CrossRef]
- Méreaux, J.L.; Triquenot, A.; Drunat, S.; Cavé, H.; Guyant-Maréchal, L.; Goldenberg, A. Late moyamoya-like angiopathy syndrome revealing MAP2K1 Noonan syndrome. Rev. Neurol. 2022, 178, 263–265. [Google Scholar] [CrossRef]
- Pabst, L.; Carroll, J.; Lo, W.; Truxal, K.V. Moyamoya syndrome in a child with Legius syndrome: Introducing a cerebral vasculopathy to the SPRED1 phenotype? Am. J. Med. Genet. A 2021, 185, 223–227. [Google Scholar] [CrossRef]
- Romanisio, G.; Chelleri, C.; Scala, M.; Piccolo, G.; Carlini, B.; Gatti, L.; Capra, V.; Zara, F.; Bersano, A.; Pavanello, M.; et al. RNF213 variant in a patient with Legius syndrome associated with moyamoya syndrome. Mol. Genet. Genom. Med. 2021, 9, e1669. [Google Scholar] [CrossRef]
- Shiihara, T.; Kato, M.; Mitsuhashi, Y.; Hayasaka, K. Costello syndrome showing moyamoya-like vasculopathy. Pediatr. Neurol. 2005, 32, 361–363. [Google Scholar] [CrossRef]
- Chida-Nagai, A.; Tonoki, H.; Makita, N.; Ishiyama, H.; Ihara, M.; Maruo, Y.; Tsujioka, T.; Sasaki, D.; Izumi, G.; Yamazawa, H.; et al. A Noonan-like pediatric patient with a de novo CBL pathogenic variant and an RNF213 polymorphism p.R4810K presenting with cardiopulmonary arrest due to left main coronary artery ostial atresia. Am. J. Med. Genet. A 2023, 191, 2837–2842. [Google Scholar] [CrossRef]
- Kamath, B.M.; Spinner, N.B.; Emerick, K.M.; Chudley, A.E.; Booth, C.; Piccoli, D.A.; Krantz, I.D. Vascular anomalies in Alagille syndrome: A significant cause of morbidity and mortality. Circulation 2004, 109, 1354–1358. [Google Scholar] [CrossRef]
- Rocha, R.; Soro, I.; Leitão, A.; Silva, M.L.; Leão, M. Moyamoya vascular pattern in Alagille syndrome. Pediatr. Neurol. 2012, 47, 125–128. [Google Scholar] [CrossRef]
- Khojah, O.; Alamoudi, S.; Aldawsari, N.; Babgi, M.; Lary, A. Central nervous system vasculopathy and Seckel syndrome: Case illustration and systematic review. Childs Nerv. Syst. 2021, 37, 3847–3860. [Google Scholar] [CrossRef]
- Donmez, Y.N.; Giray, D.; Epcacan, S.; Goktas, E.; Aypar, E. Cardiovascular anomalies in Seckel syndrome: Report of two patients and review of the literature. Cardiol. Young 2022, 32, 487–490. [Google Scholar] [CrossRef]
- Eslava, A.; Garcia-Puig, M.; Corripio, R. A 10-Year-Old Boy with Short Stature and Microcephaly, Diagnosed with Moyamoya Syndrome and Microcephalic Osteodysplastic Primordial Dwarfism Type II (MOPD II). Am. J. Case Rep. 2021, 22, e933919. [Google Scholar] [CrossRef]
- Petraroli, M.; Percesepe, A.; Piane, M.; Ormitti, F.; Castellone, E.; Gnocchi, M.; Messina, G.; Bernardi, L.; Patianna, V.D.; Esposito, S.M.R.; et al. Case Report: Short stature, kidney anomalies, and cerebral aneurysms in a novel homozygous mutation in the PCNT gene associated with microcephalic osteodysplastic primordial dwarfism type II. Front. Endocrinol. 2023, 14, 1018441. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, M.J.; Kim, S.J.; Lee, J.E.; Chae, J.H.; Ko, J.M. A case of CHOPS syndrome accompanied with moyamoya disease and systemic vasculopathy. Brain Dev. 2021, 43, 454–458. [Google Scholar] [CrossRef]
- Xu, R.; Kalluri, A.L.; Sun, L.R.; Lawrence, C.E.; Lee, J.K.; Kannan, S.; Cohen, A.R. The neurosurgical management of Severe Hemophilia A and Moyamoya (SHAM): Challenges, strategies, and literature review. Childs Nerv. Syst. 2022, 38, 1077–1084. [Google Scholar] [CrossRef]
- Holover, G.; Adams, D.; Milligan, D.; Goldberg, R.; Rios, J.; Kornitzer, J.; Mazzola, C. Moya moya vasculopathy and MECP2 duplication syndrome. Childs Nerv. Syst. 2024, 40, 809–812. [Google Scholar] [CrossRef]
- Mehkri, Y.; Rivas, L.F.; Jules, R.; Tuna, I.S.; Hoh, B.L.; Shuhaiber, H.H. Moyamoya Disease in a Young Female with Neurofibromatosis Type 1. Cureus 2021, 13, e19121. [Google Scholar] [CrossRef]
- Tidyman, W.E.; Rauen, K.A. The RASopathies: Developmental syndromes of Ras/MAPK pathway dysregulation. Curr. Opin. Genet. Dev. 2009, 19, 230–236. [Google Scholar] [CrossRef]
- Murakami, M. Signaling required for blood vessel maintenance: Molecular basis and pathological manifestations. Int. J. Vasc. Med. 2012, 2012, 293641. [Google Scholar] [CrossRef]
- D'Amico, A.; Perillo, T.; Cuocolo, R.; Ugga, L.; Di Dato, F.; Caranci, F.; Iorio, R. Neuroradiological findings in Alagille syndrome. Br. J. Radiol. 2022, 95, 20201241. [Google Scholar] [CrossRef]
- High, F.A.; Lu, M.M.; Pear, W.S.; Loomes, K.M.; Kaestner, K.H.; Epstein, J.A. Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proc. Natl. Acad. Sci. USA 2008, 105, 1955–1959. [Google Scholar] [CrossRef]
- Duker, A.L.; Kinderman, D.; Jordan, C.; Niiler, T.; Baker-Smith, C.M.; Thompson, L.; Parry, D.A.; Carroll, R.S.; Bober, M.B. Microcephalic osteodysplastic primordial dwarfism type II is associated with global vascular disease. Orphanet J. Rare Dis. 2021, 16, 231. [Google Scholar] [CrossRef] [PubMed]
- Miskinyte, S.; Butler, M.G.; Hervé, D.; Sarret, C.; Nicolino, M.; Petralia, J.D.; Bergametti, F.; Arnould, M.; Pham, V.N.; Gore, A.V.; et al. Loss of BRCC3 deubiquitinating enzyme leads to abnormal angiogenesis and is associated with syndromic moyamoya. Am. J. Hum. Genet. 2011, 88, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Tzeravini, E.; Samara, S.; Kouramba, A.; Vakrinos, G.; Efthimiou, A.; Tzetis, M.; Androutsakos, T. Severe Hemophilia A and Moyamoya Syndrome in a 19-Year-Old Boy Caused by Xq28 Microdeletion. Case Rep. Neurol. 2022, 14, 261–267. [Google Scholar] [CrossRef]
- Kassim, A.A.; DeBaun, M.R. Sickle cell disease, vasculopathy, and therapeutics. Annu. Rev. Med. 2013, 64, 451–466. [Google Scholar] [CrossRef]
- Abdelgadir, A.; Akram, H.; Dick, M.H.; Ahmed, N.R.; Chatterjee, A.; Pokhrel, S.; Vaijaya Kulkarni, V.; Khan, S. A Better Understanding of Moyamoya in Trisomy 21: A Systematic Review. Cureus 2022, 14, e23502. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Sato, K.; Yoshimura, S.; Hayashi, Y.; Izumo, T.; Tokunaga, Y. Moyamoya Disease Associated with Graves' Disease and Down Syndrome: A Case Report and Literature Review. J. Stroke Cerebrovasc. Dis. 2021, 30, 105414. [Google Scholar] [CrossRef]
- Brar, J.S.; Verma, R.; Al-Omari, M.; Siu, V.M.; Andrade, A.V.; Jurkiewicz, M.T.; Lalgudi Ganesan, S. Moyamoya Syndrome in an Infant with Aicardi-Goutières and Williams Syndromes: A Case Report. Neuropediatrics 2022, 53, 204–207. [Google Scholar] [CrossRef]
- Karla, A.R.; Pinard, A.; Boerio, M.L.; Hemelsoet, D.; Tavernier, S.J.; De Pauw, M.; Vereecke, E.; Fraser, S.; Bamshad, M.J.; Guo, D.; et al. SAMHD1 compound heterozygous rare variants associated with moyamoya and mitral valve disease in the absence of other features of Aicardi-Goutières syndrome. Am. J. Med. Genet. A 2024, 194, e63486. [Google Scholar] [CrossRef]
- Matano, F.; Murai, Y.; Watanabe, A.; Shirokane, K.; Igarashi, T.; Shimizu, K.; Shimada, T.; Morita, A. Case Report: A Case of Moyamoya Syndrome Associated With Multiple Endocrine Neoplasia Type 2A. Front. Endocrinol. 2021, 12, 703410. [Google Scholar] [CrossRef]
- Li, C.Y.; Chen, L.W.; Tsai, M.C.; Chou, Y.Y.; Lin, P.X.; Chang, Y.M.; Hwu, W.L.; Chien, Y.H.; Lin, J.L.; Chen, H.A.; et al. Homozygous variant in translocase of outer mitochondrial membrane 7 leads to metabolic reprogramming and microcephalic osteodysplastic dwarfism with moyamoya disease. EBioMedicine 2024, 110, 105476. [Google Scholar] [CrossRef]
- Egashira, Y.; Takahashi, J.C.; Ohnishi, H.; Kawasaki, Y.; Higashigawa, M.; Iihara, K.; Miyamoto, S. Surgical treatment and perioperative management of moyamoya disease associated with glycogen storage disease Type 1a. J. Neurosurg. Pediatr. 2011, 7, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Yuan, Y.; Shu, S.; Hou, B.; Dai, Y.; Ni, J.; Feng, F.; Qiu, Z.; Peng, B. Steno-occlusive cerebral arteriopathy in patients with glycogen storage disease type I. J. Neurol. Neurosurg. Psychiatry 2020, 91, 434–435. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhou, D.; Dong, N.; Ding, C.; Liu, Y.; Li, F. Clinical and Genetic Analysis of a Patient With Coexisting 17a-Hydroxylase/17,20-Lyase Deficiency and Moyamoya Disease. Front. Genet. 2022, 13, 845016. [Google Scholar] [CrossRef]
- Kühnl, T.; Januschek, E.; Offenbach, S.K. Moyamoya syndrome in a patient with D-2-hydroxyglutaric aciduria type II: A rare association. Childs Nerv. Syst. 2024, 40, 2241–2244. [Google Scholar] [CrossRef]
- Luo, M.; Mo, D.; Li, J.; Liu, L.; Li, X.; Lin, J.; Liang, J.; Ye, F.; Lin, X.; Wang, P.; et al. The Guanylate Cyclase Soluble Subunit Alpha-1 Deficiency Impairs Angiogenesis in Zebrafishes and Mice: In Vivo and In Vitro Studies. Mol. Neurobiol. 2025. [Google Scholar] [CrossRef]
- Ge, P.; Tao, C.; Wang, W.; He, Q.; Liu, C.; Zheng, Z.; Mou, S.; Zhang, B.; Liu, X.; Zhang, Q.; et al. Circulating immune cell landscape and T-cell abnormalities in patients with moyamoya disease. Clin. Transl. Med. 2024, 14, e1647. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Li, W.; Huang, J.; Wu, Y.; Ma, C.; Tu, Y.; Zhu, Q.; Lu, J.; Xie, J.; Liu, Y.; et al. Single-cell sequencing analysis of peripheral blood in patients with moyamoya disease. Orphanet J. Rare Dis. 2023, 18, 174. [Google Scholar] [CrossRef]
Chromosome | Gene | Related Growth Factor | Study Type | Biomarker Validation Status |
---|---|---|---|---|
Chromosome 1 | TIE1 [35,38] | angiopoietin-1 and angiopoietin-2 | functional analyses | in vitro |
Chromosome 9 | TIE2 [35,36] | angiopoietin-1 and angiopoietin-2 | functional analyses | in vitro and clinical |
Chromosome 8 | ANGPT2 [38] | angiopoietin-2 | functional analyses | in vitro |
Chromosome 8 | PENK [34] | opioid growth factor receptor and delta opioid receptor | functional analyses | in vitro |
Chromosome 6 | VEGF [32] | vascular endothelial growth factor | case-control | clinical |
Chromosome 22 | PDGFRB [30] | platelet-derived growth factor | case-control | clinical |
Chromosome 19 | TGFB1 [30] | transforming growth factor β | case-control | clinical |
Chromosome 19 | ICAM1 [37] | intercellular adhesion molecule 1 | case-control | in vitro |
Chromosome 10 | CXCL12 [31] | C-X-C motif chemokines and vascular endothelial growth factor | case-control | clinical |
Chromosome 7 | CAV1 [33] | Caveolin-1 | case-control | in vitro and clinical |
Pathway | Primary Genetic Disorder | Chromosome | Gene |
---|---|---|---|
Ras-Raf-MAPK signaling pathway | neurofibromatosis type 1 [79,80] | 17q11.2 | NF1 |
Noonan syndrome [81,82] | 1p13.2 | NRAS | |
2p22.1 | SOS1 | ||
3p25.2 | RAF1 | ||
7q34 | BRAF | ||
11q23.3 | CBL | ||
12p12.1 | KRAS | ||
12q24.13 | PTPN11 | ||
15q22.31 | MAP2K1 | ||
Legius syndrome [83,84] | 15q14 | SPRED1 | |
Costello syndrome [85,86] | 11p15.5 | HRAS | |
12p12.1 | KRAS | ||
Notch signaling pathway | Alagille syndrome [87,88] | 1p12-p11 | NOTCH2 |
20p12.2 | JAG1 | ||
Genomic stability signaling pathway | Seckel syndrome [89,90] | 3q23 | ATR |
3q22.2 | CEP63 | ||
13q12.12-q12.13 | CENPJ | ||
14q22.1 | NIN | ||
15q21.1 | CEP152 | ||
18q11.2 | RBBP8 | ||
Microcephalic Osteodysplastic Primordial Dwarfism Type II [91,92] | 21q22.3 | PCNT | |
CHOPS syndrome [93] | 5q31.1 | AFF4 | |
Severe hemophilia A and moyamoya (SHAM) syndrome [94] | Xq28 | F8, BRCC3 | |
MECP2 duplication syndrome [95] | MECP2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, G.; Yao, M.; Ni, J. Recent Advances in Genetics of Moyamoya Disease: Insights into the Different Pathogenic Pathways. Int. J. Mol. Sci. 2025, 26, 5241. https://doi.org/10.3390/ijms26115241
Han G, Yao M, Ni J. Recent Advances in Genetics of Moyamoya Disease: Insights into the Different Pathogenic Pathways. International Journal of Molecular Sciences. 2025; 26(11):5241. https://doi.org/10.3390/ijms26115241
Chicago/Turabian StyleHan, Guangsong, Ming Yao, and Jun Ni. 2025. "Recent Advances in Genetics of Moyamoya Disease: Insights into the Different Pathogenic Pathways" International Journal of Molecular Sciences 26, no. 11: 5241. https://doi.org/10.3390/ijms26115241
APA StyleHan, G., Yao, M., & Ni, J. (2025). Recent Advances in Genetics of Moyamoya Disease: Insights into the Different Pathogenic Pathways. International Journal of Molecular Sciences, 26(11), 5241. https://doi.org/10.3390/ijms26115241