Oxidative Stress, Inflammation, and Antioxidant Strategies in Cervical Cancer—A Narrative Review
Abstract
:1. Introduction
2. Cervical Intraepithelial Neoplasia
3. Oxidative Stress and Inflammation in the Pathogenesis of CIN
4. Antioxidants in the Pathogenesis and Treatment of CIN
Antioxidant | Model/Patients | Study | Doses | Treatment Duration | Effect | Ref. |
---|---|---|---|---|---|---|
In vitro experimental models | ||||||
Quercetin | HeLa cell culture | Exploring the effect of quercetin in cervical cancer cells obtained by endoplasmic reticulum stress and apoptosis-modulated tumor induction. | 20, 40, and 80 μmol/L | 24 h, 48 h, and 72 h | The viability of HeLa cells was significantly inhibited in the quercetin-treated group. | [117] |
HeLa cell culture | Investigating the effects of quercetin on apoptosis, proliferation, and tumorigenesis. | 25 and 50 μM | 24 and 48 h | Quercetin inhibits cell proliferation halting the cell cycle, causes DNA damage, and induces apoptosis in HeLa cells by modifying the PI3K, MAPK, and WNT pathways. | [115] | |
HeLa cell culture | Examining the impact of quercetin on the efficacy of various chemotherapeutic drugs in cervical cancer cells. | 0, 10, 20, 50, 100, 150, and 200 μM | 24 h and 48 h, respectively | Quercetin enhanced the cytotoxic effects of cisplatin, promoting apoptosis and inhibiting proliferation, migration, and invasion of cervical cancer cells. | [116] | |
HeLa cell culture | Examining the effects of quercetin on cell viability and its mechanism of inducing cell death by analyzing the expression of key proteins involved in apoptosis, cell cycle regulation, and NF-κB signaling in HeLa cells. | 20, 40, 60, 80, and 100 μM | 24 h | Quercetin inhibits the proliferation of HeLa cells by arresting the cell cycle at the G2/M phase and inducing apoptosis. It also simultaneously targets two opposing signaling pathways—p53 and NF-κB—to inhibit cancer progression. | [114] | |
Resveratrol | HeLa cell culture | Exploring how resveratrol, as an anticancer agent, effectively influences HeLa cervical cancer cells. | 0, 40, 80 μmol/L | 48 h | Resveratrol inhibited cell proliferation and induced apoptosis. Mechanistically, resveratrol facilitated the nuclear translocation of the transcription factor FOXO3a, leading to increased expression of the pro-apoptotic protein BIM. | [118] |
Curcumin | HeLa cell culture | Exploring the effect of curcumin administration on p53 and caspase-3 in HeLa cell line. | 25, 50, 100, 150, and 250 µg/mL | 24 h | Curcumin treatment significantly promoted apoptosis and upregulated p53 and caspase-3 expressions. At a concentration of 100 µg/mL, total apoptosis significantly increased. | [121] |
Rosmarinic acid | HeLa cell culture | Examining the biological properties of rosmarinic acid from the methanolic extract of Mentha piperita L., focusing on its cytotoxic effects on breast cancer, HeLa cell lines, and normal cells in vitro. | 100, 250, 500, and 1000 μg/mL. | 48 h | Rosmarinic acid inhibited MCF-7 breast cancer cells by 48% at 1000 µg/mL, while HeLa cervical cancer cells showed only 1% inhibition, but it did not investigate the effects of rosemary oil. | [120] |
6-Gingerol | HeLa cell culture | Observing the inhibitory effect of 6-gingerol on the invasion and migration of both HPV-positive and HPV-negative cervical cancer cells and investigating the underlying mechanism. | 0, 5, 10, 20, and 50 μmol/L | 24 h | Activity of HeLa cells decreased with the increase of 6-gingerol concentration. | [123] |
Kaempferol | HeLa cell culture | Investigating the anti-proliferative effect of kaempferol on HeLa and AC 16 cells and identifying the molecular targets involved in its anticancer properties. | 30, 40, and 50 μM | 48 h | Kaempferol induced apoptosis, disrupted mitochondrial potential, and led to the accumulation of cells in the G2-M phase of the cell cycle. | [119] |
Animal models | ||||||
Curcuma amada rhizome extract | 30 female Sprague Dawley rats | Evaluating the antioxidant and chemotherapeutic potential of Curcuma amada rhizome extract on benzo(α)pyrene-induced cervical carcinoma in rats. | Oral (250 mg and 500 mg ethanol extract) | 8 weeks BaP exposure + 4 weeks post-treatment | Reducing tumor burden, restoring antioxidant levels, decreasing lipid peroxidation, and improving membrane-bound enzyme activities. | [124] |
Vitamin E | 25 Swiss albino female mice | Investigating the effect of vitamin E supplementation on cervical epithelial carcinogenesis. | Gavage (100 mg/kg body weight/day) | 30 days carcinogen exposure with concurrent treatment | Reducing the incidence of dysplasia, preventing carcinoma in situ, improving antioxidant enzyme activity, decreasing lipid peroxidation, and supporting the immune response. | [125] |
Curcumin and beta-carotene | 56 female Wistar albino rats | Evaluation of the potential protective effects of curcumin and beta-carotene against cisplatin-induced ovarian damage. | Curcumin: 200 mg/kg, beta-carotene: 100 mg/kg, cisplatin: 5 mg/kg | 1 week | Curcumin and beta-carotene protected against cisplatin-induced follicle loss and reduced NF-kB levels. Curcumin has more antioxidant and anti-inflammatory effects than beta-carotene. | [126] |
Human patients | ||||||
Beta-carotene | 124 women with CIN2 and 3 lesions (mean age 29.8 y.o.) | Phase III trial using oral beta-carotene supplementation. | 30 mg daily | 24 months | The 24-month study showed no benefit or harm for women with CIN2 or 3 treated with placebo or beta-carotene. | [127] |
Beta-carotene | 117 women with abnormal cervical morphology (mean age 30.1 y.o.) | Randomized, double-blind, placebo-controlled trial using beta-carotene and lecithin supplementation. | 30 mg daily | 12 months | No differences were observed between the beta-carotene and placebo groups regarding Pap smear results and HPV positivity. | [128] |
Vitamin A | 30 women with advanced cervical carcinoma (mean age 55.8 y.o.) | Randomized, double-blind, clinical trial regarding the effects of vitamin A, in advanced cervical carcinoma treated with neoadjuvant chemotherapy. | 80,000 UI/8 h | 64 weeks | Adding vitamin A to neoadjuvant chemotherapy treatment may improve the clinical response in advanced cervical carcinoma, but without statistically significant results. | [129] |
Folate | 60 overweight/obese women with CIN2/3 | Randomized, double-blind, placebo-controlled clinical trial regarding the effect of folate supplementation recurrence and metabolic status of CIN2/3. | 5 mg/day | 12 weeks | Non-significant decrease in CIN2/3 recurrence in the folate group. The supplementation with folate significantly reduced the levels of homocysteine, insulin, and C-reactive protein, improving insulin sensitivity and antioxidant capacity. | [130] |
Folate | 48 women diagnosed with CIN1 (mean age 37.9 y.o.) | Randomized, double-blind clinical trial regarding the effect of long-term folate supplementation on metabolic status and regression of CIN. | 5 mg/day | 6 months | Folate supplementation promoted regression of CIN lesions and had beneficial effects on plasma levels of homocysteine, serum insulin, GSH, and MDA. | [131] |
Folate | 235 women with CIN1 and 2 (mean age 25.0 y.o.) | Clinical interventional trial regarding the effect of folate supplementation on CIN. | 10 mg | 6 months | There were no significant differences between the supplemented and non-supplemented subjects regarding dysplasia, biopsy, or HPV type 16 infection. | [132] |
Antioxidant mixture: beta-carotene, vitamin C, vitamin E, selenium, zinc, Ginkgo biloba extract, and Panax ginseng extract | 103 women with IIB and IIIB cervical cancer (mean age 48.4 y.o.) | Single-blinded, randomized clinical trial regarding the effect of an antioxidant mixture on the recurrence of cancer. | 1 capsule daily | 4 years after completion of antineoplastic treatment | Antioxidant supplementation had no benefit in patients with cervical cancer. | [133] |
Antioxidant mixture: beta-carotene, vitamin C, vitamin E, and selenium | 103 women with IB2–IIIB cervical cancer receiving chemotherapy and radiotherapy (mean age 45 y.o.) | Randomized, single-blinded, controlled trial in women with cervical cancer regarding the effect of antioxidant supplementation on oxidative stress and hematological toxicity during oncology. | 1 capsule daily | 6 weeks during cervical cancer treatment | The supplementation with antioxidants reduced oxidative stress and maintained hemoglobin levels in cervical cancer patients treated with chemotherapy and radiotherapy. | [134] |
Vitamin D | 58 women with CIN1 (mean age 37.2 y.o.) | Randomized, double-blind, placebo-controlled trial regarding the effect of long-term vitamin D supplementation on regression and metabolic status of CIN. | 50,000 IU vitamin D3 daily | 2 weeks/month for 6 months | Supplementation with vitamin D3 for 6 months promoted the regression of CIN1 and improved glucose parameters, as well as levels of NO and MDA. | [15] |
Vitamin D3 | 58 women diagnosed with CIN2/3 (mean age 40.08 y.o.) | Randomized, double-blind, placebo-controlled trial regarding the effect of long-term supplementation of vitamin D3 on recurrence and metabolic status of CIN2/3. | 50,000 UI vitamin D3 daily | 2 weeks/month for 6 months | Supplementing women with vitamin D3 for 6 months reduced the risk of recurrence of CIN1/2/3 and improved their metabolic status. | [135] |
Coriolus versicolor–based vaginal gel | 91 HPV-positive women with CIN1 (mean age 40.5 y.o.) | Multicenter, open-label, randomized, parallel-group, watchful waiting approach-controlled trial. | Vaginal gel once daily | 21-day treatment/7-day rest period, for 3 to 6 months, followed by 5 or 3 months of alternate use | After 6 months of treatment, HPV clearance was observed in 59.6% of the patients. More efficient cervical re-epithelialization was seen after vaginal gel use. | [46] |
Coriolus versicolor–based vaginal gel | 41 HPV-positive women with CIN1 (mean age 47.71 y.o.) | Multicenter, randomized, open-label, parallel-group, controlled clinical trial. | Vaginal gel once daily | 21-day treat-ment/7-day rest period, for 1 to 3 months, followed by 5 or 3 months of alternate use | After 6 months of treatment, HPV clearance and lesions repair were consistent in women older than 40 years, in both high-risk HPV strains infected patients as well as in 16-18-31 HPV subtypes. | [47] |
Coriolus versicolor–based vaginal gel | 263 HPV-positive women with CIN1 (mean age 38.7 y.o.) | Observational, national, multicentric, prospective, non-comparative clinical study. | Vaginal gel once daily | 21 days during the first month, then alternate days for 5 months | After 6 months of treatment, higher regression rates of low-grade cervical lesions were seen in women who received the treatment. | [48] |
5. Materials and Methods
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arbyn, M.; Castellsagué, X.; de sanjosé, S.; Bruni, L.; Saraiya, M.; Bray, F.; Ferlay, J. Worldwide Burden of Cervical Cancer in 2008. Ann. Oncol. 2011, 22, 2675–2686. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, L.; Bi, Y.; Wu, H.; Wu, M.; Lang, J. The Effects of Different Instruments and Suture Methods of Conization for Cervical Lesions. Sci. Rep. 2019, 9, 19114. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.A.; James, D.; Marzan, A.; Armaos, M. Cervical Cancer: An Overview of Pathophysiology and Management. Semin. Oncol. Nurs. 2019, 35, 166–174. [Google Scholar] [CrossRef]
- Pimple, S.; Mishra, G. Cancer Cervix: Epidemiology and Disease Burden. Cytojournal 2022, 19, 21. [Google Scholar] [CrossRef]
- Martin-Hirsch, P.P.L.; Paraskevaidis, E.; Bryant, A.; Dickinson, H.O. Surgery for Cervical Intraepithelial Neoplasia. Cochrane Database Syst. Rev. 2013, 2013, CD001318. [Google Scholar] [CrossRef]
- Santesso, N.; Mustafa, R.A.; Schünemann, H.J.; Arbyn, M.; Blumenthal, P.D.; Cain, J.; Chirenje, M.; Denny, L.; De Vuyst, H.; Eckert, L.O.N.; et al. World Health Organization Guidelines for Treatment of Cervical Intraepithelial Neoplasia 2–3 and Screen-and-Treat Strategies to Prevent Cervical Cancer. Int. J. Gynecol. Obstet. 2016, 132, 252–258. [Google Scholar] [CrossRef]
- Sharma, S.; Chauhan, D.; Kumar, S.; Kumar, R. Impact of HPV Strains on Molecular Mechanisms of Cervix Cancer. Microb. Pathog. 2024, 186, 106465. [Google Scholar] [CrossRef]
- Looi, M.-L.; Dali, A.Z.H.M.; Ali, S.A.M.; Ngah, W.Z.W.; Yusof, Y.A.M. Oxidative Damage and Antioxidant Status in Patients with Cervical Intraepithelial Neoplasia and Carcinoma of the Cervix. Eur. J. Cancer Prev. 2008, 17, 555–560. [Google Scholar] [CrossRef]
- Zahra, K.; Patel, S.; Dey, T.; Pandey, U.; Mishra, S.P. A Study of Oxidative Stress in Cervical Cancer-an Institutional Study. Biochem. Biophys. Rep. 2021, 25, 100881. [Google Scholar] [CrossRef]
- Pal, A.; Sengupta, S.; Kundu, R. Tiliacora Racemosa Leaves Induce Oxidative Stress Mediated DNA Damage Leading to G2/M Phase Arrest and Apoptosis in Cervical Cancer Cells SiHa. J. Ethnopharmacol. 2021, 269, 113686. [Google Scholar] [CrossRef]
- So, N.; Am, F.; Og, A. Vitamin B and Antioxidants in Relation to Treatment Duration in Cervical Cancer Patients in Ibadan. Medicine 2013, 3, 127. [Google Scholar] [CrossRef]
- Koshiyama, M. The Effects of the Dietary and Nutrient Intake on Gynecologic Cancers. Healthcare 2019, 7, 88. [Google Scholar] [CrossRef]
- Carrero, Y.N.; Callejas, D.E.; Mosquera, J.A. In Situ Immunopathological Events in Human Cervical Intraepithelial Neoplasia and Cervical Cancer: Review. Transl. Oncol. 2021, 14, 101058. [Google Scholar] [CrossRef]
- Brăila, A.D.; Poalelungi, C.V.; Albu, C.C.; Damian, C.M.; Dȋră, L.M.; Bănățeanu, A.M.; Bogdan-Andreescu, C.F. The Relationship Between Cervicovaginal Infection, Human Papillomavirus Infection and Cervical Intraepithelial Neoplasia in Romanian Women. Diseases 2025, 13, 18. [Google Scholar] [CrossRef]
- Vahedpoor, Z.; Jamilian, M.; Bahmani, F.; Aghadavod, E.; Karamali, M.; Kashanian, M.; Asemi, Z. Effects of Long-Term Vitamin D Supplementation on Regression and Metabolic Status of Cervical Intraepithelial Neoplasia: A Randomized, Double-Blind, Placebo-Controlled Trial. Horm Cancer 2017, 8, 58–67. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Xiong, J.; Chen, P.; Zhang, D.; Li, Q.; Zhu, P. Biomarkers Differentiating Regression from Progression among Untreated Cervical Intraepithelial Neoplasia Grade 2 Lesions. J. Adv. Res. 2024, in press. [Google Scholar] [CrossRef]
- Kaplan, S. Risk Factors That Cause Cervical Intraepithelial Lesion Development: A Single Center Cross-Sectional Study in Turkey. Asian Pac. J. Cancer Care 2020, 5, 173–178. [Google Scholar] [CrossRef]
- Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of Incidence and Mortality of Cervical Cancer in 2018: A Worldwide Analysis. Lancet Glob. Health 2020, 8, e191–e203. [Google Scholar] [CrossRef]
- de Sanjosé, S.; Diaz, M.; Castellsagué, X.; Clifford, G.; Bruni, L.; Muñoz, N.; Bosch, F.X. Worldwide Prevalence and Genotype Distribution of Cervical Human Papillomavirus DNA in Women with Normal Cytology: A Meta-Analysis. Lancet Infect. Dis. 2007, 7, 453–459. [Google Scholar] [CrossRef]
- Zhong, F.; Wang, T.; Li, W.; Zhang, H.; Zeng, X.; Geisler, D.; Zhou, X.; Cong, Q.; Sui, L.; Tao, X.; et al. Associations of Single Versus Multiple Human Papillomavirus Infections With the Prevalence of Cervical Intraepithelial Neoplasia 2/3 and Squamous Cell Carcinoma Lesions: Human Papillomavirus Type–Specific Attribution. Lab. Investig. 2024, 104, 100328. [Google Scholar] [CrossRef]
- Petca, A.; Borislavschi, A.; Zvanca, M.; Petca, R.-C.; Sandru, F.; Dumitrascu, M. Non-Sexual HPV Transmission and Role of Vaccination for a Better Future (Review). Exp. Ther. Med. 2020, 20, 186. [Google Scholar] [CrossRef] [PubMed]
- Karimi, P.; Hosseini, S.M.R.; Hiagh, Z.S.M.; Aboulhassanzadeh, S.; Asghari, N.; Aghazadeh, H. Exploring the Intricacies of Cervical Intraepithelial Neoplasia and Its Connection with HPV: A Narrative Review. Iran. J. Public. Health 2024, 53, 2671–2682. [Google Scholar] [CrossRef]
- Hewavisenti, R.V.; Arena, J.; Ahlenstiel, C.L.; Sasson, S.C. Human Papillomavirus in the Setting of Immunodeficiency: Pathogenesis and the Emergence of next-Generation Therapies to Reduce the High Associated Cancer Risk. Front. Immunol. 2023, 14, 1112513. [Google Scholar] [CrossRef]
- Tomaić, V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers 2016, 8, 95. [Google Scholar] [CrossRef]
- Münger, K.; Baldwin, A.; Edwards, K.M.; Hayakawa, H.; Nguyen, C.L.; Owens, M.; Grace, M.; Huh, K. Mechanisms of Human Papillomavirus-Induced Oncogenesis. J. Virol. 2004, 78, 11451–11460. [Google Scholar] [CrossRef]
- Brianti, P.; De Flammineis, E.; Mercuri, S.R. Review of HPV-Related Diseases and Cancers. New Microbiol. 2017, 40, 80–85. [Google Scholar]
- Bosch, F.X.; Lorincz, A.; Muñoz, N.; Meijer, C.J.L.M.; Shah, K.V. The Causal Relation between Human Papillomavirus and Cervical Cancer. J. Clin. Pathol. 2002, 55, 244–265. [Google Scholar] [CrossRef]
- Schmitt, M.; Depuydt, C.; Benoy, I.; Bogers, J.; Antoine, J.; Arbyn, M.; Pawlita, M. Multiple Human Papillomavirus Infections with High Viral Loads Are Associated with Cervical Lesions but Do Not Differentiate Grades of Cervical Abnormalities. J. Clin. Microbiol. 2013, 51, 1458–1464. [Google Scholar] [CrossRef]
- Collins, S.; Rollason, T.P.; Young, L.S.; Woodman, C.B.J. Cigarette Smoking Is an Independent Risk Factor for Cervical Intraepithelial Neoplasia in Young Women: A Longitudinal Study. Eur. J. Cancer 2010, 46, 405–411. [Google Scholar] [CrossRef]
- Nagelhout, G.; Ebisch, R.M.; Van Der Hel, O.; Meerkerk, G.J.; Magnée, T.; De Bruijn, T.; Van Straaten, B. Is Smoking an Independent Risk Factor for Developing Cervical Intra-Epithelial Neoplasia and Cervical Cancer? A Systematic Review and Meta-Analysis. Expert. Rev. Anticancer. Ther. 2021, 21, 781–794. [Google Scholar] [CrossRef]
- Kayar, İ.; Goc, G.; Cetin, F.; Birge, Ö. Impact of Smoking on Cervical Histopathological Changes in High-Risk HPV-Positive Women: A Matched Case–Control Study. Medicina 2025, 61, 235. [Google Scholar] [CrossRef] [PubMed]
- Ho, G.Y.F.; Kadish, A.S.; Burk, R.D.; Basu, J.; Palan, P.R.; Mikhail, M.; Romney, S.L. HPV 16 and Cigarette Smoking as Risk Factors for High-Grade Cervical Intra-Epithelial Neoplasia. Int. J. Cancer 1998, 78, 281–285. [Google Scholar] [CrossRef]
- Min, K.J.; Lee, J.K.; So, K.A.; Kim, M.K. Association Between Passive Smoking and the Risk of Cervical Intraepithelial Neoplasia 1 in Korean Women. J. Epidemiol. 2018, 28, 48–53. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, D.W.; Kim, M.J.; Shin, J.E.; Shin, Y.J.; Lee, H.N. Secondhand Smoke Exposure, Diabetes, and High BMI Are Risk Factors for Uterine Cervical Cancer: A Cross-Sectional Study from the Korea National Health and Nutrition Examination Survey (2010–2018). BMC Cancer 2021, 21, 880. [Google Scholar] [CrossRef]
- Xi, Y.; Zheng, P.; Xi, W.; Fu, T. Exploring the Impact of Estrogenic Endocrine Disruptors on Cervical Cancer Progression: A Transcriptome Analysis and Prognostic Model Development. Ecotoxicol. Environ. Saf. 2024, 285, 117025. [Google Scholar] [CrossRef]
- Anastasiou, E.; McCarthy, K.J.; Gollub, E.L.; Ralph, L.; van de Wijgert, J.H.H.M.; Jones, H.E. The Relationship between Hormonal Contraception and Cervical Dysplasia/Cancer Controlling for Human Papillomavirus Infection: A Systematic Review. Contraception 2022, 107, 1–9. [Google Scholar] [CrossRef]
- Wu, X.; You, Y.; Guan, Z.; Ban, Y.; Wang, Y.; Du, D.; Wang, B.; Wu, W.; Wen, Y.; Ren, Y.; et al. A Correlation Study between Cervical Cancer and Sex Hormones. Front. Oncol. 2024, 14, 1475052. [Google Scholar] [CrossRef]
- Reuschenbach, M.; Valente, S.; Takyar, J.; Dhawan, A.; Hall, A.; Agrawal, N.; Ghelardi, A.; del Pino, M.; Nowakowski, A.; Sabale, U. Treatment Characteristics, HPV Genotype Distribution and Risk of Subsequent Disease among Women with High-Grade Cervical Intraepithelial Neoplasia in Europe: A Systematic Literature Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 300, 129–140. [Google Scholar] [CrossRef]
- Richart, R.M. Natural History of Cervical Intraepithelial Neoplasia. Clin. Obstet. Gynecol. 1967, 10, 748–784. [Google Scholar] [CrossRef]
- Muntean, M.; Simionescu, C.; Taslîcă, R.; Gruia, C.; Comanescu, A.; Pătrană, N.; Fota, G. Cytological and Histopathological Aspects Concerning Preinvasive Squamous Cervical Lesions. Curr. Health Sci. J. 2010, 36, 26–32. [Google Scholar]
- Lycke, K.D.; Kahlert, J.; Damgaard, R.K.; Eriksen, D.O.; Bennetsen, M.H.; Gravitt, P.E.; Petersen, L.K.; Hammer, A. Clinical Course of Cervical Intraepithelial Neoplasia Grade 2: A Population-Based Cohort Study. Am. J. Obstet. Gynecol. 2023, 229, e1–e656. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, O. Cervical Intraepithelial Neoplasia (CIN) (Squamous Dysplasia). Intraepithelial Neoplasia 2012, 1, 279–310. [Google Scholar] [CrossRef]
- Ranganathan, K.; Kavitha, L. Oral Epithelial Dysplasia: Classifications and Clinical Relevance in Risk Assessment of Oral Potentially Malignant Disorders. J. Oral. Maxillofac. Pathol. 2019, 23, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Moscicki, A.B. Management of Adolescents Who Have Abnormal Cytology and Histology. Obstet. Gynecol. Clin. N. Am. 2008, 35, 633–643. [Google Scholar] [CrossRef]
- Cox, J.T. History of the Use of HPV Testing in Cervical Screening and in the Management of Abnormal Cervical Screening Results. J. Clin. Virol. 2009, 45, S3–S12. [Google Scholar] [CrossRef]
- Serrano, L.; López, A.C.; González, S.P.; Palacios, S.; Dexeus, D.; Centeno-Mediavilla, C.; Coronado, P.; de la Fuente, J.; López, J.A.; Vanrell, C.; et al. Efficacy of a Coriolus versicolor-Based Vaginal Gel in Women with Human Papillomavirus-Dependent Cervical Lesions: The PALOMA Study. J. Low. Genit. Tract. Dis. 2021, 25, 130–136. [Google Scholar] [CrossRef]
- Gil-Antuñano, S.P.; Serrano Cogollor, L.; López Díaz, A.C.; González Rodríguez, S.P.; Dexeus Carter, D.; Centeno Mediavilla, C.; Coronado Martín, P.; de la Fuente Valero, J.; López Fernández, J.A.; Vanrell Barbat, C.; et al. Efficacy of a Coriolusversicolor-Based Vaginal Gel in Human Papillomavirus-Positive Women Older Than 40 Years: A Sub-Analysis of PALOMA Study. J. Pers. Med. 2022, 12, 1559. [Google Scholar] [CrossRef]
- Cortés Bordoy, J.; de Santiago García, J.; Agenjo González, M.; Dexeus Carter, D.; Fiol Ruiz, G.; García Ferreiro, C.; González Rodríguez, S.P.; Gurrea Soteras, M.; Martínez Lamela, E.; Palacios Gil-Antuñano, S.; et al. Effect of a Multi-Ingredient Coriolus-versicolor-Based Vaginal Gel in Women with HPV–Dependent Cervical Lesions: The Papilobs Real-Life Prospective Study. Cancers 2023, 15, 3863. [Google Scholar] [CrossRef]
- Sykes, P.H.; Simcock, B.J.; Innes, C.R.; Harker, D.; Williman, J.A.; Whitehead, M.; van der Griend, R.A.; Lawton, B.A.; Hibma, M.; Fitzgerald, P.; et al. Predicting Regression of Cervical Intraepithelial Neoplasia Grade 2 in Women under 25 Years. Am. J. Obstet. Gynecol. 2022, 226, e1–e222. [Google Scholar] [CrossRef]
- Skinner, R.S.; Wheeler, C.M.; Romanowski, B.; Castellsagué, X.; Lazcano-Ponce, E.; Rowena Del Rosario-Raymundo, M.; Vallejos, C.; Minkina, G.; Pereira Da Silva, D.; McNeil, S.; et al. Progression of HPV Infection to Detectable Cervical Lesions or Clearance in Adult Women: Analysis of the Control Arm of the VIVIANE Study. Int. J. Cancer 2016, 138, 2428–2438. [Google Scholar] [CrossRef]
- Ye, J.; Zheng, L.; He, Y.; Qi, X. Human Papillomavirus Associated Cervical Lesion: Pathogenesis and Therapeutic Interventions. MedComm 2023, 4, e368. [Google Scholar] [CrossRef] [PubMed]
- Maza, M.; Schocken, C.M.; Bergman, K.L.; Randall, T.C.; Cremer, M.L. Cervical Precancer Treatment in Low- and Middle-Income Countries: A Technology Overview. J. Glob. Oncol. 2017, 3, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Djurdjevic, S.; Nisevic, J. Loop Electrosurgical Excision in the Treatment of Precancerous Lesions of the Cervix. Med. Pregl. 2021, 74, 226–231. [Google Scholar] [CrossRef]
- Gupta, S.; Nagtode, N.; Chandra, V.; Gomase, K. From Diagnosis to Treatment: Exploring the Latest Management Trends in Cervical Intraepithelial Neoplasia. Cureus 2023, 15, e50291. [Google Scholar] [CrossRef]
- Cooper, D.B.; Carugno, J.; Dunton, C.J.; Menefee, G.W. Cold Knife Conization of the Cervix. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Dorsey, J.H. Laser Surgery for Cervical Intraepithelial Neoplasia. Obstet. Gynecol. Clin. N. Am. 1991, 18, 475–489. [Google Scholar] [CrossRef]
- Wesley, R.S.; Muwonge, R.; Sauvaget, C.; Thara, S.; Sankaranarayanan, R. Effectiveness of Cryotherapy for Histologically Confirmed Cervical Intraepithelial Neoplasia Grades 1 and 2 in an Indian Setting. Int. J. Gynecol. Obstet. 2013, 123, 16–20. [Google Scholar] [CrossRef]
- Kripalani, S.; Theobald, C.N.; Anctil, B.; Vasilevskis, E.E. Reducing Hospital Readmission Rates: Current Strategies and Future Directions. Annu. Rev. Med. 2014, 65, 471–485. [Google Scholar] [CrossRef]
- Skeate, J.G.; Woodham, A.W.; Einstein, M.H.; Da Silva, D.M.; Kast, W.M. Current Therapeutic Vaccination and Immunotherapy Strategies for HPV-Related Diseases. Hum. Vaccin. Immunother. 2016, 12, 1418–1429. [Google Scholar] [CrossRef]
- Yang, A.; Farmer, E.; Lin, J.; Wu, T.C.; Hung, C.F. The Current State of Therapeutic and T Cell-Based Vaccines against Human Papillomaviruses. Virus Res. 2017, 231, 148–165. [Google Scholar] [CrossRef]
- Hamley, I.W. Peptides for Vaccine Development. ACS Appl. Bio Mater. 2022, 5, 905–944. [Google Scholar] [CrossRef]
- Hernández-Silva, C.D.; Ramírez de Arellano, A.; Pereira-Suárez, A.L.; Ramírez-López, I.G. HPV and Cervical Cancer: Molecular and Immunological Aspects, Epidemiology and Effect of Vaccination in Latin American Women. Viruses 2024, 16, 327. [Google Scholar] [CrossRef] [PubMed]
- Maciag, P.C.; Radulovic, S.; Rothman, J. The First Clinical Use of a Live-Attenuated Listeria Monocytogenes Vaccine: A Phase I Safety Study of Lm-LLO-E7 in Patients with Advanced Carcinoma of the Cervix. Vaccine 2009, 27, 3975–3983. [Google Scholar] [CrossRef]
- Loopik, D.L.; IntHout, J.; Ebisch, R.M.F.; Melchers, W.J.G.; Massuger, L.F.A.G.; Siebers, A.G.; Bekkers, R.L.M. The Risk of Cervical Cancer after Cervical Intraepithelial Neoplasia Grade 3: A Population-Based Cohort Study with 80,442 Women. Gynecol. Oncol. 2020, 157, 195–201. [Google Scholar] [CrossRef]
- Kalliala, I.; Athanasiou, A.; Veroniki, A.A.; Salanti, G.; Efthimiou, O.; Raftis, N.; Bowden, S.; Paraskevaidi, M.; Aro, K.; Arbyn, M.; et al. Incidence and Mortality from Cervical Cancer and Other Malignancies after Treatment of Cervical Intraepithelial Neoplasia: A Systematic Review and Meta-Analysis of the Literature. Ann. Oncol. 2020, 31, 213–227. [Google Scholar] [CrossRef]
- Averill-Bates, D. Reactive Oxygen Species and Cell Signaling. Review. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119573. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Bhandary, B.; Marahatta, A.; Kim, H.R.; Chae, H.J. An Involvement of Oxidative Stress in Endoplasmic Reticulum Stress and Its Associated Diseases. Int. J. Mol. Sci. 2013, 14, 434–456. [Google Scholar] [CrossRef]
- Socha, M.W.; Flis, W.; Wartęga, M.; Stankiewicz, M. Impact of Oxidative Stress on Molecular Mechanisms of Cervical Ripening in Pregnant Women. Int. J. Mol. Sci. 2022, 23, 12780. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of Oxidative Stress, Cellular Communication and Signaling Pathways in Cancer. Cell Com. Signal 2024, 22, 7. [Google Scholar] [CrossRef]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative Stress and Inflammation in the Pathogenesis of Neurological Disorders: Mechanisms and Implications. Acta Pharm. Sin. B 2025, 15, 15–34. [Google Scholar] [CrossRef]
- Münzel, T.; Camici, G.G.; Maack, C.; Bonetti, N.R.; Fuster, V.; Kovacic, J.C. Impact of Oxidative Stress on the Heart and Vasculature. J. Am. Coll. Cardiol. 2017, 70, 212–229. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Ionescu-Tucker, A.; Cotman, C.W. Emerging Roles of Oxidative Stress in Brain Aging and Alzheimer’s Disease. Neurobiol. Aging 2021, 107, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.A.; So, E.Y.; Simons, A.L.; Spitz, D.R.; Ouchi, T. DNA Damage Induces Reactive Oxygen Species Generation through the H2AX-Nox1/Rac1 Pathway. Cell Death Dis. 2012, 3, e249. [Google Scholar] [CrossRef]
- Rowe, L.A.; Degtyareva, N.; Doetsch, P.W. DNA Damage-Induced Reactive Oxygen Species (ROS) Stress Response in Saccharomyces Cerevisiae. Free Radic. Biol. Med. 2008, 45, 1167–1177. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Chelimo, C.; Wouldes, T.A.; Cameron, L.D.; Elwood, J.M. Risk Factors for and Prevention of Human Papillomaviruses (HPV), Genital Warts and Cervical Cancer. J. Infect. 2013, 66, 207–217. [Google Scholar] [CrossRef]
- Preci, D.P.; Almeida, A.; Weiler, A.L.; Mukai Franciosi, M.L.; Cardoso, A.M.H. Oxidative Damage and Antioxidants in Cervical Cancer. Int. J. Gynecol. Cancer 2021, 31, 265–271. [Google Scholar] [CrossRef]
- Despot, A.; Fureš, R.; Despot, A.M.; Mikuš, M.; Zlopaša, G.; D’Amato, A.; Chiantera, V.; Serra, P.; Etrusco, A.; Laganà, A.S. Reactive Oxygen Species within the Vaginal Space: An Additional Promoter of Cervical Intraepithelial Neoplasia and Uterine Cervical Cancer Development? Open Med. 2023, 18, 20230826. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative Stress Mitigation by Antioxidants—An Overview on Their Chemistry and Influences on Health Status. Eur. J. Med. Chem. 2021, 209, 12891. [Google Scholar] [CrossRef]
- Silva, G.Á.F.; Nunes, R.A.L.; Morale, M.G.; Boccardo, E.; Aguayo, F.; Termini, L. Oxidative Stress: Therapeutic Approaches for Cervical Cancer Treatment. Clinics 2018, 73 (Suppl. S1), e548s. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, K.; Loridas, S. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms. Int. J. Environ. Res. Public Health 2013, 10, 3886–3907. [Google Scholar] [CrossRef]
- Manju, V.; Sailaja, J.K.; Nalini, N. Circulating Lipid Peroxidation and Antioxidant Status in Cervical Cancer Patients: A Case-Control Study. Clin. Biochem. 2002, 35, 621–625. [Google Scholar] [CrossRef]
- Demirci, S.; Ozsaran, Z.; Celik, H.A.; Aras, A.B.; Aydin, H.H. The Interaction between Antioxidant Status and Cervical Cancer: A Case Control Study. Tumori 2011, 97, 290–295. [Google Scholar] [CrossRef]
- Kong, Q.; Lin, C.L.G. Oxidative Damage to RNA: Mechanisms, Consequences, and Diseases. Cell. Mol. Life Sci. 2010, 67, 1817–1829. [Google Scholar] [CrossRef]
- Naidu, K.A. Vitamin C in Human Health and Disease Is Still a Mystery? An Overview. Nutr. J. 2003, 2, 7. [Google Scholar] [CrossRef]
- Mukundan, H.; Bahadur, A.K.; Kumar, A.; Sardana, S.; Naik, S.L.D.; Ray, A.; Sharma, B.K. Glutathione Level and Its Relation to Radiation Therapy in Patients with Cancer of Uterine Cervix. Ind. J. Exp. Biol. 1999, 37, 859–864. [Google Scholar]
- Arfin, S.; Jha, N.K.; Jha, S.K.; Kesari, K.K.; Ruokolainen, J.; Roychoudhury, S.; Rathi, B.; Kumar, D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants 2021, 10, 642. [Google Scholar] [CrossRef]
- Georgescu, S.R.; Mitran, C.I.; Mitran, M.I.; Caruntu, C.; Sarbu, M.I.; Matei, C.; Nicolae, I.; Tocut, S.M.; Popa, M.I.; Tampa, M. New Insights in the Pathogenesis of HPV Infection and the Associated Carcinogenic Processes: The Role of Chronic Inflammation and Oxidative Stress. J. Immunol. Res. 2018, 2018, 5315816. [Google Scholar] [CrossRef]
- Fernandez, C.; Sharrard, R.M.; Talbot, M.; Reed, B.D.; Monks, N. Evaluation of the Significance of Polyamines and Their Oxidases in the Aetiology of Human Cervical Carcinoma. Br. J. Cancer 1995, 72, 1194–1199. [Google Scholar] [CrossRef]
- Siegel, E.M.; Patel, N.; Lu, B.; Lee, J.H.; Nyitray, A.G.; Huang, X.; Villa, L.L.; Franco, E.L.; Giuliano, A.R. Circulating Biomarkers of Iron Storage and Clearance of Incident Human Papillomavirus Infection. Cancer Epidemiol. Biom. Prev. 2012, 21, 859–865. [Google Scholar] [CrossRef]
- Safaeian, M.; Hildesheim, A.; Gonzalez, P.; Yu, K.; Porras, C.; Li, Q.; Rodriguez, A.C.; Sherman, M.E.; Schiffman, M.; Wacholder, S.; et al. Single Nucleotide Polymorphisms in the PRDX3 and RPS19 and Risk of HPV Persistence and Cervical Precancer/Cancer. PLoS ONE 2012, 7, e33619. [Google Scholar] [CrossRef] [PubMed]
- Conway, M.J.; Alam, S.; Ryndock, E.J.; Cruz, L.; Christensen, N.D.; Roden, R.B.S.; Meyers, C. Tissue-Spanning Redox Gradient-Dependent Assembly of Native Human Papillomavirus Type 16 Virions. J. Virol. 2009, 83, 10515–10526. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.J.; Gu, P.Q.; Zhao, W.; Ding, W.Y.; Zhao, X.Q.; Guo, S.Y.; Zhong, T.Y. The Role of Globular Heads of the C1q Receptor in HPV 16 E2-Induced Human Cervical Squamous Carcinoma Cell Apoptosis Is Associated with P38 MAPK/JNK Activation. J. Transl. Med. 2013, 11, 118. [Google Scholar] [CrossRef]
- Cruz-Gregorio, A.; Manzo-Merino, J.; Gonzaléz-García, M.C.; Pedraza-Chaverri, J.; Medina-Campos, O.N.; Valverde, M.; Rojas, E.; Rodríguez-Sastre, M.A.; García-Cuellar, C.M.; Lizano, M. Human Papillomavirus Types 16 and 18 Early-Expressed Proteins Differentially Modulate the Cellular Redox State and DNA Damage. Int. J. Biol. Sci. 2018, 14, 21–35. [Google Scholar] [CrossRef]
- Villota, C.; Campos, A.; Vidaurre, S.; Oliveira-Cruz, L.; Boccardo, E.; Burzio, V.A.; Varas, M.; Villegas, J.; Villa, L.L.; Valenzuela, P.D.T.; et al. Expression of Mitochondrial Non-Coding RNAs (NcRNAs) Is Modulated by High Risk Human Papillomavirus (HPV) Oncogenes. J. Biol. Chem. 2012, 287, 21303–21315. [Google Scholar] [CrossRef]
- Villota, C.; Varas-Godoy, M.; Jeldes, E.; Campos, A.; Villegas, J.; Borgna, V.; Burzio, L.O.; Burzio, V.A. HPV-18 E2 Protein Downregulates Antisense Noncoding Mitochondrial RNA-2, Delaying Replicative Senescence of Human Keratinocytes. Aging 2019, 11, 33–47. [Google Scholar] [CrossRef]
- Letafati, A.; Taghiabadi, Z.; Zafarian, N.; Tajdini, R.; Mondeali, M.; Aboofazeli, A.; Chichiarelli, S.; Saso, L.; Jazayeri, S.M. Emerging Paradigms: Unmasking the Role of Oxidative Stress in HPV-Induced Carcinogenesis. Infect. Agent. Cancer 2024, 19, 30. [Google Scholar] [CrossRef]
- Noh, J.Y.; Yoon, S.R.; Kim, T.D.; Choi, I.; Jung, H. Toll-Like Receptors in Natural Killer Cells and Their Application for Immunotherapy. J. Immunol. Res. 2020, 2020, 2045860. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF-ΚB Signaling in Inflammation and Cancer. MedComm 2021, 2, 618–653. [Google Scholar] [CrossRef]
- Lukhele, S.; Boukhaled, G.M.; Brooks, D.G. Type I Interferon Signaling, Regulation and Gene Stimulation in Chronic Virus Infection. Semin. Immunol. 2019, 43, 101277. [Google Scholar] [CrossRef] [PubMed]
- Gorvel, L.; Olive, D. Tumor Associated Macrophage in HPV+ Tumors: Between Immunosuppression and Inflammation. Semin. Immunol. 2023, 65, 101671. [Google Scholar] [CrossRef]
- Pérez-Soto, E.; Fernández-Martínez, E.; Oros-Pantoja, R.; Medel-Flores, O.; Miranda-Covarrubias, J.C.; Sánchez-Monroy, V. Proinflammatory and Oxidative Stress States Induced by Human Papillomavirus and Chlamydia Trachomatis Coinfection Affect Sperm Quality in Asymptomatic Infertile Men. Medicina 2021, 57, 862. [Google Scholar] [CrossRef]
- Pérez-Soto, E.; Medel-Flores, M.O.; Fernández-Martínez, E.; Oros-Pantoja, R.; Miranda-Covarrubias, J.C.; Sánchez-Monroy, V. High-Risk HPV with Multiple Infections Promotes CYP2E1, Lipoperoxidation and Pro-Inflammatory Cytokines in Semen of Asymptomatic Infertile Men. Antioxidants 2022, 11, 1051. [Google Scholar] [CrossRef]
- Mukherjee, A.G.; Ramesh Wanjari, U.; Valsala Gopalakrishnan, A.; Jayaraj, R.; Katturajan, R.; Kannampuzha, S.; Murali, R.; Namachivayam, A.; Evan Prince, S.; Vellingiri, B.; et al. HPV-Associated Cancers: Insights into the Mechanistic Scenario and Latest Updates. Med. Oncol. 2023, 40, 212. [Google Scholar] [CrossRef]
- Williams, V.M.; Filippova, M.; Soto, U.; Duerksen-Hughes, P.J. HPV-DNA Integration and Carcinogenesis: Putative Roles for Inflammation and Oxidative Stress. Future Virol. 2011, 6, 45–57. [Google Scholar] [CrossRef]
- Zhou, Z.W.; Long, H.Z.; Cheng, Y.; Luo, H.Y.; Wen, D.D.; Gao, L.C. From Microbiome to Inflammation: The Key Drivers of Cervical Cancer. Front. Microbiol. 2021, 12, 767931. [Google Scholar] [CrossRef]
- Aguilar-Cazares, D.; Chavez-Dominguez, R.; Carlos-Reyes, A.; Lopez-Camarillo, C.; Hernadez de la Cruz, O.N.; Lopez-Gonzalez, J.S. Contribution of Angiogenesis to Inflammation and Cancer. Front. Oncol. 2019, 9, 1399. [Google Scholar] [CrossRef]
- Lamson, D.W.; Brignall, M.S. Antioxidants in Cancer Therapy; Their Actions and Interactions with Oncologic Therapies. Altern. Med. Rev. 1999, 4, 304–329. [Google Scholar]
- Fuchs-Tarlovsky, V. Role of Antioxidants in Cancer Therapy. Nutrition 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Di Domenico, F.; Foppoli, C.; Coccia, R.; Perluigi, M. Antioxidants in Cervical Cancer: Chemopreventive and Chemotherapeutic Effects of Polyphenols. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Moga, M.A.; Dimienescu, O.G.; Arvatescu, C.A.; Mironescu, A.; Dracea, L.; Ples, L. The Role of Natural Polyphenols in the Prevention and Treatment of Cervical Cancer—An Overview. Molecules 2016, 21, 1055. [Google Scholar] [CrossRef] [PubMed]
- Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The Flavonoid Quercetin Induces Cell Cycle Arrest and Mitochondria-Mediated Apoptosis in Human Cervical Cancer (HeLa) Cells through P53 Induction and NF-ΚB Inhibition. Eur. J. Pharmacol. 2010, 649, 84–91. [Google Scholar] [CrossRef]
- Sundaram, M.K.; Raina, R.; Afroze, N.; Bajbouj, K.; Hamad, M.; Haque, S.; Hussain, A. Quercetin Modulates Signaling Pathways and Induces Apoptosis in Cervical Cancer Cells. Biosci. Rep. 2019, 39, BSR20190720. [Google Scholar] [CrossRef]
- Xu, W.; Xie, S.; Chen, X.; Pan, S.; Qian, H.; Zhu, X. Effects of Quercetin on the Efficacy of Various Chemotherapeutic Drugs in Cervical Cancer Cells. Drug Des. Devel Ther. 2021, 15, 577–588. [Google Scholar] [CrossRef]
- He, C.; Lu, X.; Li, J.; Shen, K.; Bai, Y.; Li, Y.; Luan, H.; Tuo, S. The Effect of Quercetin on Cervical Cancer Cells as Determined by Inducing Tumor Endoplasmic Reticulum Stress and Apoptosis and Its Mechanism of Action. Am. J. Transl. Res. 2021, 13, 5240–5247. [Google Scholar]
- Liu, Z.; Li, Y.; She, G.; Zheng, X.; Shao, L.; Wang, P.; Pang, M.; Xie, S.; Sun, Y. Resveratrol Induces Cervical Cancer HeLa Cell Apoptosis through the Activation and Nuclear Translocation Promotion of FOXO3a. Pharmazie 2020, 75, 250–254. [Google Scholar] [CrossRef]
- Afroze, N.; Pramodh, S.; Almutary, A.G.; Rizvi, T.A.; Rais, N.; Raina, R.; Faiyazuddin, M.; Alnuqaydan, A.M.; Hussain, A. Kaempferol Regresses Carcinogenesis through a Molecular Cross Talk Involved in Proliferation, Apoptosis and Inflammation on Human Cervical Cancer Cells, HeLa. Appl. Sci. 2022, 12, 3155. [Google Scholar] [CrossRef]
- Aldoghachi, F.E.H.; Almousawei, U.M.N.; Shari, F.H. In Vitro Anticancer Activity of RA Extracts of Peppermint Leaves against Human Cancer Breast and Cervical Cancer Cells. Teyko Med. J. 2022, 45, 3467–3479. [Google Scholar]
- Purba, I.S.; Irwanto, Y.; Rahardjo, B.; Handayani, P. The Effect of Curcumin Administration on P53 and Caspase-3 Expression in Cervical Cancer HeLa Cell Culture. Asian J. Health Res. 2024, 3, 228–232. [Google Scholar] [CrossRef]
- Sun, X.; Fu, P.; Xie, L.; Chai, S.; Xu, Q.; Zeng, L.; Wang, X.; Jiang, N.; Sang, M. Resveratrol Inhibits the Progression of Cervical Cancer by Suppressing the Transcription and Expression of HPV E6 and E7 Genes. Int. J. Mol. Med. 2021, 47, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Xing-Yu, Z.; Mo, Z.; Zhi-Hua, Z.; Jian-Cheng, H.; Zhang Wei, L.B. Effect and Mechanism of 6-Gingerol on Invasion and Migration of HPV-Positive and Negative Cervical Cancer Cells. Med. J. Chin. Peopl Lib. Army 2020, 45, 691–696. [Google Scholar] [CrossRef]
- Palanisamy, V.D.; Samiappan, S. Antioxidant and Chemotherapeutic Potential of Curcuma Amada Rhizome Extract on Benzo(A)Pyrene Induced Cervical Carcinoma in Sprague Dawley Rats. Asian, J. Pharm. Clin. Res. 2017, 10, 235–242. [Google Scholar] [CrossRef]
- De, S.; Sengupta, A.; Chakraborty, R.N.; Das, S. Influence of Alpha Tocopherol during Carcinogenesis in Uterine Cervix of Mice. Nutr. Res. 2000, 20, 261–272. [Google Scholar] [CrossRef]
- Ceyhan, A.; Baran, M.; Alişan Suna, P.; Cengiz Mat, Ö.; Yay, A. Comparison of Effects of Curcumin and Beta-Carotene on Ovarian Damage Caused by Cisplatin. Cukurova Med. J. 2023, 48, 1248–1257. [Google Scholar] [CrossRef]
- Keefe, K.A.; Schell, M.J.; Brewster, W.; Berman, M.L.; Brewer, C.; McHale, M.; Chapman, J.A.; Rose, G.S.; McMeeken, D.S.; Lagerberg, W.; et al. A Randomized, Double Blind, Phase III Trial Using Oral β-Carotene Supplementation for Women with High-Grade Cervical Intraepithelial Neoplasia. Cancer Epidemiol. Biomark. Prev. 2001, 10, 1029–1035. [Google Scholar]
- Fairley, C.K.; Tabrizi, S.N.; Chen, S.; Baghurst, P.; Young, H.; Quinn, M.; Medley, G.; Mcneil, J.J.; Garland, S.M. A Randomized Clinical Trial of Beta Carotene vs Placebo for the Treatment of Cervical HPV Infection. Int. J. Gynecol. Cancer 1996, 6, 225–230. [Google Scholar] [CrossRef]
- Sanusi, R.S. Outcome of Combined Neoadjuvant Chemotherapy and Vitamin A in Advanced Cervical Carcinoma: A Randomized Double-Blind Clinical Trial. Asian Pac. J. Cancer Prev. 2019, 20, 2213–2218. [Google Scholar] [CrossRef]
- Sabihi, S.; Vahedpoor, Z.; Saraf-Bank, S.; Nourian, M. Effects of Folate Supplementation on Recurrence and Metabolic Status of Cervical Intraepithelial Neoplasia Grade 2/3 in Overweight and Obese Women: A Randomized Double-Blind Placebo-Controlled Trial. Eur. J. Clin. Nutr. 2022, 76, 666–670. [Google Scholar] [CrossRef]
- Asemi, Z.; Vahedpoor, Z.; Jamilian, M.; Bahmani, F.; Esmaillzadeh, A. Effects of Long-Term Folate Supplementation on Metabolic Status and Regression of Cervical Intraepithelial Neoplasia: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrition 2016, 32, 681–686. [Google Scholar] [CrossRef]
- Butterworth, C.E.; Hatch, K.D.; Soong, S.J.; Cole, P.; Tamura, T.; Sauberlich, H.E.; Borst, M.; Macaluso, M.; Baker, V. Oral Folic Acid Supplementation for Cervical Dysplasia: A Clinical Intervention Trial. Am. J. Obstet. Gynecol. 1992, 166, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Altamirano, K.; Mendoza-Hernández, A.N.; Carcoba-Tenorio, C.; García-García, J.A.; Fuchs-Tarlovsky, V. Antioxidant Supplementation during Oncology Treatment Has No Effect on Cervical Cancer Recurrence. Nutr. Hosp. 2016, 33, 125. [Google Scholar] [CrossRef]
- Fuchs-Tarlovsky, V.; Rivera, M.A.C.; Altamirano, K.A.; Lopez-Alvarenga, J.C.; Ceballos-Reyes, G.M. Antioxidant Supplementation Has a Positive Effect on Oxidative Stress and Hematological Toxicity during Oncology Treatment in Cervical Cancer Patients. Support. Care Cancer 2013, 21, 1359–1363. [Google Scholar] [CrossRef]
- Vahedpoor, Z.; Mahmoodi, S.; Samimi, M.; Gilasi, H.R.; Bahmani, F.; Soltani, A.; Esfahani, M.S.; Asemi, Z. Long-Term Vitamin D Supplementation and the Effects on Recurrence and Metabolic Status of Cervical Intraepithelial Neoplasia Grade 2 or 3: A Randomized, Double-Blind, Placebo-Controlled Trial. Ann. Nutr. Metab. 2018, 72, 151–160. [Google Scholar] [CrossRef]
- Lewinska, A.; Adamczyk, J.; Pajak, J.; Stoklosa, S.; Kubis, B.; Pastuszek, P.; Slota, E.; Wnuk, M. Curcumin-Mediated Decrease in the Expression of Nucleolar Organizer Regions in Cervical Cancer (HeLa) Cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 771, 43–52. [Google Scholar] [CrossRef]
- Rahim, U.A.; Mustapa, M.; Shakrin, N.N.S.M.; Nurdin, A.; Taridi, N.M.; Yusof, Y.A.M.; Nordin, M.F.M.; Roos, N.A.C. Current Evidence and Future Direction on Evaluating the Anticancer Effects of Curcumin, Gingerols, and Shogaols in Cervical Cancer: A Systematic Review. PLoS ONE 2024, 19, e0314280. [Google Scholar] [CrossRef]
- Shang, H.S.; Chang, C.H.; Chou, Y.R.; Yeh, M.Y.; Au, M.K.; Lu, H.F.; Chu, Y.L.; Chou, H.M.; Chou, H.C.; Shih, Y.L.; et al. Curcumin Causes DNA Damage and Affects Associated Protein Expression in HeLa Human Cervical Cancer Cells. Oncol. Rep. 2016, 36, 2207–2215. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Tuberoso, C.I.G.; Jerković, I. The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity. Antioxidants 2024, 13, 1313. [Google Scholar] [CrossRef]
- Kang, D.Y.; Park, S.; Song, K.S.; Bae, S.W.; Lee, J.S.; Jang, K.J.; Park, Y.M. Anticancer Effects of 6-Gingerol through Downregulating Iron Transport and PD-L1 Expression in Non-Small Cell Lung Cancer Cells. Cells 2023, 12, 2628. [Google Scholar] [CrossRef]
- Promdam, N.; Panichayupakaranant, P. [6]-Gingerol: A Narrative Review of Its Beneficial Effect on Human Health. Food Chem. Adv. 2022, 2022, 100043. [Google Scholar] [CrossRef]
- Srivastava, S.; Natu, S.M.; Gupta, A.; Pal, K.A.; Singh, U.; Agarwal, G.G.; Singh, U.; Goel, M.M.; Srivastava, A.N. Lipid Peroxidation and Antioxidants in Different Stages of Cervical Cancer: Prognostic Significance. Ind. J. Cancer 2009, 46, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Kim, M.K.; Lee, J.K. Dietary supplements reduce the risk of cervical intraepithelial neoplasia. Int. J. Gynecol. Cancer 2010, 20, 398–403. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, H.; Lin, C.; Che, J.; Tian, X.; Han, S.; Zhao, H.; Zhu, Y.; Mao, D. Associations between Antioxidant Vitamins and the Risk of Invasive Cervical Cancer in Chinese Women: A Case-Control Study. Sci. Rep. 2015, 5, 13607. [Google Scholar] [CrossRef]
Stages of CIN | Description |
---|---|
CIN1 | Low-grade lesions caused by active and transient HPV infection. The lesions are mild dysplastic and could be found in the lower third of the cervical epithelium [42]. |
CIN2 | Moderate-grade lesions characterized by increased cellular atypia and mitotic activity. The lesions extend to two-thirds of the epithelium thickness [43]. |
CIN3 | Severe-grade lesions are characterized by severe dysplasia with high mitotic activity and loss of normal epithelial stratification. The lesions extend to the entire epithelial thickness. Similar to CIN2, the CIN3 lesions predispose to malignant processes [40]. |
Study | Design | Cervical Cancer Description | Samples | Results | Observations | Ref. |
---|---|---|---|---|---|---|
Investigation of circulating LP and antioxidants in cervical cancer patients. | Case-control study: 30 CIN patients, 44.2 ± 8.0 y.o., non-smokers, 30 healthy controls, 44.3 ± 8.38 y.o., non-smokers | Clinical classification: stages II and III | Hemol-ysate | SOD ↓ GPx ↓ GST ↓ GSH ↓ | The neutralization of lipid peroxides and sequestration by tumor cells could be the primary causes of antioxidant level decrease. | [85] |
Plasma | Vitamin C ↓ Vitamin E ↓ | |||||
Evaluating the level of oxidative stress in cervical cancer patients and the age-matched healthy controls. | Case-control institutional study: 100 patients, 28 healthy controls, 34.46 ± 5.82 y.o. | Clinical classification: FIGO stages I, II, III, and IV | Serum | MDA ↑ SOD ↑ GSH ↓ 8-OHdG ↑ | This imbalance between antioxidants and oxidants in cervical cancer significantly contributes to the pathogenesis and progression of the disease, being more pronounced in advanced stages. | [9] |
Comparison of antioxidant status in cervical cancer patients vs. healthy controls. | Case-control study: 35 patients, 35 healthy controls, 38–79 y.o. | FIGO I, II, III | Hemol-ysate | GPx ↓ SOD ↑ | Antioxidant status is altered in cervical cancer patients, but its link to carcinogenesis is unclear. GSH may predict treatment response. | [86] |
Plasma | MDA ~ | |||||
To assess antioxidant levels and biomarkers of oxidative stress in cervical cancer and compare these levels between patients and healthy women. | Case-control study: 120 patients with cervical cancer, 30 healthy controls, 25–65 y.o. | Cervical cancer stages: I, II, III, and IV | Serum | MDA ↑ NO ↑ | Increased MDA and NO indicate DNA damage. Vitamin C hypovitaminosis exacerbates the damaging processes, suggesting a significant negative impact on cellular health. | [87] |
Plasma | Vitamin C ↓ RBC-SOD ↓ | |||||
Observational pre- and post-treatment analysis of antioxidant levels in cervical cancer patients. | Case-control study: 30 patients, 48.8 ± 11.4 y.o., 30 heathy controls, 49.0 ± 13.4 y.o. | Cervical cancer stages: I, II, III | Plasma | GSH ↓ | Cervical cancer patients showed lower plasma and erythrocyte glutathione, and glutathione peroxidase activity compared to controls, indicating a weakened antioxidant defense system. | [88] |
Hemol-ysate | GSH ↓ GPx ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaziu-Todosia Anton, E.; Anton, G.-I.; Scripcariu, I.-S.; Dumitrașcu, I.; Scripcariu, D.V.; Balmus, I.-M.; Ionescu, C.; Visternicu, M.; Socolov, D.G. Oxidative Stress, Inflammation, and Antioxidant Strategies in Cervical Cancer—A Narrative Review. Int. J. Mol. Sci. 2025, 26, 4961. https://doi.org/10.3390/ijms26104961
Tomaziu-Todosia Anton E, Anton G-I, Scripcariu I-S, Dumitrașcu I, Scripcariu DV, Balmus I-M, Ionescu C, Visternicu M, Socolov DG. Oxidative Stress, Inflammation, and Antioxidant Strategies in Cervical Cancer—A Narrative Review. International Journal of Molecular Sciences. 2025; 26(10):4961. https://doi.org/10.3390/ijms26104961
Chicago/Turabian StyleTomaziu-Todosia Anton, Ecaterina, Gabriel-Ioan Anton, Ioana-Sadiye Scripcariu, Irina Dumitrașcu, Dragos Viorel Scripcariu, Ioana-Miruna Balmus, Cătălina Ionescu, Mălina Visternicu, and Demetra Gabriela Socolov. 2025. "Oxidative Stress, Inflammation, and Antioxidant Strategies in Cervical Cancer—A Narrative Review" International Journal of Molecular Sciences 26, no. 10: 4961. https://doi.org/10.3390/ijms26104961
APA StyleTomaziu-Todosia Anton, E., Anton, G.-I., Scripcariu, I.-S., Dumitrașcu, I., Scripcariu, D. V., Balmus, I.-M., Ionescu, C., Visternicu, M., & Socolov, D. G. (2025). Oxidative Stress, Inflammation, and Antioxidant Strategies in Cervical Cancer—A Narrative Review. International Journal of Molecular Sciences, 26(10), 4961. https://doi.org/10.3390/ijms26104961