Proteomic Analysis of Invasive Breast Cancer Cells Treated with CBD Reveals Proteins Associated with the Reversal of Their Epithelial-Mesenchymal Transition Induced by IL-1β
Abstract
:1. Introduction
2. Results
2.1. Differential Protein Expression
2.2. Pathway Enrichment and Gene Ontology Analyses of Differentially Regulated Proteins
2.3. Protein-Protein Interactions
3. Discussion
3.1. Differential Protein Expression Caused by IL-1β or CBD
3.2. Potential Crosstalk Points Between IL-1β and CBD Signaling
3.3. Protein-Protein Interaction Networks in the IL-1β and in CBD Up-Regulated Proteins
4. Materials and Methods
4.1. Reagents
4.2. Cell Culture
4.3. Cell Immunofluorescence
4.4. Western Blot Assay
4.5. Invasion Assay
4.6. Protein Isolation and Sample Preparation for Mass Spectrometry
4.7. Mass Spectrometry-Based Proteomic Analysis
4.8. MS-Data Analysis
4.9. Bioinformatic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBD | Cannabidiol |
EMT | Epithelial-Mesenchymal Transition |
MET | Mesenchymal-Epithelial Transition |
IL-1β | Interleukin 1 beta |
MS | Mass spectrometry |
MS/MS | Tandem mass spectrometry |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
References
- Ray, I.; Michael, A.; Meira, L.B.; Ellis, P.E. The Role of Cytokines in Epithelial–Mesenchymal Transition in Gynaecological Cancers: A Systematic Review. Cells 2023, 12, 416. [Google Scholar] [CrossRef] [PubMed]
- Guttilla Reed, I. Mechanism and Regulation of Epithelial-Mesenchymal Transition in Cancer. Cell Health Cytoskelet. 2015, 7, 155. [Google Scholar] [CrossRef]
- Perez-Yepez, E.A.; Ayala-Sumuano, J.-T.; Lezama, R.; Meza, I. A Novel β-Catenin Signaling Pathway Activated by IL-1β Leads to the Onset of Epithelial-Mesenchymal Transition in Breast Cancer Cells. Cancer Lett. 2014, 354, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Rodríguez, M.; Arévalo Romero, H.; Fuentes-Pananá, E.M.; Ayala-Sumuano, J.-T.; Meza, I. IL-1β Induces up-Regulation of BIRC3, a Gene Involved in Chemoresistance to Doxorubicin in Breast Cancer Cells. Cancer Lett. 2017, 390, 39–44. [Google Scholar] [CrossRef]
- Mendoza-Rodríguez, M.; Ayala-Sumuano, J.; García-Morales, L.; Zamudio-Meza, H.; Pérez-Yepez, E.; Meza, I. IL-1β Inflammatory Cytokine-Induced TP63 Isoform ∆NP63α Signaling Cascade Contributes to Cisplatin Resistance in Human Breast Cancer Cells. Int. J. Mol. Sci. 2019, 20, 270. [Google Scholar] [CrossRef]
- Jiménez-Garduño, A.M.; Mendoza-Rodríguez, M.G.; Urrutia-Cabrera, D.; Domínguez-Robles, M.C.; Pérez-Yépez, E.A.; Ayala-Sumuano, J.T.; Meza, I. IL-1β Induced Methylation of the Estrogen Receptor ERα Gene Correlates with EMT and Chemoresistance in Breast Cancer Cells. Biochem. Biophys. Res. Commun. 2017, 490, 780–785. [Google Scholar] [CrossRef] [PubMed]
- García-Morales, L.; Mendoza-Rodríguez, M.G.; Tapia Ramírez, J.; Meza, I. CBD Inhibits In Vivo Development of Human Breast Cancer Tumors. Int. J. Mol. Sci. 2023, 24, 13235. [Google Scholar] [CrossRef]
- García-Morales, L.; Castillo, A.M.; Tapia Ramírez, J.; Zamudio-Meza, H.; Domínguez-Robles, M.D.C.; Meza, I. CBD Reverts the Mesenchymal Invasive Phenotype of Breast Cancer Cells Induced by the Inflammatory Cytokine IL-1β. Int. J. Mol. Sci. 2020, 21, 2429. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K. Cannabidiol (CBD) in Cancer Management. Cancers 2022, 14, 885. [Google Scholar] [CrossRef]
- Abyadeh, M.; Gupta, V.; Liu, X.; Rossio, V.; Mirzaei, M.; Cornish, J.; Paulo, J.A.; Haynes, P.A. Proteome-Wide Profiling Using Sample Multiplexing of a Human Cell Line Treated with Cannabidiol (CBD) and Tetrahydrocannabinol (THC). Proteomes 2023, 11, 36. [Google Scholar] [CrossRef]
- Jo, M.J.; Kim, B.G.; Kim, W.Y.; Lee, D.H.; Yun, H.K.; Jeong, S.; Park, S.H.; Kim, B.R.; Kim, J.L.; Kim, D.Y.; et al. Cannabidiol Suppresses Angiogenesis and Stemness of Breast Cancer Cells by Downregulation of Hypoxia-inducible Factors-1α. Cancers 2021, 13, 5667. [Google Scholar] [CrossRef] [PubMed]
- Kosgodage, U.S.; Mould, R.; Henley, A.B.; Nunn, A.V.; Guy, G.W.; Thomas, E.L.; Inal, J.M.; Bell, J.D.; Lange, S. Cannabidiol (CBD) Is a Novel Inhibitor for Exosome and Microvesicle (EMV) Release in Cancer. Front. Pharmacol. 2018, 9, 889. [Google Scholar] [CrossRef] [PubMed]
- Ligresti, A.; Moriello, A.S.; Starowicz, K.; Matias, I.; Pisanti, S.; De Petrocellis, L.; Laezza, C.; Portella, G.; Bifulco, M.; Di Marzo, V. Antitumor Activity of Plant Cannabinoids with Emphasis on the Effect of Cannabidiol on Human Breast Carcinoma. J. Pharmacol. Exp. Ther. 2006, 318, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Alsherbiny, M.A.; Bhuyan, D.J.; Low, M.N.; Chang, D.; Li, C.G. Synergistic Interactions of Cannabidiol with Chemotherapeutic Drugs in Mcf7 Cells: Mode of Interaction and Proteomics Analysis of Mechanisms. Int. J. Mol. Sci. 2021, 22, 10103. [Google Scholar] [CrossRef]
- Kalvala, A.K.; Nimma, R.; Bagde, A.; Surapaneni, S.K.; Patel, N.; Arthur, P.; Sun, L.; Singh, R.; Kommineni, N.; Nathani, A.; et al. The Role of Cannabidiol and Tetrahydrocannabivarin to Overcome Doxorubicin Resistance in MDA-MB-231 Xenografts in Athymic Nude Mice. Biochimie 2023, 208, 19–30. [Google Scholar] [CrossRef]
- Fu, Z.; Zhao, P.-Y.; Yang, X.-P.; Li, H.; Hu, S.-D.; Xu, Y.-X.; Du, X.-H. Cannabidiol Regulates Apoptosis and Autophagy in Inflammation and Cancer: A Review. Front. Pharmacol. 2023, 14, 1094020. [Google Scholar] [CrossRef]
- Bimonte, S.; Palma, G.; Cascella, M.; Cuomo, A. Phytocannabinoids in Triple Negative Breast Cancer Treatment: Current Knowledge and Future Insights. Anticancer. Res. 2023, 43, 993–1000. [Google Scholar] [CrossRef]
- Tamada, O.; Niida, A.; Saito, A.; Tremmel, G.; Shimamura, T.; Yamaguchi, R.; Imoto, S.; Miyano, S. TCNG The Cancer Network Galaxy. Available online: https://tcng.hgc.jp/index.html (accessed on 22 August 2024).
- Gao, X.; Qin, S.; Wu, Y.; Chu, C.; Jiang, B.; Johnson, R.H.; Kuang, D.; Zhang, J.; Wang, X.; Mehta, A.; et al. Nuclear PFKP Promotes CXCR4-Dependent Infiltration by T Cell Acute Lymphoblastic Leukemia. J. Clin. Investig. 2021, 131, e143119. [Google Scholar] [CrossRef]
- Izdebska, M.; Grzanka, D.; Gagat, M.; Hałas-Wiśniewska, M.; Grzanka, A. Downregulation of Importin-9 Protects MCF-7 Cells against Apoptosis Induced by the Combination of Garlic-Derived Alliin and Paclitaxel. Oncol. Rep. 2016, 35, 3084–3093. [Google Scholar] [CrossRef]
- Morale, M.G.; Tamura, R.E.; Cintra, R.; Araújo, N.M.; Villa, L.L. TLR4 and SARM1 Modulate Survival and Chemoresistance in an HPV-Positive Cervical Cancer Cell Line. Sci. Rep. 2022, 12, 6714. [Google Scholar] [CrossRef]
- Pongor, L.; Kormos, M.; Hatzis, C.; Pusztai, L.; Szabó, A.; Gyorffy, B. A Genome-Wide Approach to Link Genotype to Clinical Outcome by Utilizing next Generation Sequencing and Gene Chip Data of 6,697 Breast Cancer Patients. Genome Med. 2015, 7, 104. [Google Scholar] [CrossRef] [PubMed]
- Mamoor, S. TSNAXIP1 is differentially expressed in metastasis to lymph nodes in human breast cancer. OSF Prepr. 2021. [Google Scholar] [CrossRef]
- Zhao, Z.; Cui, X.; Guan, G.; Liu, Y.; Liu, X.; Chen, Z.; Ning, S.; Luo, F. Bioinformatics Analysis Reveals the Clinical Significance of GIPC2/GPD1L for Colorectal Cancer Using TCGA Database. Transl. Cancer Res. 2022, 11, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, J.; Liu, S.; Tian, S.; Yuan, H.; Li, S. GIPC2 Is a Tumor Suppressor Gene for Acute Myeloid Leukemia and Induces Apoptosis of Leukemia Cells by Regulating the PI3K/AKT Pathway. Epigenomics 2023, 15, 369–383. [Google Scholar] [CrossRef]
- Ding, J.; Ji, X.; Liu, L.; Chen, D.-Z.; Luo, N.; Yu, X.-T.; Guo, F. A Prognostic and Immunological Analysis of 7B-Containing Kelch Structural Domain (KLHDC7B) in Pan-Cancer: A Potential Target for Immunotherapy and Survival. J. Cancer Res. Clin. Oncol. 2023, 149, 7857–7876. [Google Scholar] [CrossRef]
- Tang, S.; Liu, W.; Yong, L.; Liu, D.; Lin, X.; Huang, Y.; Wang, H.; Cai, F. Reduced Expression of KRT17 Predicts Poor Prognosis in HER2high Breast Cancer. Biomolecules 2022, 12, 1183. [Google Scholar] [CrossRef]
- Traub, F.; Jost, M.; Hess, R.; Schorn, K.; Menzel, C.; Budde, P.; Schulz-Knappe, P.; Lamping, N.; Pich, A.; Kreipe, H.; et al. Peptidomic Analysis of Breast Cancer Reveals a Putative Surrogate Marker for Estrogen Receptor-Negative Carcinomas. Lab. Investig. 2006, 86, 246–253. [Google Scholar] [CrossRef]
- Ioannou, K.; Samara, P.; Livaniou, E.; Derhovanessian, E.; Tsitsilonis, O.E. Prothymosin Alpha: A Ubiquitous Polypeptide with Potential Use in Cancer Diagnosis and Therapy. Cancer Immunol. Immunother. 2012, 61, 599–614. [Google Scholar] [CrossRef]
- Thul, P.J.; Lindskog, C. The Human Protein Atlas: A Spatial Map of the Human Proteome. Protein Sci. 2018, 27, 233–244. [Google Scholar] [CrossRef]
- Tian, R.; Tian, J.; Zuo, X.; Ren, S.; Zhang, H.; Liu, H.; Wang, Z.; Cui, Y.; Niu, R.; Zhang, F. RACK1 Facilitates Breast Cancer Progression by Competitively Inhibiting the Binding of β-Catenin to PSMD2 and Enhancing the Stability of β-Catenin. Cell Death Dis. 2023, 14, 685. [Google Scholar] [CrossRef]
- Buoso, E.; Masi, M.; Long, A.; Chiappini, C.; Travelli, C.; Govoni, S.; Racchi, M. Ribosomes as a Nexus between Translation and Cancer Progression: Focus on Ribosomal Receptor for Activated C Kinase 1 (RACK1) in Breast Cancer. Br. J. Pharmacol. 2022, 179, 2813–2828. [Google Scholar] [CrossRef] [PubMed]
- Kiehl, S.; Herkt, S.C.; Richter, A.M.; Fuhrmann, L.; El-Nikhely, N.; Seeger, W.; Savai, R.; Dammann, R.H. ABCB4 Is Frequently Epigenetically Silenced in Human Cancers and Inhibits Tumor Growth. Sci. Rep. 2014, 4, 6899. [Google Scholar] [CrossRef]
- Shimada, B.K.; Swanson, S.; Toh, P.; Seale, L.A. Metabolism of Selenium, Selenocysteine, and Selenoproteins in Ferroptosis in Solid Tumor Cancers. Biomolecules 2022, 12, 1581. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, I.A.; Vermeulen, J.F.; Ercan, C.; Houthuijzen, J.M.; Saig, F.A.; Vlug, E.J.; Van Der Wall, E.; Van Diest, P.J.; Vooijs, M.; Derksen, P.W.B. FER Kinase Promotes Breast Cancer Metastasis by Regulating α 6—And β 1 -Integrin-Dependent Cell Adhesion and Anoikis Resistance. Oncogene 2013, 32, 5582–5592. [Google Scholar] [CrossRef]
- Meng, D.; Yang, Q.; Melick, C.H.; Park, B.C.; Hsieh, T.; Curukovic, A.; Jeong, M.; Zhang, J.; James, N.G.; Jewell, J.L. ArfGAP1 Inhibits MTORC1 Lysosomal Localization and Activation. EMBO J. 2021, 40, e106412. [Google Scholar] [CrossRef]
- Kellogg, M.K.; Tikhonova, E.B.; Karamyshev, A.L. Signal Recognition Particle in Human Diseases. Front. Genet. 2022, 13, 898083. [Google Scholar] [CrossRef]
- Geng, N.; Zhang, W.; Li, Y.; Li, F. Aspartyl Aminopeptidase Suppresses Proliferation, Invasion, and Stemness of Breast Cancer Cells via Targeting CD44. Anat. Rec. 2019, 302, 2178–2185. [Google Scholar] [CrossRef]
- Tabbarah, S.; Tavares, E.; Charish, J.; Vincent, A.; Paterson, A.; Di Scipio, M.; Yin, Y.; Mendoza-Londono, R.; Maynes, J.; Heon, E.; et al. COG5 Variants Lead to Complex Early Onset Retinal Degeneration, Upregulation of PERK and DNA Damage. Sci. Rep. 2020, 10, 21269. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Pongor, L.; Tang, W.; Das, S.; Muys, B.R.; Jones, M.F.; Lazar, S.B.; Dangelmaier, E.A.; Hartford, C.C.R.; Grammatikakis, I.; et al. A Small Protein Encoded by a Putative Lncrna Regulates Apoptosis and Tumorigenicity in Human Colorectal Cancer Cells. Elife 2020, 9, e53734. [Google Scholar] [CrossRef]
- Luo, J.; Yang, T.; Wu, J.; Lai, H.; Zou, L.; Chen, W.; Zhou, X.; Lv, D.; Cen, S.; Long, Z.; et al. Exosomal PGAM1 Promotes Prostate Cancer Angiogenesis and Metastasis by Interacting with ACTG1. Cell Death Dis. 2023, 14, 502. [Google Scholar] [CrossRef]
- Tang, Y.; Peng, X.; Huang, X.; Li, J. Actin Gamma 1 Is a Critical Regulator of Pancreatic Ductal Adenocarcinoma. Saudi J. Gastroenterol. 2022, 28, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xiao, M.; Zhang, J.; Chang, F. Micro RNA-640 Targeting SLIT1 Enhances Glioma Radiosensitivity by Restraining the Activation of Wnt/β-Catenin Signaling Pathway. Br. J. Biomed. Sci. 2022, 79, 10067. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Fernaud, J.R.; Ruengeler, E.; Casazza, A.; Neilson, L.J.; Pulleine, E.; Santi, A.; Ismail, S.; Lilla, S.; Dhayade, S.; MacPherson, I.R.; et al. Secreted CLIC3 Drives Cancer Progression through Its Glutathione-Dependent Oxidoreductase Activity. Nat. Commun. 2017, 8, 14206. [Google Scholar] [CrossRef] [PubMed]
- Bucurica, S.; Gaman, L.; Jinga, M.; Popa, A.A.; Ionita-Radu, F. Golgi Apparatus Target Proteins in Gastroenterological Cancers: A Comprehensive Review of GOLPH3 and GOLGA Proteins. Cells 2023, 12, 1823. [Google Scholar] [CrossRef]
- Chang, S.-H.; Hong, S.-H.; Jiang, H.-L.; Minai-Tehrani, A.; Yu, K.-N.; Lee, J.-H.; Kim, J.-E.; Shin, J.-Y.; Kang, B.; Park, S.; et al. GOLGA2/GM130, Cis-Golgi Matrix Protein, Is a Novel Target of Anticancer Gene Therapy. Mol. Ther. 2012, 20, 2052–2063. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Shen, S.; Dai, D.; Cheng, S.; Dong, X.; Sun, L.; Guo, X. Pan-Cancer Analysis of Alternative Splicing Regulator Heterogeneous Nuclear Ribonucleoproteins (HnRNPs) Family and Their Prognostic Potential. J. Cell Mol. Med. 2020, 24, 11111–11119. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Thiele, C.J.; Li, Z. Collapsin Response Mediator Proteins: Potential Diagnostic and Prognostic Biomarkers in Cancers (Review). Oncol. Lett. 2014, 7, 1333–1340. [Google Scholar] [CrossRef]
- Consortium, T.U. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2022, 51, D523–D531. [Google Scholar] [CrossRef]
- Seltzer, E.S.; Watters, A.K.; MacKenzie, D., Jr.; Granat, L.M. Cannabidiol (CBD) as a Promising Anti-Cancer Drug. Cancers 2020, 12, 3203. [Google Scholar] [CrossRef]
- Gorski, J.J.; James, C.R.; Quinn, J.E.; Stewart, G.E.; Staunton, K.C.; Buckley, N.E.; McDyer, F.A.; Kennedy, R.D.; Wilson, R.H.; Mullan, P.B.; et al. BRCA1 Transcriptionally Regulates Genes Associated with the Basal-like Phenotype in Breast Cancer. Breast Cancer Res. Treat. 2010, 122, 721–731. [Google Scholar] [CrossRef]
- Martini, P.G.V.; Delage-Mourroux, R.; Kraichely, D.M.; Katzenellenbogen, B.S. Prothymosin Alpha Selectively Enhances Estrogen Receptor Transcriptional Activity by Interacting with a Repressor of Estrogen Receptor Activity. Mol. Cell Biol. 2000, 20, 6224–6232. [Google Scholar] [CrossRef] [PubMed]
- Ikebuchi, Y.; Takada, T.; Ito, K.; Yoshikado, T.; Anzai, N.; Kanai, Y.; Suzuki, H. Receptor for Activated C-Kinase 1 Regulates the Cellular Localization and Function of ABCB4. Hepatol. Res. 2009, 39, 1091–1107. [Google Scholar] [CrossRef] [PubMed]
- Martín-Pardillos, A.; Cajal, S.R.Y. Characterization of Kelch Domain-Containing Protein 7B in Breast Tumours and Breast Cancer Cell Lines. Oncol. Lett. 2019, 18, 2853–2860. [Google Scholar] [CrossRef]
- Yahiro, K.; Ogura, K.; Tsutsuki, H.; Iyoda, S.; Ohnishi, M.; Moss, J. A Novel Endoplasmic Stress Mediator, Kelch Domain Containing 7B (KLHDC7B), Increased Harakiri (HRK) in the SubAB-Induced Apoptosis Signaling Pathway. Cell Death Discov. 2021, 7, 360. [Google Scholar] [CrossRef]
- de la Harpe, A.; Beukes, N.; Frost, C.L. CBD Activation of TRPV1 Induces Oxidative Signaling and Subsequent ER Stress in Breast Cancer Cell Lines. Biotechnol. Appl. Biochem. 2022, 69, 420–430. [Google Scholar] [CrossRef]
- Mould, R.R.; Botchway, S.W.; Parkinson, J.R.C.; Thomas, E.L.; Guy, G.W.; Bell, J.D.; Nunn, A.V.W. Cannabidiol Modulates Mitochondrial Redox and Dynamics in MCF7 Cancer Cells: A Study Using Fluorescence Lifetime Imaging Microscopy of NAD(P)H. Front. Mol. Biosci. 2021, 8, 630107. [Google Scholar] [CrossRef]
- Elazezy, M.; Schwentesius, S.; Stegat, L.; Wikman, H.; Werner, S.; Mansour, W.Y.; Failla, A.V.; Peine, S.; Müller, V.; Thiery, J.P.; et al. Emerging Insights into Keratin 16 Expression during Metastatic Progression of Breast Cancer. Cancers 2021, 13, 3869. [Google Scholar] [CrossRef]
- Joosse, S.A.; Hannemann, J.; Spoẗter, J.; Bauche, A.; Andreas, A.; Muller, V.; Pantel, K. Changes in Keratin Expression during Metastatic Progression of Breast Cancer: Impact on the Detection of Circulating Tumor Cells. Clin. Cancer Res. 2012, 18, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Son, D.J.; Jung, Y.Y.; Seo, Y.S.; Park, H.; Lee, D.H.; Kim, S.; Roh, Y.-S.; Han, S.B.; Yoon, D.Y.; Hong, J.T. Interleukin-32α Inhibits Endothelial Inflammation, Vascular Smooth Muscle Cell Activation, and Atherosclerosis by Upregulating Timp3 and Reck through Suppressing MicroRNA-205 Biogenesis. Theranostics 2017, 7, 2186–2203. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, Y.; Huang, L.; Chi, Y.; Meng, L. MiR-205 Suppressed the Malignant Behaviors of Breast Cancer Cells by Targeting CLDN11 via Modulation of the Epithelial-to-Mesenchymal Transition. Aging 2021, 13, 13073–13086. [Google Scholar] [CrossRef]
- Ouadid-Ahidouch, H.; Ahidouch, A.; Pardo, L.A. Kv10.1 K+ Channel: From Physiology to Cancer. Pflug. Arch. 2016, 468, 751–762. [Google Scholar] [CrossRef]
- Sun, X.; Sun, B.; Cui, M.; Zhou, Z. HERC4 Exerts an Anti-Tumor Role through Destabilizing the Oncoprotein Smo. Biochem. Biophys. Res. Commun. 2019, 513, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shi, R.; Wei, M.; Zheng, W.; Zhou, J.; Ma, W. The Expression and Clinical Significance of HERC4 in Breast Cancer. Cancer Cell Int. 2013, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.-S.; Bae, J.A.; Kim, K.Y.; Kim, S.J.; Sun, E.G.; Lee, K.H.; Kim, N.; Kang, H.; Seo, Y.-W.; Kim, H.; et al. MYO1D Binds with Kinase Domain of the EGFR Family to Anchor Them to Plasma Membrane before Their Activation and Contributes Carcinogenesis. Oncogene 2019, 38, 7416–7432. [Google Scholar] [CrossRef] [PubMed]
- Honda, C.K.; Kurozumi, S.; Fujii, T.; Pourquier, D.; Khellaf, L.; Boissiere, F.; Horiguchi, J.; Oyama, T.; Shirabe, K.; Colinge, J.; et al. Cancer-Associated Fibroblast Spatial Heterogeneity and EMILIN1 Expression in the Tumor Microenvironment Modulate TGF-β Activity and CD8+ T-Cell Infiltration in Breast Cancer. Theranostics 2024, 14, 1873–1885. [Google Scholar] [CrossRef]
- Favero, A.; Segatto, I.; Capuano, A.; Mattevi, M.C.; Rampioni Vinciguerra, G.L.; Musco, L.; D’Andrea, S.; Dall’Acqua, A.; Gava, C.; Perin, T.; et al. Loss of the Extracellular Matrix Glycoprotein EMILIN1 Accelerates Δ16HER2-Driven Breast Cancer Initiation in Mice. NPJ Breast Cancer 2024, 10, 5. [Google Scholar] [CrossRef]
- Huang, J.; Zhen, W.; Ma, X.; Ge, S.; Ma, L. MiR-301b-3p Targets and Regulates EBF3 to Impact the Stem-like Phenotype of Breast Cancer Cells through Glycolysis. J. Clin. Biochem. Nutr. 2025, 76, 23–131. [Google Scholar] [CrossRef]
- Cohen, E.; Johnson, C.N.; Wasikowski, R.; Billi, A.C.; Tsoi, L.C.; Kahlenberg, J.M.; Gudjonsson, J.E.; Coulombe, P.A. Significance of Stress Keratin Expression in Normal and Diseased Epithelia. iScience 2024, 27, 108805. [Google Scholar] [CrossRef]
- Buckley, N.E.; Nic An tSaoir, C.B.; Blayney, J.K.; Oram, L.C.; Crawford, N.T.; D’Costa, Z.C.; Quinn, J.E.; Kennedy, R.D.; Harkin, D.P.; Mullan, P.B. BRCA1 Is a Key Regulator of Breast Differentiation through Activation of Notch Signalling with Implications for Anti-Endocrine Treatment of Breast Cancers. Nucleic Acids Res. 2013, 41, 8601–8614. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Coene, E.D.; Gadelha, C.; White, N.; Malhas, A.; Thomas, B.; Shaw, M.; Vaux, D.J. A Novel Role for BRCA1 in Regulating Breast Cancer Cell Spreading and Motility. J. Cell Biol. 2011, 192, 497–512. [Google Scholar] [CrossRef]
- Krishnan, R.; Patel, P.S.; Hakem, R. BRCA1 and Metastasis: Outcome of Defective DNA Repair. Cancers 2021, 14, 108. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, C.-X.; Gao, Y. Moesin Regulates the Motility of Oral Cancer Cells via MT1-MMP and E-Cadherin/P120-Catenin Adhesion Complex. Oral. Oncol. 2015, 51, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Liau, J.Y.; Lu, Y.S.; Chen, J.W.; Yao, Y.T.; Lien, H.C. Differential Expression of Moesin in Breast Cancers and Its Implication in Epithelial-Mesenchymal Transition. Histopathology 2012, 61, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Klopfleisch, R.; Klose, P.; Weise, C.; Bondzio, A.; Multhaup, G.; Einspanier, R.; Gruber, A.D. Proteome of Metastatic Canine Mammary Carcinomas: Similarities to and Differences from Human Breast Cancer. J. Proteome Res. 2010, 9, 6380–6391. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.-J.; Liu, X.-X.; Shen, Y.-W.; Gong, Y.-T.; Chen, Y.-L.; Lin, J.; Lu, D.; Zhang, L.-J.; Chen, H.-Z.; Jin, Y.; et al. TRIM4 Enhances Small-Molecule-Induced Neddylated-Degradation of CORO1A for Triple Negative Breast Cancer Therapy. Theranostics 2024, 14, 7023–7041. [Google Scholar] [CrossRef]
- Bhakat, K.K.; Ray, S. The FAcilitates Chromatin Transcription (FACT) Complex: Its Roles in DNA Repair and Implications for Cancer Therapy. DNA Repair. 2022, 109, 103246. [Google Scholar] [CrossRef]
- Shen, J.; Yang, C.; Zhang, M.S.; Chin, D.W.-C.; Chan, F.-F.; Law, C.-T.; Wang, G.; Cheng, C.L.-H.; Chen, M.; Wan, R.T.-C.; et al. Histone Chaperone FACT Complex Coordinates with HIF to Mediate an Expeditious Transcription Program to Adapt to Poorly Oxygenated Cancers. Cell Rep. 2022, 38, 110304. [Google Scholar] [CrossRef]
- Keller, D.M.; Zeng, X.; Wang, Y.; Zhang, Q.H.; Kapoor, M.; Shu, H.; Goodman, R.; Lozano, G.; Zhao, Y.; Lu, H. A DNA Damage–Induced P53 Serine 392 Kinase Complex Contains CK2, HSpt16, and SSRP1. Mol. Cell 2001, 7, 283–292. [Google Scholar] [CrossRef]
- He, J.; Xu, T.; Zhao, F.; Guo, J.; Hu, Q. SETD2-H3K36ME3: An Important Bridge between the Environment and Tumors. Front. Genet. 2023, 14, 1204463. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, W.Q.; Fang, C.; Yang, X.; Ji, M. Histone Methyltransferase SETD2: A Potential Tumor Suppressor in Solid Cancers. J. Cancer 2020, 11, 3349–3356. [Google Scholar] [CrossRef] [PubMed]
- Al Sarakbi, W.; Sasi, W.; Jiang, W.G.; Roberts, T.; Newbold, R.F.; Mokbel, K. The MRNA Expression of SETD2 in Human Breast Cancer: Correlation with Clinico-Pathological Parameters. BMC Cancer 2009, 9, 290. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Han, Z.; Wang, X.; Zheng, X.; Wang, S.; Cui, Y. H2B Gene Family: A Prognostic Biomarker and Correlates with Immune Infiltration in Glioma. Front. Oncol. 2022, 12, 966817. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Bam, M.; Nagarkatti, P.S.; Nagarkatti, M. Cannabidiol Regulates Gene Expression in Encephalitogenic T Cells Using Histone Methylation and Noncoding RNA during Experimental Autoimmune Encephalomyelitis. Sci. Rep. 2019, 9, 15780. [Google Scholar] [CrossRef]
- Ortega-Lozano, A.J.; Jiménez-Uribe, A.P.; Aranda-Rivera, A.K.; Gómez-Caudillo, L.; Ríos-Castro, E.; Tapia, E.; Bellido, B.; Aparicio-Trejo, O.E.; Sánchez-Lozada, L.G.; Pedraza-Chaverri, J. Expression Profiles of Kidney Mitochondrial Proteome during the Progression of the Unilateral Ureteral Obstruction: Focus on Energy Metabolism Adaptions. Metabolites 2022, 12, 936. [Google Scholar] [CrossRef]
- Ríos-Castro, E.; Souza, G.H.M.F.; Delgadillo-Álvarez, D.M.; Ramírez-Reyes, L.; Torres-Huerta, A.L.; Velasco-Suárez, A.; Cruz-Cruz, C.; Hernández-Hernández, J.M.; Tapia-Ramírez, J. Quantitative Proteomic Analysis of MARC-145 Cells Infected with a Mexican Porcine Reproductive and Respiratory Syndrome Virus Strain Using a Label-Free Based DIA Approach. J. Am. Soc. Mass. Spectrom. 2020, 31, 1302–1312. [Google Scholar] [CrossRef]
- Li, G.-Z.; Vissers, J.P.C.; Silva, J.C.; Golick, D.; Gorenstein, M.V.; Geromanos, S.J. Database Searching and Accounting of Multiplexed Precursor and Product Ion Spectra from the Data Independent Analysis of Simple and Complex Peptide Mixtures. Proteomics 2009, 9, 1696–1719. [Google Scholar] [CrossRef]
- Geromanos, S.J.; Hughes, C.; Golick, D.; Ciavarini, S.; Gorenstein, M.V.; Richardson, K.; Hoyes, J.B.; Vissers, J.P.C.; Langridge, J.I. Simulating and Validating Proteomics Data and Search Results. Proteomics 2011, 11, 1189–1211. [Google Scholar] [CrossRef]
- Valentine, S.J.; Ewing, M.A.; Dilger, J.M.; Glover, M.S.; Geromanos, S.; Hughes, C.; Clemmer, D.E. Using Ion Mobility Data to Improve Peptide Identification: Intrinsic Amino Acid Size Parameters. J. Proteome Res. 2011, 10, 2318–2329. [Google Scholar] [CrossRef]
- Käll, L.; Storey, J.D.; MacCoss, M.J.; Noble, W.S. Assigning Significance to Peptides Identified by Tandem Mass Spectrometry Using Decoy Databases. J. Proteome Res. 2008, 7, 29–34. [Google Scholar] [CrossRef]
- Elias, J.E.; Gygi, S.P. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. Methods Mol. Biol. 2010, 604, 55–71. [Google Scholar] [CrossRef]
- Kuharev, J.; Navarro, P.; Distler, U.; Jahn, O.; Tenzer, S. In-Depth Evaluation of Software Tools for Data-Independent Acquisition Based Label-Free Quantification. Proteomics 2015, 15, 3140–3151. [Google Scholar] [CrossRef] [PubMed]
- Reis-de-Oliveira, G.; Carregari, V.C.; de Sousa, G.R.d.R.; Martins-de-Souza, D. OmicScope Unravels Systems-Level Insights from Quantitative Proteomics Data. Nat. Commun. 2024, 15, 6510. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A Free Online Platform for Data Visualization and Graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bandla, C.; Kundu, D.J.; Kamatchinathan, S.; Bai, J.; Hewapathirana, S.; John, N.S.; Prakash, A.; Walzer, M.; Wang, S.; et al. The PRIDE Database at 20 Years: 2025 Update. Nucleic Acids Res. 2025, 53, D543–D553. [Google Scholar] [CrossRef]
Uniprot ID | Protein by Gene ID | Description | Role in Cancer Cells |
---|---|---|---|
Present only in malignant 6D cells | |||
Q96SE7 | ZNF347 | Zinc finger protein 347 | Predictor of lymph node metastasis [18] |
Q96P70 | IPO9 | Importin-9 | Cancer promoter [19,20] |
Q6SZW1 | SARM1 | NAD(+) hydrolase SARM1 | Protein involved in maintaining cell viability and proliferation [21] |
Q5JR59 | MTUS2 | Microtubule-associated tumor suppressor candidate 2 | Oncogene candidate [22] |
B4DXD0 | TSNAXIP1 | Translin-associated factor X interacting protein 1 | Metastasis promoter [23] |
Present in control MCF-7 cells but absent in malignant 6D cells | |||
Q8TF65 | GIPC2 | PDZ domain-containing protein GIPC2 | Favorable prognostic marker [24,25] |
A0A3B3ISF6 | KLHDC7B | Kelch domain containing 7B | Favorable prognostic marker [26] |
Uniprot ID | Protein by Gene ID | Description | Role in Cancer Cells |
---|---|---|---|
Present only in 6D cells treated with CBD | |||
Q04695 | KRT17 | Keratin_type I cytoskeletal 17 | Its decreased expression correlates with poor prognosis [27] |
A0A3B3ISF6 | KLHDC7B | Kelch domain containing 7B | Favorable prognostic marker [26] |
B8ZZA1 | PTMA | Prothymosin alpha | Prognostic marker [28,29] |
Q86XF0 | DHFR2 | Dihydrofolate reductase 2_ mitochondrial | Favorable prognostic marker [30] |
D6R9L0 | RACK1 | Small ribosomal subunit protein RACK1 | Enhances β-catenin stability [31,32] |
P21439 | ABCB4 | Phosphatidylcholine translocator ABCB4 | Its overexpression suppresses colony formation and cell proliferation [33] |
H7C1N7 | SCLY | Selenocysteine lyase | Control of selenoprotein synthesis [34] |
P16591 | FER | Tyrosine-protein kinase FER | Its expression correlates with prognosis in breast cancer patients [35] |
E5RHC5 | ARFGAP1 | ADP ribosylation factor GTPase activating protein 1 | Inhibits mTORC1 activation [36] |
A0A087WYR0 | SRP19 | Signal recognition particle 19 kDa protein | Regulates p53 activity [37] |
B9ZVU2 | DNPEP | Aspartyl aminopeptidase | Its overexpression suppresses breast cancer cell proliferation and invasion [38] |
Q9UP83 | COG5 | Conserved oligomeric Golgi complex subunit 5 | Mitigates endoplasmic reticulum stress [39] |
Absent in 6D cells treated with CBD | |||
A0A5F9ZHY7 | BRI3BP | BRI3 binding protein | Decrease apoptosis upon ER stress [40] |
K7EM38 | ACTG1 | Actin_cytoplasmic 2 | Tumor promoter [41,42] |
O75093 | SLIT1 | Slit homolog 1 protein | Promotes EMT [43] |
O95833 | CLIC3 | Chloride intracellular channel protein 3 | Promotes EMT [44] |
A0A6Q8KRG2 | GOLGA2 | Golgi subfamily A member 2 | Tumor promoter [45,46] |
Q1KMD3 | HNRNPUL2 | Heterogeneous nuclear ribonucleoprotein U-like protein 2 | Promotes EMT [47] |
Q14194-2 | CRMP1 | Isoform LCRMP-1 of Dihydropyrimidinase-related protein 1 | Promotes EMT [48] |
Accession | Protein by Gen ID | Description | Fold Change (6D/MCF-7) | log2FC | Anova (p) |
---|---|---|---|---|---|
Up-regulated in malignant 6D cells | |||||
P08779 | KRT16 | Keratin_type I cytoskeletal 16 | 198.693 | 7.634 | 0.001 |
P23468 | PTPRD | Receptor-type tyrosine-protein phosphatase delta | 117.515 | 6.877 | 0.001 |
P25815 | S100P | Protein S100-P | 96.445 | 6.592 | 0.026 |
Q5VT52 | RPRD2 | Regulation of nuclear pre-mRNA domain-containing protein 2 | 88.304 | 6.464 | 0.007 |
A0A6Q8KRG2 | GOLGA2 | Golgin subfamily A member 2 | 63.978 | 6.000 | 0.001 |
B7ZAA0 | PMS1 | PMS1 homolog 1_mismatch repair system component | 54.681 | 5.773 | 0.008 |
P20807 | CAPN3 | Calpain-3 | 46.497 | 5.539 | <0.001 |
H0Y704 | ZNF185 | Zinc finger protein 185 with LIM domain | 42.648 | 5.414 | 0.001 |
F5H7P7 | PPWD1 | Peptidylprolyl isomerase | 39.739 | 5.312 | 0.014 |
Q8WWI1 | LMO7 | LIM domain only protein 7 | 36.108 | 5.174 | 0.001 |
Down-regulated in malignant 6D cells | |||||
H3BP20 | HEXA | Beta-hexosaminidase | 0.04431 | −4.496 | 0.024 |
A0A0A0MSS8 | AKR1C3 | Aldo-keto reductase family 1 member C3 | 0.04954 | −4.335 | 0.003 |
A0A087X072 | RECQL4 | DNA helicase | 0.06199 | −4.013 | 0.013 |
O96013 | PAK4 | Serine/threonine-protein kinase PAK 4 | 0.09157 | −3.449 | 0.006 |
H0YGJ7 | EIF3J | Eukaryotic translation initiation factor 3 subunit J | 0.11865 | −3.075 | 0.005 |
P02794 | FTH1 | Ferritin heavy chain | 0.16381 | −2.610 | 0.031 |
P07951 | TPM2 | Tropomyosin beta chain | 0.16528 | −2.597 | 0.033 |
H0Y626 | OX = 9606 | B box-type domain-containing protein | 0.17925 | −2.480 | 0.001 |
Q8NCM2 | KCNH5 | Potassium voltage-gated channel subfamily H member 5 | 0.18135 | −2.463 | 0.040 |
Q9H3K2 | GHITM | Growth hormone-inducible transmembrane protein | 0.19457 | −2.362 | <0.001 |
Accession | Protein by Gen ID | Description | Fold Change (6D+CBD/6D) | log2FC | Anova (p) |
---|---|---|---|---|---|
Up-regulated in 6D cells by treatment with CBD | |||||
F8VQD9 | ATG101 | Autophagy-related protein 101 (Fragment) | 897.326 | 9.809 | 0.0005 |
A2PYH4 | HFM1 | Probable ATP-dependent DNA helicase HFM1 | 146.677 | 7.196 | 0.005 |
Q5JR59 | MTUS2 | Microtubule-associated tumor suppressor candidate 2 | 44.111 | 5.463 | 0.03 |
A0A7P0T9G4 | ERCC6 | ERCC excision repair 6_ chromatin remodeling factor | 26.417 | 4.723 | 0.002 |
Q02386 | ZNF45 | Zinc finger protein 45 | 25.611 | 4.678 | 0.031 |
A0A1C7CYW7 | TTC34 | Tetratricopeptide repeat domain 34 | 23.524 | 4.556 | 0.004 |
Q92833 | JARID2 | Protein Jumonji | 22.564 | 4.495 | 0.023 |
P54750 | PDE1A | Dual specificity calcium/calmodulin-dependent 3′_5′-cyclic nucleotide phosphodiesterase 1A | 21.560 | 4.430 | 0.0002 |
Q12901 | ZNF155 | Zinc finger protein 155 | 17.148 | 4.100 | 0.018 |
Q12879 | GRIN2A | Glutamate receptor ionotropic_ NMDA 2A | 16.056 | 4.005 | 0.0002 |
Down-regulated in 6D cells by treatment with CBD | |||||
Q9BXL7 | CARD11 | Caspase recruitment domain-containing protein 11 | 1.3 × 10−5 | −16.27 | 7.8 × 10−6 |
P08779 | KRT16 | Keratin_type I cytoskeletal 16 | 1.9 × 10−2 | −5.69 | 2.1 × 10−3 |
Q5VT52 | RPRD2 | Regulation of nuclear pre-mRNA domain-containing protein 2 | 6.7 × 10−2 | −3.89 | 2.2 × 10−2 |
H0YKN8 | TLE3 | TLE family member 3_transcriptional corepressor | 9.2 × 10−2 | −3.44 | 1.1 × 10−3 |
Q9GZR1 | SENP6 | Sentrin-specific protease 6 | 9.7 × 10−2 | −3.36 | 3.2 × 10−3 |
E9PNM1 | FDFT1 | Squalene synthase | 1.0 × 10−1 | −3.31 | 4.1 × 10−2 |
Q8WZ60 | KLHL6 | Kelch-like protein 6 | 1.2 × 10−1 | −3.11 | 4.4 × 10−2 |
P98164 | LRP2 | Low-density lipoprotein receptor-related protein 2 | 1.3 × 10−1 | −2.99 | 4.6 × 10−3 |
Q53EZ4 | CEP55 | Centrosomal protein of 55 kDa | 1.3 × 10−1 | −2.93 | 2.1 × 10−2 |
P41594 | GRM5 | Metabotropic glutamate receptor 5 | 1.4 × 10−1 | −2.87 | 3.8 × 10−2 |
Uniprot ID | Protein by Gene ID | Description | log2FC 6D+CBD vs. 6D Cells |
---|---|---|---|
Proteins up-regulated in 6D cells and down-regulated by CBD | |||
P08779 | KRT16 | Keratin_type I cytoskeletal 16 | −5.693 ★ |
Q5VT52 | RPRD2 | Regulation of nuclear pre-mRNA domain-containing protein 2 | −3.890 ★ |
H0YKN8 | TLE3 | TLE family member 3_transcriptional corepressor | −3.440 |
Q9GZR1 | SENP6 | Sentrin-specific protease 6 | −3.360 |
P98164 | LRP2 | Low-density lipoprotein receptor-related protein 2 | −2.985 |
Q4VX76 | SYTL3 | Synaptotagmin-like protein 3 | −1.632 |
P02545 | LMNA | Prelamin-A/C | −1.590 |
P06702 | S100A9 | Protein S100-A9 | −1.577 |
Q13509 | TUBB3 | Tubulin beta-3 chain | −1.573 |
O15455 | TLR3 | Toll-like receptor 3 | −1.441 |
Q8NAT2 | TDRD5 | Tudor domain-containing protein 5 | −1.434 |
Q562F6 | SGO2 | Shugoshin 2 | −1.353 |
Q8IYB4 | PEX5L | PEX5-related protein | −1.165 |
E9PDI4 | LAD1 | Ladinin-1 | −1.130 |
P05109 | S100A8 | Protein S100-A8 | −1.124 |
Q14149 | MORC3 | MORC family CW-type zinc finger protein 3 | −1.088 |
O14795 | UNC13B | Protein unc-13 homolog B | −1.076 |
Proteins down-regulated in 6D cells and up-regulated by CBD | |||
Q8NCM2 | KCNH5 | Potassium voltage-gated channel subfamily H member 5 | 2.887 |
Q5GLZ8 | HERC4 | Probable E3 ubiquitin-protein ligase HERC4 | 1.887 |
O94832 | MYO1D | Unconventional myosin-Id | 1.809 |
Q9Y6C2 | EMILIN1 | EMILIN-1 | 1.469 |
Q9H4W6 | EBF3 | Transcription factor COE3 | 1.165 |
Protein induced in 6D cells and repressed by CBD | |||
A0A6Q8KRG2 | GOLGA2 * | Golgi subfamily A member 2 | NA |
Protein repressed by IL-1β and induced by CBD | |||
A0A3B3ISF6 | KLHDC7B ‡ | Kelch domain containing 7B | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Morales, L.; Ríos-Castro, E.; Ramírez, J.T.; Meza, I. Proteomic Analysis of Invasive Breast Cancer Cells Treated with CBD Reveals Proteins Associated with the Reversal of Their Epithelial-Mesenchymal Transition Induced by IL-1β. Int. J. Mol. Sci. 2025, 26, 4721. https://doi.org/10.3390/ijms26104721
García-Morales L, Ríos-Castro E, Ramírez JT, Meza I. Proteomic Analysis of Invasive Breast Cancer Cells Treated with CBD Reveals Proteins Associated with the Reversal of Their Epithelial-Mesenchymal Transition Induced by IL-1β. International Journal of Molecular Sciences. 2025; 26(10):4721. https://doi.org/10.3390/ijms26104721
Chicago/Turabian StyleGarcía-Morales, Lázaro, Emmanuel Ríos-Castro, José Tapia Ramírez, and Isaura Meza. 2025. "Proteomic Analysis of Invasive Breast Cancer Cells Treated with CBD Reveals Proteins Associated with the Reversal of Their Epithelial-Mesenchymal Transition Induced by IL-1β" International Journal of Molecular Sciences 26, no. 10: 4721. https://doi.org/10.3390/ijms26104721
APA StyleGarcía-Morales, L., Ríos-Castro, E., Ramírez, J. T., & Meza, I. (2025). Proteomic Analysis of Invasive Breast Cancer Cells Treated with CBD Reveals Proteins Associated with the Reversal of Their Epithelial-Mesenchymal Transition Induced by IL-1β. International Journal of Molecular Sciences, 26(10), 4721. https://doi.org/10.3390/ijms26104721